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Graphical abstract 

Abstract 

Conjugate Gradient (CG) methods are well-known method for solving unconstrained optimization 

problem and popular for its low memory requirement. A lot of researches and efforts have been done 

in order to improve the efficiency of this CG method. In this paper, a new inexact line search is proposed 

based on Bisection line search. Initially, Bisection method is the easiest method to solve root of a 

function. Thus, it is an ideal method to employ in CG method. This new modification is named n-th 

section. In a nutshell, this proposed method is promising and more efficient compared to the original 

Bisection line search.  
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INTRODUCTION 

Optimization could be defined as the science of finding the best 

solution to mathematical problems which are the physical modelled 

from the real world. According to Snyman (2005), optimization 

includes the study of optimality criteria of problems, the determination 

of algorithmic methods, the study of structure of methods and its 

computer experimentation with methods both under trial conditions and 

also on real life problem. 

Mathematically, in this study, we found the minimum solution to a 

given function  which is 

).(min xf
nRx

Using an initial guess or initial point, we try to get a new solution 

by using an appropriate method.  In doing this, we basically return to 

the same calculation method but, using new initial guess. This returning 

procedure which is also known as an iterative method forms the basis 

of optimization that is to minimize 𝑓(𝑥) such that  

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘.  

The 𝛼𝑘 is known as the stepsize and the 𝑑𝑘 is known as the search 

direction. Different 𝑑𝑘 give rise to different method of optimization.  

  The steepest descent is the earliest and recognized method, dated 

back in 1847 (Cauchy, 1847). Many other methods arise based on its 

modification. Conjugate Gradient (CG) method is one of it and dated 

back as early as 1952. Currently, this method seems to be the attention 

of many researches lately. 

CONJUGATE GRADIENT METHOD 

         The initial calculation for conjugate gradient method starts with 

steepest descent direction and after that, the next search direction is 

calculated by adding the linear combination of the previous direction 

to the current gradient (Chong and Zak, 2013).  The search directions 

defined is by  

𝑑𝑘 = {
−𝑔𝑘 ,                                             𝑖𝑓 𝑘 = 0 ;   

−𝑔𝑘   +   𝛽𝑘𝑑𝑘−1 ,                               𝑖𝑓 𝑘 ≥ 1             
 

in which 𝛽𝑘 is known as the CG coefficient while 𝑔𝑘 is the gradient of 

f at point 𝑥𝑘 (Hamoda et. al,  2015). Many researches have been 

conducted by researchers to find the best formula for 𝛽𝑘 that will yield 

a better result. Some of the most well-known formulas are Fletcher-

Reeves (FR), Polak-Ribière-Polyak (PRP) and Rivaie, Mustafa, Ismail 

and Leong (RMIL). 

They are written as 

            𝛽𝑘
𝐹𝑅 =

𝑔𝑘
𝑇𝑔𝑘

𝑔𝑘−1
𝑇 𝑔𝑘−1

                (Fletcher –Reeves, 1964)       

                        

         𝛽𝑘
𝑃𝑅𝑃 =

𝑔𝑘
𝑇(𝑔𝑘−𝑔𝑘−1)

𝑔𝑘−1
𝑇 𝑔𝑘−1

       (Polak and Ribiere,1969;Polyak, 1969)            

            𝛽𝑘
𝑅𝑀𝐼𝐿 =

𝑔𝑘
𝑇(𝑔𝑘−𝑔𝑘−1)

‖𝑑𝑘−1‖
        (Rivaie, Mustafa, Ismail and Leong, 2012) 
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BISECTION AND N-th SECTION LINE SEARCH 

         In finding the step size in CG method, there are two line searches 

that can be applied which are exact and inexact line search. Exact line 

search is the exact value of step size,
k , calculated analytically using 

𝑓′(
k ) =  0. While, inexact line search is the approximate value of 

k

, calculated using numerical analysis such as Bisection, Newton and 

secant line search. 

         Bisection method is the easiest method using an interval which is 

divided into two or half. Doron (2010) assume that this method has 

opposite signs at both edges of the intervals where 𝑓(𝑎). 𝑓(𝑏) <  0. 

Then, it is known that 𝑓(𝑥) has at least one root in the interval, 

[𝑎, 𝑏]. The existing method proceeds and continues iterating until it 

converges to a point within the tolerance range and finds the value of x

such that 𝑓(𝑥)  =  0 or approximately 0. 

         The main advantage of Bisection method is the behaviour itself is 

always convergent since the method brackets the root much more 

quickly than the incremental search method does. Hence, Bisection 

method is easy to use, apply and has wide range of applications in other 

developments.  
       However, the division of the interval into two section leads to 

slow convergence of Bisection method. Hence, a new method is 

proposed called an n-th section method.This method is compared with 

the original Bisection method based on number iterations, CPU times 

and accuracy. 

