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Abstract 

The recruitment of macrophages at the tumor sites is the earliest immune response takes place during 
tumor progression. In breast cancer, experimental studies reveals that the tumor cells are capable of 
taking advantage on the plasticity of macrophages. Tumor cells respond to epidermal growth factor, 
EGF that released by macrophages while macrophages respond to colony stimulating factor 1, CSF-
1 that released by tumor cells. This chains continues and results a paracrine signalling loop. 
Consequently, tumor cells and macrophages will aggregate and invade to other tissues or organ. 
Tumor cells also receive their own signals, adding a new feature of interaction called autocrine 
signalling loop. By considering in vitro interactions, a system of partial differential equations that 
incorporate the saturating functions for secretion terms was developed. This functions describes the 
production of chemical signals saturates with increasing cell density. Stability analysis are then 
performed to investigate the conditions for aggregation. For a given average of cells density, the 
homogeneous steady state is non-trivial and the concentration of CSF-1 and EGF are produced in the 
saturated production. Stability results show that regions for instability are reduced, compared to 
previous model which assumes the production rates are linear with increasing cell density. Besides, 
the inclusion of autocrine signalling loop increase the occurrence of aggregation. Decreasing the 
production rates and chemotaxis sensitivity, together with increasing the decay rates are required to 
impede the aggregation from initiated. This results should provide valuable clinical suggestions in 
guiding medical experts during drug designs. 
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INTRODUCTION 

Breast cancer is the most commonly diagnosed cancer type and a 

leading killer among women across the globe [1, 2, 3]. Great efforts 

have been done to improve the current understanding of the disease at 

many stages of its development. These include prevention, diagnosis, 

tumor progression and recurrence, treatment and therapeutic resistance 

[4]. The fact that it is a heterogeneous disease among different patient’s

cause’s diagnosis and therapy problems to remain challenging [5].  

In general, breast cancer arises from abnormal mammary stem cells 

that form tumor which lose their cell characteristics and behaviour [6]. 

As soon as the abnormal cell emerges, immune system is a crucial 

component in human body to perform their task. Experts have been 

widely use this biological fact since it is obviously realistic in human 

life. Mathematical approaches in analysing the interaction between 

immune and breast tumor cells can be found in previous literature [7-

11]. 

However, recent knowledge of immune and breast tumor cells 

interaction (also implies in some type of cancer) have reveals the 

paradox of tumor immunology [12]. This issue have been controversy 

due to contradict nature of immune system. Macrophages are one of the 

innate immune system identified as the causes for poor prognosis in 

several cancer including breast cancer [13, 14, 15].. 

Macrophages are parts of immune system that have diverse of 

functions, including in ecosystem of cancer [14, 15, 16]. In normal 

situation, they are required for homeostasis, tissue remodelling, 

angiogenesis and disposal of dead cells [14, 17-23]. Due to the 

unfavourable condition in cancer surrounding, their function may 

reverse to promote the growth of tumor. Several theories have been 

developed to differentiate the positive and negative functions of 

macrophages [22, 24]. The presented work focuses on the negative role 

of macrophages. 

Fig. 1  Interaction between tumor cells and macrophages. 

The way of macrophages to carry out their functions is depending 

on the environmental cues [13, 14, 17]. When cancer develops, 

macrophages are manipulated by tumor cells which reverse the defence 

mechanism to negative action. This action is carried out in the form of 

communication via signalling molecule that trigger the tumor cells 

migrate from their primary sites [25-28]. 
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Tumor cells was first release the colony stimulating factor, CSF-1 

and receive by the receptor on macrophage, CSF-1R. This will 

activated the macrophages which triggered them to move to the higher 

concentration (chemotaxis) of CSF-1 and release epidermal growth 

factor, EGF. Tumor cell accept the EGF since they have epidermal 

growth factor receptor, EGFR) and chemotact towards the higher 

concentration of EGF. This chain continues and create a paracrine 

signalling loop which then both will aggregate [25]. The cooperative 

migration lead tumor to a distant sites by either intravasation or 

extravasation to form a secondary tumor [27]. 

