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Abstract 

In this paper, we propose a new hybrid conjugate gradient method for unconstrained optimization 
problems. The proposed method comprises of 𝛽𝑘

𝐷𝑌,  𝛽𝑘
𝑌𝑊𝐻, 𝛽𝑘

𝑅𝐴𝑀𝐼,   and 𝛽𝑘
𝑁𝑒𝑤. The  𝛽𝑘

𝑁𝑒𝑤 was 
constructed purposely for this proposed hybrid method. The method possesses sufficient descent 
property irrespective of the line search. Under Strong Wolfe-Powell line search, we proved that the 
method is globally convergent. Numerical experimentation shows the effectiveness and robustness of 
the proposed method when compare with some hybrid as well as some modified conjugate gradient 
methods. 
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© 2017 Penerbit UTM Press. All rights reserved 

INTRODUCTION 

  Let the function 𝑓: 𝑅𝑛 → 𝑅 be continuously differentiable. 

Consider the following unconstrained optimization problem  

min {𝑓(𝑥): 𝑥0 ∈  𝑅𝑛}                 (1) 

and its gradient is denoted by 𝑔(𝑥). We know for solving Eq. (1), 

starting from an initial guess 𝑥0 ∈  𝑅𝑛, conjugate gradient (CG) 

method generates a sequence {𝑥𝑘} as 

𝑥𝑘+1 =  𝑥𝑘 + 𝛼𝑘𝑑𝑘                                                        (2) 

and the direction 𝑑𝑘  is defined by  

𝑑𝑘+1 = {
−𝑔𝑘, 𝑖𝑓 𝑘 = 0;

−𝑔𝑘+1  + 𝛽𝑘  𝑑𝑘 , 𝑖𝑓 ≥ 1;
               (3) 

where 𝑥𝑘 is the current iterate, 𝛽𝑘  is an important formula called the 

CG coefficient and 𝛼𝑘 > 0  is the step-length obtained by a line search. 

In the line search computation, either exact or inexact line method is 

employed to compute the step-length 𝛼𝑘. In this paper, inexact line 

search used is given as follows: 

𝑓( 𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝛿𝛼𝑘𝑔𝑘
𝑇𝑑𝑘                                (4) 

|𝑔( 𝑥𝑘 + 𝛼𝑘𝑑𝑘)𝑇𝑑𝑘| ≤ 𝜎|𝑔𝑘
𝑇𝑑𝑘|,             (5) 

where 𝑑𝑘 is the descent direction and    0 < 𝛿 < 𝜎 < 1 .  

Over the years, research focused on the  CG techniques which resulted 

to emergence of several formulas with differences in CG 

coefficient ( 𝛽𝑘 )  in solving unconstrained optimization problems, the 

survey by Hager and Zhang (2006)  discussed extensively on some 

methods with special emphasis on their global convergence. The 

summary of the classical CG methods are given in the Table 1 .  

Table 1 The classical formulas for parameter 𝛽𝑘 

 𝜷𝒌 Method Name References 

||𝒈𝒌+𝟏||𝟐

||𝒈𝒌||𝟐
 

Fletcher-Reeves(FR) 
method 

Fletcher and Reeves 
(1964) 

−
||𝒈𝒌+𝟏||𝟐

𝒈𝒌
𝑻𝒅𝒌

Conjugate 
Descent(CD) method Fletcher (2013) 

||𝒈𝒌+𝟏||𝟐

𝒅𝒌
𝑻𝒚𝒌

 
Dai-Yuan(DY) 

method Dai and Yuan (1999) 

𝒈𝒌+𝟏
𝑻𝒚𝒌

||𝒈𝒌||𝟐
 

Polak-Rebiere-
Polyak(PRP) method Polyak (1969) 

−
𝒈𝒌+𝟏

𝑻𝒚𝒌

𝒅𝒌
𝑻𝒈𝒌

 
Liu-Storey(LS) 

method Hu and Storey (1991) 

𝒈𝒌+𝟏
𝑻𝒚𝒌

𝒅𝒌
𝑻𝒚𝒌

 
Hestenes-Stiefel(HS) 

method 
Hestenes and Stiefel 

(1952) 
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where ||. ||  denote Euclidean norm. When the step-length 𝛼𝑘 > 0 is 

computed by exact line search condition, all the methods listed in Table 

1 are equivalent if the objective function is convex quadratic but behave 

differently for non-convex cases. Methods such as FR, DY and CD are 

characterize with strong global convergence but they are not 

computationally powerful due to jamming phenomenon, that is, may 

take infinitely many steps without reaching optimum. While methods 

such as PRP, HS and LS may not always converge, but they often do 

better computational wise. Some of these attributes associated with 

these classical methods gave room for modification and hybridization 

of these existing methods to achieve a global convergence as well as 

better computational performances. Refer to (Hager and Zhang, 2005; 

