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Abstract 

This paper presents a numerical solution for the first order fuzzy logistic equations by extended Runge-
Kutta fourth order method with estimated parameters. The parameters are estimated by minimization 
technique using conjugate gradient approach. Then, the fuzzy logistic model with the estimated 
parameters is used to fit the population growth in Malaysia. Numerical example is given to show the 
efficiency of the proposed model. 
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INTRODUCTION 

Relating population growth models statistically to data is central to 

answering many important questions in ecology. Ecologists are often 

faced with the problem of predicting the future of populations from 

periodic counts of abundance. Therefore, ecologists rely on 

mathematical models to understand ecological systems and to predict 

future system behaviour.  

One of the fundamental tasks of engineering and science, and 

indeed of mankind in general, is the extraction of information from 

data. Parameter estimation is a discipline that provides tools for the 

efficient use of data in the estimation of constants appearing in 

mathematical models and for aiding in modeling of phenomena.  

Parameter estimation is needed in the modern world for the solution 

of the many diverse problems related to the space program, 

investigation of the atom, and modeling of ecology. Example and 

application in this paper, however, are directed to estimation problems 

occuring in the engineering and science in which fuzzy differential 

equations as well as ordinary differential and logistic equations are used 

to population growth model.  

Fortunately, simultaneous with the development of increased need 

of parameter estimation, computers have been built that make 

parameter estimation practicable for a great array of applications. It 

should be noted that both digital computational and data acquisition 

facilities are practical necessities in parameter estimation. Both these 

facilities have been readily available only since the late 1950s or early 

1960s, whereas estimation was first extensively discussed in reference 

(Legendre, 1806) and (Gauss, 1809).  In Gauss’s classic paper, he 

claimed usage of the method of least squares as early as 1795 in 

connection with the orbit determination of minor planets. For this 

reason, Gauss is recognized as being the first to use this important tool 

of parameter estimation. 

In this paper, we presented approaches for incorporating parameter 

estimation techniques in fuzzy logistic equations through the use of the 

minimization technique via center difference. This paper aims to 

discuss the fuzzy logistic equation subject to uncertainties in parameter 

intrinsic growth rate, G and initial population growth, 
0 .y We test a 

method of extended Rung-Kutta fourth order method to fit population 

models to data of a country population growth. 

MODEL DISCRIPTION 

The logistic model was introduced to describe population growth 

considering a self-limitation term that corrects the unlimited growth of 

the Malthusian model (Kot, 2001). The logistic model attempts to 

model real-world population dynamics by adding a carrying capacity, 

denoted by K , which provides a theoretical maximum limit value for 

the population. 

The logistic model is derived by modifying growth and death rates 

to vary in proportion to the size of the population. A relatively large 

population has to fight over scarcer resources, while a small population 

can grow more rapidly. Generally, the greater the population the lower 

the birth rate, and greater the death rate. By adding in variable birth and 

death rates, the logistic population model is derived: 

death rate, birth rate  
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where ( )y t is the population of the organism. The parameter G is 

referred to as the rate constant, and if 0,G  we call it a growth 

constant, while if 0,G  we call it a decay constant. Since '( ) 0y t 
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when ,  y K K is called the carrying capacity of the population. In

population biology, K and 0G form the basis of G K selection 

theory. This logistic equation is autonomous, and separable. It can be 

written as: 
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After integrating both sides: 
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From here we get: 
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The Eq. (1) is referred to as the logistic model: 
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To better represent the imprecise nature of the problem, we focus to 

introduce fuzzy into initial value problem, 
0y . The function '( )y t is a 

fuzzy derivative of ( )y t and 
0y is a fuzzy number. We denote the 

fuzzy function ( )y t by ( ) [ ( ), ( )].y t y t y t The   cuts of ( )y t are 

follows: 

     ( ) [ ( ), ( )]            1,2,..., .,
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Parameter estimation 
The Eq. (1) contain parameters, G and K . Parameter estimation 

involves gradient- based the minimization technique incorporated into 

the objective function to the model equations. Parameter values G and 

K will fitting as closely as possible to the data of a country population 

growth. The parameters, G and K were estimated from the minimum 

of the objective error using conjugate gradient technique. The initial 

value of the critical points was based on disjoint domain of objective 

surface. Usually, the range for the parameters was calculated based on 

these critical points, within an order of magnitude.  