The current study is motivated by Knutsdottir et al. [29]. They 

constructed the first model on the interaction between macrophages and 

tumor cells. They use a system of partial differential equation that 

consists of chemotaxis and reaction-diffusion equations. In other 

works, Elitas and Zeinali [30] investigated the glioma and macrophage 

interaction in different cancer, which is in the site of the brain. They 

also use a system partial differential equation but differ in the approach 

of the modelling situation. These two major works provide the initiative 

for this study to attempt modifications of their models. Since our 

focuses on breast cancer, the main concern of this study is referring to 

Knutsdottir et al. In their model, the production terms for both signals 

are linear. However, according to Hillen et al. [31] the production rate 

supposed to be saturates at a certain level. A modification is made to 

the model and linear stability analysis is carried out to investigate the 

parameters that contribute to the aggregation. 

REVIEW ON EXPERIMENTAL STUDIES  

Experimental studies had been conducted by several researchers 

regarding on interaction between macrophages and tumor cells. It 

involved two types of experiments, which are in vitro and in vivo. In 

vitro studies were carried out in outside living organism such as in petri 

dish while in vivo studies were carried out inside living organism, 

usually mice.  

The first group that verified macrophages needed for tumor cells 

motility is van Netten et al. [25]. Through in vitro studies, they found 

that tumor cells and macrophages aggregate within one day. The details 

of the interaction were investigated by Lin et al. [26] Using mammary 

mouse cancer cell lines, they found that CSF-1 is crucial to enhance 

tumor progression.  

Wyckoff et al. [27] then investigate the interaction by inserted 

mammary tumor, PyMT in mice for two months. At first, 25 nM EGF 

is placed inside the tumor. After 4 hours, a ratio of three tumor cells to 

one macrophages are collected. In addition, they found that both tumor 

cells and macrophages have EGF receptor and CSF-1 receptor 

respectively. This is the crucial factor for both cells interact 

continuously. 

Motivated by Wyckoff, Goswami et al. [28] further carried out in 

vitro experiments to show the existence of loop between macrophages 

and tumor cells. Their findings indicate that the paracrine signalling 

loop will occur in a short ranged. Patsialou et al. [32] then add a new 

feature of interaction between both cells which is autocrine signalling. 

In this interaction, tumor cells secrete and receive its own signal, CSF-

1. 

THE MODEL 

The movement of both tumor cells and macrophages to their 

chemical signals is known as chemotaxis. Chemotaxis have been 

studied due to its critical role in biological phenomena [31]. For 

instance, sperm cells are attracted to chemical substance released by 

egg cell during fertilization, cell positioning during development of 

embryo, and migration of immune cell to the site of inflammation. In 

unicellular organisms, bacteria are the most familiar organism being 

investigated. Particularly in the movement of E. coli, the life cycle of 

Dictyostelium discoideum, response to variety of signals for worms, C. 

elegans and others. 

A well-developed model was first constructed by Keller and Segel 

(KS) in 1970 [33]. It has been widely used in models for chemotaxis 

due to its ability to relate with the real biological situation. They 

investigate the interactions of chemotactic cells, slime molds and a 

secreted attractant, cAMP. Results showed that the aggregation formed 

by cells was regarded as instability. The original model is consisted of 

four coupled reaction-advection diffusion equations. However, the 

classical model of KS is considered complicated to analyze. A minimal 

version of KS model has been developed as presented below after 

several assumptions have been made. 

                 
𝜕𝑢

𝜕𝑡
=
𝜕

𝜕𝑥
(𝜇
𝜕𝑢

𝜕𝑥
− 𝜒𝑢

𝜕𝑣

𝜕𝑥
) + 𝑓(𝑢, 𝑣) (1) 

                             
𝜕𝑣

𝜕𝑡
= 𝐷

𝜕2𝑣

𝜕𝑥2
+ 𝑔(𝑢, 𝑣) (2) 

where 𝑢 is the cell density, and 𝑐 is the chemoattractant concentration. 

𝜇 > 0 and 𝜒 is the cell motility and chemotactic sensitivity, 

respectively. The function 𝑓 regulates the cell proliferation and death 

while 𝑔 represents the production and/or degradation of chemicals. 

Boundary conditions for this model is often used Neumann boundary 

condition (no flux). The derivation of this model is based on the Fick’s 

Law and reaction-diffusion equation that can be found in Keshet [34]. 