         An n-th section method is a modification from classical Bisection 

method which is fourth and sixth section method. This new scheme 

divided the interval into four and six section.The root is then identify 

either in the first, second, third, fourth, fifth or sixth interval. This will 

lead to faster convergence of the root and provide faster calculation of 

the roots. For an even number of n, the algorithm will be similar to 

Bisection method. However, the n-th section inherits the problems from 

the bisection itself and some modifications need to be implemented 

before fitting it as a line search. This modification has lead to an idea 

of an employment of a new  line search in CG method. Fig. 1, Fig. 2 

and Fig. 3 shows the schematic representation for Bisection method, 4th

Section method and 6th Section method respectively. 

Fig. 1 The schematic representation of bisection method 

Fig. 2 The schematic representation of fourth section method 

Fig. 3 The schematic representation of sixth section method 

METHODOLOGY  

         The selected model to use in this research is CG method with the 

employment of classical Bisection, modified Bisection and modified n-

th section line search. Since the classical Bisection and original n-th 

section might not always work and has some issues, some 

modifications need to be implemented before fitting it as a line search. 

Next, computer programming code will be constructed using Maple 16 

software. Algorithm 1 shows CG method with an employment of 

original Bisection and n-th section line search Algorithm 1 and 

Algorithm 2 shows the proposed CG method under modified line 

search. 

Algorithm 1: CG Method with an employment of original Bisection 

and n-th section line search algorithm 

Step 

1 

Initialization.  

Given
0x , set 0k . 

Step 

2 

Computing search direction.     

𝑑𝑘 = {
−𝑔𝑘 ,                                             𝑖𝑓 𝑘 = 0 ;   

−𝑔𝑘   +  𝛽𝑘𝑑𝑘−1 ,                               𝑖𝑓 𝑘 ≥ 1             

Step 

3 
Computing step size k
Identify two numbers a and b as an interval at which     

f ‘( k ) has different signs. 

Divide into sections, m = 
𝑎+𝑏

𝑛
 where n=2,4, and 6 

Determine if  

i. 𝑓 ′(𝑎) . 𝑓 ‘(𝑎 + 𝑚) <  0 then 𝑟 𝜖 (𝑎, 𝑎 + 𝑚) 

ii. 𝑓 ’(𝑎 + 𝑚) . 𝑓 ‘(𝑎 + 2𝑚) < 0 then 𝑟 𝜖 (𝑎 +
𝑚, 𝑎 + 2𝑚) 

iii. 𝑓 ‘(𝑎 + 2𝑚) . 𝑓 ‘(𝑎 + 3𝑚) <  0
then 𝑟 𝜖 (𝑎 + 2𝑚, 𝑎 + 3𝑚) 

. 

. 

𝑓‘(𝑎 + 𝑖𝑚) . 𝑓 ‘(𝑎 + (𝑖 + 1)𝑚) <  0 then 𝑟 𝜖 (𝑎 +
𝑖𝑚, 𝑎 + (𝑖 + 1)𝑚) 

           where 𝑖 = 0,1,2,3, … 

Define midc as midpoint, midc = 
(𝑎+𝑖𝑚)+ (𝑎+(𝑖+1)𝑚)

2
 

and midc = k

Repeated until desired iteration/ accuracy 

Step 

4 

Updating new point.  

kkkk dxx 1
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Step 

5 

Convergent test and stopping criteria. 

If )()( 1 kk xfxf  and kg then stop  

Otherwise go to Step 1 with 1 kk . 

Algorithm 2: Proposed CG method with improvement of Bisection 

and n-th section line search 

Step 

1 

Initialization.  

Given
0x , set 0k . 

Step 

2 

Computing search direction.     

𝑑𝑘 = {
−𝑔𝑘 ,                                             𝑖𝑓 𝑘 = 0 ;   

−𝑔𝑘   +   𝛽𝑘𝑑𝑘−1 ,                               𝑖𝑓 𝑘 ≥ 1             
 

Step 

3 
Computing step size 

k

Identify two numbers a and b as an interval at which  

f ‘(
k ) has different signs. 

Divide into sections, m = 
𝑎+𝑏

𝑛
where n = 2,4 and 6 

Determine if  

i. 𝑓 ′(𝑎) . 𝑓 ‘(𝑎 + 𝑚)  >  0 then continue  

ii. 𝑓 ’(𝑎 + 𝑚) . 𝑓 ‘(𝑎 + 2𝑚) > 0 then continue 

iii. 𝑓 ‘(𝑎 + 2𝑚) . 𝑓 ‘(𝑎 + 3𝑚) >  0 then 

continue 

. 