In real population, the growth rate of population in certain country 

which is denoted as parameter G in Eq. (1) is normally imprecise due 

to the implicit lack of information and the mistakes in the measurement 

process present in related problems. Therefore, in this paper we 

introduce fuzzy parameter to design meaningful and realistic models

and parameter K is a number which is constant. The parameters will 

be applied to the model to make predictions of the country population. 

NUMERICAL SOLUTION OF THE MODEL  

The basis of all Runge-Kutta methods is to express the difference 

between the value of y at 
1nt 

and 
nt as  
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where 
iw are constant for all i and ( , ).
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Many efforts have been made to improve the order of Runge–Kutta 

methods by means of increasing the numerical terms in Taylor series 

expansion. This increases the number of function evaluations 

accordingly (Chakrivat et al., 1983; Enright, 1974; Gear, 1971; Hairer

et al., 1991; Rosenbrock, 1963). Recently, in reference (Goeken et al., 

2000) and (Wu et al., 2006) proposed a class of Runge–Kutta methods 

using higher derivatives and presented new third, ourth and fifth order 

numerical methods. Specifically, 'f is embedded in f i.e. 'f is 

approximated by a difference quotient of past and current evaluations 

of  
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 . This motivates a family of 

extended Runge–Kutta-like formulae of the form 
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Obviously, with 0,  1, 2,  , jc j m  in Eq. (3), the methods 

reduce to classical Runge–Kutta methods   
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Fourth order formula 

Extended Runge–Kutta-like methods Eq. (3) and Eq. (4) with 

3m  are of the following form: 
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Specific nonzero constants, in the extended Runge–Kutta-like 

formulae of order 4 (ERK4) (Mirza et al., 2002) are: 

1 1 3 21 32

1 1 1 1
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NUMERICAL EXAMPLE 

In this section, the fuzzy logistic equation (1) with fuzzy initial 

condition is given: 

   
 

 
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1 , 0,1                                
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We want to estimate the parameters, G and .K By plotting the 

objective function, we can get the range of estimation parameter.

Hence, G and K can be estimated by minimizing the objective 

function using conjugate gradient to get the new value for parameter 

G and .K

In this work with the fuzzy logistic model, we shall use actual data 

presented in Table 1 from website of indexmundi.com as state at 

references, with reduced unit. The results from 2010 to 2014 is 

generated from fuzzy logistic equation using extended Runge-Kutta 

fourth order method are shown in (Fig. 2(a)) and (Fig. 2(b)).  

Fig. 1  Objective error for parameter G and .K

(a) 

(b) 

Fig. 2  Result of (a) 2D Fuzzy Logistic Equation and (b) 3D Fuzzy Logistic 
Equation.  

Table 1  Population data of Malaysia. 

Time Population Time Population 

0 0.282747 0.52075 0.292173 

0.02075 0.283126 0.54175 0.292547 

0.04175 0.283504 0.5625 0.292921 

0.0625 0.283882 0.58325 0.293294 

0.08325 0.28426 0.60425 0.293668 

0.10425 0.284638 0.625 0.294042 

0.125 0.285017 0.64575 0.294415 

0.14575 0.285395 0.66675 0.294789 

0.16675 0.285773 0.6875 0.295163 

0.1875 0.286151 0.70825 0.295537 

0.20825 0.28653 0.72925 0.29591 

0.22925 0.286908 0.75 0.296284 

0.25 0.287286 0.77075 0.296655 

0.27075 0.287662 0.79175 0.297026 

0.29175 0.288038 0.8125 0.297396 

0.3125 0.288414 0.83325 0.297767 

0.33325 0.288791 0.85425 0.298138 

0.35425 0.289167 0.875 0.298509 

0.375 0.289543 0.89575 0.29888 

0.39575 0.289919 0.91675 0.29925 

0.41675 0.290295 0.9375 0.299621 

0.4375 0.290671 0.95825 0.299992 

0.45825 0.291047 0.97925 0.300363 

0.47925 0.291423 1 0.300734 

0.5 0.2918 

CONCLUSION 

We have shown how the study of fuzzy differential equations can 

be motivated using modelling of populations. In addition, this approach 

permits parameter estimation studies and a completion of the modelling 

cycle involving data and realistic situations. The parameter estimation 

using minimization technique gives the closer solution to the 

population data. The expected result is bounded inside the region of 

lower and upper solution.  
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