This model had been chosen by several researchers for studies on 

diseases. Luca et al. [35] investigated conditions that lead to 

aggregation of microglia and formation of local accumulation of 

chemicals observed in alzheimer’s diseases senile plaques. They 

develop a model for chemotaxis in response to a combination 

chemoattractant and chemorepellent signalling chemicals. The model 

consisted of two signalling molecules, 𝑣𝑖 , 𝑖 = 1 and 2. In their linear 

stability analysis, the parameter that represents the ratio of effective 

strengths of attraction and repulsion produce three different regions of 

pattern formation. Each of the regions is numerically solved to agree 

with the predictions of linear stability analysis.  

Another model by Russell [36] used the KS model to analyze the 

treatment of a chronic wound with oxygen therapy techniques. Unlike 

normal wounds, some wounds often linked with diseases such as 

diabetes which originally occurred at the inflammatory sites for a long 

period. This model consisted oxygen levels, neutrophil and bacteria 

concentration. The model was raised to investigate whether it can 

treated with different time scale and boundary layer problem with two 

boundaries. A similar work was conducted by Guffey [37] two years 

later, which included optimal control theory for the problem. With the 

addition of new chemoattractant concentration released by bacteria, the 

system consisted of four variable. 

The paradox of tumor immunology was initiated by Knutsdottir et 

al. [29] involving two cells, macrophage and tumor cell together with 

their own chemical signals. They made use the KS model to describe in 

vitro experiments about the interaction of both cells. The model involve 

two types of interaction which are paracrine signalling loop and 

autocrine signalling loop. The instability of the system is indicated by 

the aggregation of the cells since this form will make macrophages and 

tumor cells migrate from their primary sites of infection. Linear 

stability was conducted to investigate the parameter of the equation that 

crucial for the aggregation to be formed. Their model consists of four 

variables presented in Eqns. (3)-(6). 

                        
𝜕𝑀

𝜕𝑡
= 𝜇

𝜕2𝑀

𝜕𝑥2
−
𝜕

𝜕𝑥
(𝜒1𝑀

𝜕𝐶

𝜕𝑥
) (3) 

                         
𝜕𝑇

𝜕𝑡
= 𝜇

𝜕2𝑇

𝜕𝑥2
−
𝜕

𝜕𝑥
(𝜒2𝑇

𝜕𝐸

𝜕𝑥
) −

𝜕

𝜕𝑥
(𝜒3𝑇

𝜕𝐶

𝜕𝑥
) (4) 

                         
𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
+ 𝑏1𝑇 − 𝛾1𝐶 (5) 

                         
𝜕𝐸

𝜕𝑡
= 𝐷

𝜕2𝐸

𝜕𝑥2
+ 𝑏2𝑀 − 𝛾2𝐸 (6) 

where 𝑀 denoted the density of macrophage, 𝑇 is density of tumor cell, 

𝐶 is concentration of CSF-1 and 𝐸 is concentration of EGF. Compared 

to KS model, this equation assumes there is neither birth nor death of 

the cells (𝑓 = 0). The chemical signals are assume to be linear in 
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production and degradation (𝑔 ≠ 0). Secretion of CSF-1 and EGF is 

denoted by 𝑏1 and 𝑏2 respectively while 𝛾1 and 𝛾2 are its degradation. 

Parameter 𝜇, 𝐷 and  𝜒𝑖 where 𝑖 = 1, 2, 3 are same as in the KS model. 

This paper modified the model developed by Knutsdottir et al. [29] 

In Eqn. (2), the form of 𝑔 is linear with the density of cells. This means 

that the production of CSF-1 and EGF increase when both the density 

of tumor cells and macrophages increase. According to Hillen et al. [31] 

the production of chemicals does not increase continuously. It supposed 

to saturate with increasing cell density, which in the form of saturating 

functions as in Eqn. (7) and Eqn. (8).  

𝜕𝐶

𝜕𝑡
= 𝑏1 (

𝑇

ℎ1 + 𝑇
) 

(7) 

𝜕𝐸

𝜕𝑡
= 𝑏2 (

𝑀

ℎ2 + 𝑀
) (8) 

where 𝑏𝑖 governs the secretion rate of signals and ℎ𝑖 indicates the 

density of cells for 𝑖 = 1, 2. Several number of chemotactic models also 

used this terms which can be found in Maini et al. [38] and Myerscough 

et al. [39]. A new modified model is presented in Eqn. (9)-(12).  