. 

𝑓‘(𝑎 + 𝑖𝑚) . 𝑓 ‘(𝑎 + (𝑖 + 1)𝑚) <
 0 𝑡ℎ𝑒𝑛 𝑟 𝜖 (𝑎 + 𝑖𝑚,   𝑎 + (𝑖 + 1)𝑚) then 

stop 

                where 𝑖 = 0,1,2,3, …  

Define midc as midpoint,  midc = 
(𝑎+𝑖𝑚)+ (𝑎+(𝑖+1)𝑚)

2
  

and midc = k

Repeated until desired iteration/ accuracy 

Step 

4 

Updating new point.  

kkkk dxx 1

Step 

5 

Convergent test and stopping criteria. 

If )()( 1 kk xfxf 
and kg then stop  

Otherwise go to Step 1 with 1 kk . 

The stopping criteria for the standard test problem is ‖𝑔𝑘‖  ≤  10−6 as 

suggested by Andrei (2011) is applied. The initial points in a single 

quadrant are then tested from a point that is closer to the solution point 

to the one that is furthest. There is a tendency that an algorithm will 

found the solution point when we used an initial point which is closer. 

In this case, four other initial points which is spread further apart is 

chosen to see the behaviour of the method. Comparison of both method 

are based on its efficiency in terms of number of iterations. A 

comparison between existing methods and proposed method based on 

its efficiency and convergence properties are studied. Performance 

profile introduced by Dolan & Moré will be also be featured and 

conducted in this paper. The numerical results is tested on a same 

computer with Core i5 processor 3337U with 4GB RAM. 

STANDARD OPTIMIZATION TEST PROBLEM 

The quality of an optimization methods are frequently evaluated using 

standard optimization test problems. In this research, all methods have 

been tested using four different functions. In this section, we shall 

discuss about the main criteria of the selected test problems.  We have 

also plot the test problems with two variables using Maple 16 to show 

the different shape of the functions which has been selected.  

Problem 1: Tridiagonal Function with n=2 (Andrei, 2008) 

Function:    


 
2/

1

4

212

2

212 13)(
n

i

iiii xxxxxf

Global minimum is )0,0(* x and minimum function values is

0)( * xf

, which lies inside the bottom curve, see Fig. 4. 

Fig. 4 Tridiogonal function in 3D 

Problem 2: Booth Function with n=2 (Witte and Holst, 1964) 

Function: 
2

21

2

21 )52()72()(  xxxxxf

Global minimum is )3,1(* x and minimum function values is

0)( * xf

, which lies inside the bottom curve, see Fig. 5. 

Fig. 5 Booth function in 3D 

Problem 3: Bukin Function with n=2 (as cited in Mishra, 2006) 

Function: 
2

1

2

12 )10(01.0)101.0(100)(  xxxxf

Global minimum is )0,10(* x and minimum function values is

0)( * xf , see Fig. 6. 
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Fig. 6 Bukin function in 3D 

Problem 4: Three-hump Function with n=2 (Jasson & Knuppel, 

1992) 

Function: 
2

221

6

14

1

2

1
6

05.12)( xxx
x

xxxf 

Global minimum is )0,0(* x and minimum function values is

0)( * xf

, see Fig. 7. 

Fig. 7 Three-hump function in 3D 

RESULTS AND DISCUSSION 

         The results are presented for CG-FR, CG-PRP and CG-RMIL 

based on the functions that have been discussed in previous 

section.Table 1, Table 2 and Table 3 shows the number iterations for 

CG-FR method, CG-PRP method and CG-RMIL method respectively. 

Fig. 8 shows the performance profile involving the classical Bisection, 

modified Bisection, modified 4-th section and modified 6-th section. 

The abbreviation of CB, MB, M4 and M6 are denoted as classical 

Bisection, modified Bisection, modified 4th Section and modified 6th 

Section line search respectively. In each table, F is denoted as failure to 

converge in which the method could not reach the solution point. 

For CG-FR method using the Tridiagonal function, the number of 

iterations is equivalent for all line searches using any initial points. Both 

Tridiagonal and Bukin function possess global convergence properties 

since all the tested initial points converges to the solution point. 

However, some of the initial ponts failed to converge for Bukin and 

Threehump function. In this results, the application of modified 6th

Section line search in CG-FR method is quite promising since the 

convergence is unlikely to fail when compared to the classical 

Bisection.   