                      
𝜕𝑀

𝜕𝑡
= 𝜇

𝜕2𝑀

𝜕𝑥2
−
𝜕

𝜕𝑥
(𝜒1𝑀

𝜕𝐶

𝜕𝑥
) (9) 

                       
𝜕𝑇

𝜕𝑡
= 𝜇

𝜕2𝑇

𝜕𝑥2
−
𝜕

𝜕𝑥
(𝜒2𝑇

𝜕𝐸

𝜕𝑥
) −

𝜕

𝜕𝑥
(𝜒3𝑇

𝜕𝐶

𝜕𝑥
) (10) 

                       
𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
+ 𝑏1 (

𝑇

ℎ1 + 𝑇
) − 𝛾1𝐶 

(11) 

                       
𝜕𝐸

𝜕𝑡
= 𝐷

𝜕2𝐸

𝜕𝑥2
+ 𝑏2 (

𝑀

ℎ2 + 𝑀
) − 𝛾2𝐸 (12) 

with initial and boundary condition 

𝑀(𝑥, 0) = 𝑀0, 𝑇(𝑥, 0) = 𝑇0, 𝐶(𝑥, 0) = 𝐶0, 𝐸(𝑥, 0) = 𝐸0 

(𝜇
𝜕𝑀

𝜕𝑥
− 𝜒1𝑀

𝜕𝐶

𝜕𝑥
)|
0,𝐿
= 0, 

𝜕𝐶

𝜕𝑥
|
0,𝐿
= 0, 

(13) 

(𝜇
𝜕𝑇

𝜕𝑥
− 𝜒2𝑇

𝜕𝐸

𝜕𝑥
− 𝜒3𝑇

𝜕𝐶

𝜕𝑥
)|
0,𝐿
= 0, 

𝜕𝐸

𝜕𝑥
|
0,𝐿
= 0. 

Table 1  Parameter values used are obtained in [29, 30, 40]. 

Parameter Units Value 

𝜇 𝜇m2/min 6 

𝜒1, 𝜒2, 𝜒3 𝜇m2/min nM 1000 

𝑏1 nM/min 6.9 

𝑏2 nM/min 9.6 

𝛾1 1/min 3 x 10-2 

𝛾2 1/min 1.5 x 10-2 

RESULTS AND DISCUSSION 

In this section, the analysis is presented for two separate cases 

which are stability analysis for paracrine signalling loop (𝜒3 = 0) and 

stability analysis for autocrine signalling loop (𝜒3 ≠ 0). First, the 

model in Eqn. (9)-(12) are simplified to yield a smaller number of 

parameters by transforming the system into dimensionless form. 

Second, the model is reduced from four equations into two equations 

by using quasi-steady state assumptions. Lastly, the linear stability 

analysis is done by using perturbation method. 

Stability analysis for paracrine signalling loop (𝝌𝟑 = 𝟎) 
Consider the first case, in which the tumor cell does not receive its 

chemical signal, CSF-1. To nondimensionalize the model in Eqn. (9)-

(12), let 

𝑥∗ =
𝑥

�̂�
, 𝑡∗ =

𝑡

�̂�
, 𝑀∗ =

𝑀

�̂�
, 

(14) 

𝑇∗ =
𝑇

�̂�
, 𝐶∗ =

𝐶

�̂�
, 𝐸∗ =

𝐸

�̂�
 

where  

�̂� = √
𝐷

𝛾2
, 

�̂� =
𝐷

𝛾2𝜇
 

�̂� = ℎ2 

(15) 

�̂� = ℎ1, �̂� =
𝑏1
𝛾1
, �̂� =

𝑏2
𝛾2

The asterisks (∗) denote dimensionless variables and parameters. Note 

that the choice of scaling parameters and variables in (15) are not 

unique. Removing (∗) from the nondimensionalized variables and 

parameters for notational simplicity, Eqn. (9)-(12) become 

                        
𝜕𝑀

𝜕𝑡
=
𝜕2𝑀

𝜕𝑥2
− 𝐴1

𝜕

𝜕𝑥
(𝑀

𝜕𝐶

𝜕𝑥
) (16) 

                         
𝜕𝑇

𝜕𝑡
=
𝜕2𝑇

𝜕𝑥2
− 𝐴2

𝜕

𝜕𝑥
(𝑇
𝜕𝐸

𝜕𝑥
) (17) 

                      𝜀
𝜕𝐶

𝜕𝑡
=
𝜕2𝐶

𝜕𝑥2
+ 𝐵2 (

𝑇

1 + 𝑇
− 𝐶) (18) 

                      𝜀
𝜕𝐸

𝜕𝑡
=
𝜕2𝐸

𝜕𝑥2
+

𝑀

1 +𝑀
− 𝐸 (19) 

where the new parameter are represent as 

𝐴1 =
𝜒1𝑏1
𝛾1𝜇

, 𝐴2 =
𝜒2𝑏2
𝛾2𝜇

, 𝜀 =
𝜇

𝐷
, 𝐵2 =

𝛾1
𝛾2

 (20) 

and the steady state is non-trivial as in (21). 

                 (𝑀, 𝑇, 𝐶, 𝐸) = (𝑀,̃ 𝑇,̃ 
�̃�

1 + �̃�
,
�̃�

1 + �̃�
) (21) 

�̃� and �̃� are the average density of macrophages and tumor cells. 

Notice that the value of 𝜀 is very small as in Eqn. (18) and (19). This is 

due to the signalling molecule diffuse faster than the random motion of 

the cells which can be known as quasi-steady state approximations. By 

making use of this approximations, Eqn. (18) and Eqn. (19) becomes 

                       0 ≈
𝜕2𝐶

𝜕𝑥2
+ 𝐵2 (

𝑇

1 + 𝑇
− 𝐶) (22) 

                       0 ≈
𝜕2𝐸

𝜕𝑥2
+

𝑀

1 +𝑀
− 𝐸 (23) 

Following from Knutsdottir [29], Luca [35] and Maini [38], Green 

function is used to obtain the solution for Eqn. (22) and Eqn. (23). 

                    𝐶 =
𝐵

2
∫ 𝑒−𝐵|𝑥−𝑥

′|
𝑇

1 + 𝑇
𝑑𝑥′ ≡ 𝐾1 ∗

∞

−∞

𝑇

1 + 𝑇
 (24) 
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                    𝐸 =
1

2
∫ 𝑒−|𝑥−𝑥

′|
𝑀

1 +𝑀
𝑑𝑥′ ≡ 𝐾2 ∗

∞

−∞

𝑀

1 +𝑀
(25) 

where 𝐾1 and 𝐾2 is the kernel that represent by 𝑒−𝐵|𝑥| and 𝑒−|𝑥|

respectively.  Eqn. (24) and (25) contain convolution integral terms 

which now can reduced from 4 PDE’s to 2 PDE’s system of equations. 

Substituting these equation into Eqn. (16) and (17) yields  

                     
𝜕𝑀

𝜕𝑡
=
𝜕2𝑀

𝜕𝑥2
− 𝐴1

𝜕

𝜕𝑥
[𝑀

𝜕

𝜕𝑥
(𝐾1 ∗ (

𝑇

1 + 𝑇
))] 

(26) 

                      
𝜕𝑇

𝜕𝑡
=
𝜕2𝑇

𝜕𝑥2
− 𝐴2

𝜕

𝜕𝑥
[𝑇
𝜕

𝜕𝑥
(𝐾2 ∗ (

𝑀

1 +𝑀
))] (27) 

Stability analysis can be performed on this reduced model to see if a 

small perturbation from the steady state can cause spontaneous 

aggregation of the cells. The following perturbation is introduced into 

the system: 

𝑀 = �̃� +𝑀0𝑒
𝑖𝑞𝑥+𝜎𝑡 𝑇 = �̃� + 𝑇0𝑒

𝑖𝑞𝑥+𝜎𝑡  (28) 

where 𝑞 is the wavenumber of the perturbation and 𝜎 is the growth rate 

of the perturbation. Introducing this perturbation into the system and it 

will lead to the system of equation  𝐀𝐱 = 𝐛, where 𝐀: 

𝐀 =

(

  
 

𝜎 + 𝑞2 −
𝑞2𝐴1𝐵

2�̃�

(1 + �̃�)
2
(𝐵2 + 𝑞2)

−
𝑞2𝐴2�̃�

(1 + �̃�)
2
(1 + 𝑞2)

𝜎 + 𝑞2

)

  
 

(29) 

For non-trivial solutions (𝑀0, 𝑇0 ≠ 0), the determinant of 𝐀 needs to 

be zero, det(𝐀) = 0. Then, it yields equation in the form of  𝜎2 + 𝑝𝜎 +
𝑟 = 0, where 

𝑝 = 2𝑞2 
(30) 

𝑟 = 𝑞4 (1 −
𝐴1𝐴2𝐵

2�̃��̃�

(�̃� + 1)
2
(�̃� + 1)

2
(1 + 𝑞2)(𝐵2 + 𝑞2)

) (31) 

For spontaneous aggregation to occur, the small perturbations have to 

cause instability in the system. This is true when the growth rate, 𝜎 > 0
and 𝑟 < 0.  