For CG-PRP method, only booth function possess global 

convergence properties. For Tridiagonal function, only the nearest 

point tend to fail.  Some of the initial points are also fail to converge for 

Bukin and Threehump function. In bukin function, it is obvious that the 

application of nth Section line search can be a problem solver when 

using modified 6th Section line search.  

Table 1 Number of iterations of CG-FR method 

Initial Points CB MB M4 M6 

Tridiagonal 

(12,12) 5 5 5 5 

(50,50) 2 2 2 2 

(100,100) 2 2 2 2 

(500,500) 2 2 2 2 

Booth 

(12,12) 2 3 3 3 

(50,50) 3 3 3 3 

(100,100) 3 3 3 3 

(500,500) 2 3 3 3 

Bukin

(7,7) F 38 28 F 

(15,15) F F 39 220 

(30,30) F F 80 24 

(50,50) F F 172 290 

Threehump 

(-1,1) F F 12 12 

(-10,10) 8 8 F 6 

(-30,30) F F F 10 

(-100,100) 8 8 F 33 

Table 2 Number of iterations of CG-PRP method 

Initial Points CB MB M4 M6 

Tridiagonal 

(12,12) F F F F 

(50,50) 2 2 2 2 

(100,100) 2 2 2 2 

(500,500) 3 3 2 2 

Booth 

(12,12) 2 3 3 3 

(50,50) 2 3 3 3 

(100,100) 2 3 3 3 

(500,500) 2 3 3 3 

Bukin 

(7,7) F F 38 22 

(15,15) F F 25 22 

(30,30) F F F 36 

(50,50) F F F 111 

Threehump 

(-1,1) F F 4 4 

(-10,10) 4 4 F 4 

(-30,30) 5 5 4 F 

(-100,100) 7 7 F F 
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Table 3 Number of iterations of CG-RMIL method 

Initial Points CB MB M4 M6 

Tridiagonal 

(12,12) F F 5 5 

(50,50) 2 2 2 2 

(100,100) 2 2 2 2 

(500,500) 3 3 2 2 

Booth 

(12,12) 2 3 3 3 

(50,50) 2 3 3 3 

(100,100) 2 3 3 3 

(500,500) 2 3 3 3 

Bukin 

(7,7) F F F F 

(15,15) F F F F 

(30,30) F F F F 

(50,50) F F F F 

Threehump 

(-1,1) F F 6 6 

(-10,10) 6 6 F 6 

(-30,30) 5 5 5 F 

(-100,100) F F F F 

         For CG-RMIL method, only booth function possess global 

convergence properties. For Tridiagonal function, only the application 

of modified 4th Section and 6th Section are capable to reach its minimum 

solution. Some of the intial points in Threehump function failed to 

converge.  CG-RMIL with this line searches is unlikely to be the ideal 

as a problem solver for Bukin function since none of the intial points 

succeed to converge.  

Other than that, the performance results are shown in Fig. 8 using 

the performance profile introduced by Dolan and More (2002).  The 

performance profile seeks to find how well the solvers perform relative 

to the other solvers on the problems. In this performance profile, they 

introduced the notion of a means to evaluate and compare 

the performance of the set solver S on a test set P. Assume that 𝑠𝑛 

solvers and 𝑝𝑛 problems exists, for each problem p and solver s, define 

that 

𝑡𝑝,𝑠 = computing time (the number of iterations or CPU time or     

           others) required to solve problems p by solver s . 

The performance of solver s on any given problem might be of 

interest, but because want to obtain an overall assessment of the 

performance of the solver, then it was defined 

𝑝𝑠(𝑡) =
1

𝑛𝑝
𝑠𝑖𝑧𝑒{𝑝 ∈ 𝑃: 𝑟𝑝,𝑠 ≤ 𝑡} 

t

e0 e1

P
s
(t

)

0.0

0.2

0.4

0.6

0.8

1.0

Classical Bisection

Modified Bisection 

Modified 4th Section 

Modified 6th Section

Fig. 8 Performance profile 

        Based on this performance profile, the best method is determined 

based on the right side of figure which has the highest curve value. In 

this case, it shows that the best line search is modified 6th section with 

0.8. This means that this method is able to solve 80% of the given 

problems. Based on the left side, it shows that the classical Bisection, 

4th section and 6th section possess the top curve which means that this 

method is competetively fast. However, the classical Bisection and 4th

section are the lowest curve on the right side which implies the least 

problem solver.  

CONCLUSION 

         In this paper, a new line search has been proposed which is the 

modified n-th section method that is applied in CG method. It shows 

that this method could be used as a line search for CG method with 

superior performance. It is believe that some improvement could also 

be done in future research to enhance the performance of these line 

searches. 
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