    𝑓(𝑞2) ≡ (1 + 𝑞2)(𝐵2 + 𝑞2) <
𝐴1𝐴2𝐵

2�̃��̃�

(�̃� + 1)(�̃� + 1)
≡ 𝑍 (32) 

The inequality (32) provides the range of parameter that can cause 

aggregation in response to small perturbations from the steady state. It 

shows large value of wavenumbers, 𝑞 will not lead to instability. 

Besides, the aggregation for both macrophages and tumor cells are 

depend on 𝐴1 and 𝐴2, provided both are sufficiently large. Recall that 

the related parameter contain in 𝐴𝑖 are 𝜒𝑖, 𝑏𝑖, and 𝛾𝑖. Hence, the 

chemotaxis parameter together with secretion rate should be inhibited 

while increasing the degradation rate can prevent the aggregation from 

being occur.  

Stability analysis for paracrine and autocrine signalling loop 

(𝝌𝟑 ≠ 𝟎) 
In this case, tumor cell will release CSF-1 and receive this signal. 

The new matrix A for this system is 

(

  
 

𝜎 + 𝑞2 −
𝑞2𝐴1𝐵

2�̃�

(1 + �̃�)
2
(𝐵2 + 𝑞2)

−
𝑞2𝐴2

(1 + �̃�)
2
(1 + 𝑞2)

𝜎 + 𝑞2 −
𝐴3�̃�𝐵

2𝑞2

(�̃� + 1)
2
(𝐵2 + 𝑞2))

  
 

(33) 

Finding the det(𝐀) = 0, it will leads to a new inequality in Eqn. (34) 

𝑓(𝑞2) = (1 + 𝑞2)(𝐵2 + 𝑞2) −
𝑞2𝐴3𝐵

2�̃�

(�̃� + 1)
2

<
𝐴1𝐴2𝐵

2�̃��̃�

(�̃� + 1)
2
(�̃� + 1)

2 +
𝐴3𝐵

2�̃�

(�̃� + 1)
2 ≡ 𝑍2 

(34) 

Comparing inequality in Eqn. (34) and (32), the addition of autocrine 

signalling will increase the possibility of aggregation to be occur. This 

due to the high concentration of CSF-1 will attract macrophages to 

interact with tumor cells. 

Fig. 2 The solid blue line shows the functions 𝑓(𝑞2) from Eqn. (32). 
Typical value of Z is represent by lower dotted line while typical value of 
Y which obtained from Knutsdottir model is represent by upper dotted 
line. The figure implies that any value of Z always produce smaller region 
of instability I, compared to the value of Y that produce larger region of 
instability II. 

Fig. 3 The solid blue line shows the functions 𝑓(𝑞2) from Eqn. (32) while 

the solid red line shows the functions 𝑓(𝑞2) from Eqn. (34).  The figure 
illustrates the inclusion of autocrine signalling loop produces a large 
instability region (III and IV) compared with the paracrine signalling loop 
alone. 
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CONCLUSION 

The interaction between macrophages and tumor cells in breast 

cancer can be modelled by system of 4 PDE’s that incorporate 

chemotaxis and reaction-diffusion equations. This work proposed 

different secretion terms that in the form of saturating functions. From 

the stability analysis, the secretion rate, chemotaxis sensitivity and 

degradation rate are crucial in determining the occurrence of 

aggregations for both cases which are paracrine signalling loop and the 

inclusion of autocrine signalling loop. Besides, stability region in Fig. 

2 illustrates the region of instability is reduced compared with the 

previous model proposed by Knutsdottir et al. [29]. In addition, the 

inclusion of autocrine signalling loop increase the possibility of the 

aggregation to be occurred. 
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