Wei et al., 2006a; Wei et al., 2010; Zhang et al., 2012; Liu and Feng, 

2011; Abdullahi and Ahmad, 2015; Du and Liu, 2011; Hager and 

Zhang, 2006; Abdullahi and Ahmad, 2016) for some modified CG 

methods in recent times. The works of (Dai and Wen, 2012; Yuhong, 

2002) motivated Jiang and Jian (2013) to proposed modified CG 

method called modified Dai-Yuan (MDY) whose aim was to improve 

on the numerical performance of DY method and retain its good 

property. Also, same idea was extended to FR method called modified 

Fletcher-Reeves (MFR), where the parameters 𝛽𝑘  were given by  

𝛽𝑘
𝑀𝐷𝑌 =  

||𝑔𝑘+1||2

max {𝑑𝑘
𝑇𝑦𝑘,   𝜇|𝑔𝑘+1

𝑇𝑑𝑘| }
                  (6)  

 

and  

       

𝛽𝑘
𝑀𝐹𝑅 =  

||𝑔𝑘+1||2

max {||𝑔𝑘||
2  

,𝜇|𝑔𝑘+1
𝑇𝑑𝑘| }

               (7) 

 

where 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘   and µ > 1. The idea behind the work by Wei 

et al. (2006b) was extended to HS method by Shengwei et al. (2007) 

and proposed a CG method denoted by YWH where the parameter βk is 

given as 

 

𝛽𝑘
𝑌𝑊𝐻 =

||𝑔𝑘||2−  
||𝑔𝑘||

||𝑔𝑘−1||
𝑔𝑘

𝑇𝑔𝑘−1

𝑑𝑘−1
𝑇(𝑔𝑘−𝑔𝑘−1 )

                (8) 

 

under strong Wolfe line search with parameter   𝛼 <
1

3
  . For general 

objective functions, the method always generate descent direction and 

it is globally convergent. Rivaie et al. (2016)  proposed a new CG 

coefficient, RAMI for short form and defined by  

 

𝛽𝑘
𝑅𝐴𝑀𝐼 =

||𝑔𝑘||2−  
||𝑔𝑘||

||𝑔𝑘−1||
𝑔𝑘

𝑇𝑔𝑘−1

𝑑𝑘−1
𝑇(𝑑𝑘−1−𝑔𝑘 )

  .              (9) 

 

Global convergence of the method was established under exact line 

search. Numerical results showed the effectiveness of the method as 

compared to FR and PRP. 

In this paper, our emphasis is on the hybrid CG methods. 

Combinations of different CG methods give rise to hybrid methods. 

Usually these methods are proposed to avoid jamming phenomenon 

and to improve the numerical experiment of CG methods in existence 

while the global convergence is also established. The first hybrid for 

the solution of unconstrained optimization problems was introduced by 

Touati-Ahmed and Storey (1990). Several developments have been 

recorded in this area which yielded a better performance as compared 

to the classical CG methods. Combination between PRP and FR lead to 

an hybrid proposed by Hu and Storey (1991)  where the coefficient of 

CG method is denoted by HuS for convenience and the parameter 𝛽𝑘  is 

given as 

 

𝛽𝑘
𝐻𝑢𝑆 =  max{0, min {𝛽𝑘

𝑃𝑅𝑃 , 𝛽𝑘
𝐹𝑅}}.                                (10) 

The PRP method is used to address the jamming if it occurs, since it 

has a built-in restart feature. In the same regards, another hybrid method 

was proposed by Dai and Yuan (2001) which is a combination of HS 

and DY methods denoted by HSDY and the parameter 𝛽𝑘  is given as 

 

𝛽𝑘
𝐻𝑆𝐷𝑌 =  max{0, min {𝛽𝑘

𝐻𝑆, 𝛽𝑘
𝐷𝑌}}.                                 (11) 

The global convergence of the method was established under standard 

Wolfe condition. Liu and Li (2014) proposed a new hybrid CG method 

on LS and DY methods. Their formula 𝛽𝑘  is computed as a convex 

combination of 𝛽𝑘
𝐿𝑆  and 𝛽𝑘

𝐷𝑌  , that is, LSDY, where the parameter 𝛽𝑘  

is yielded by 

𝛽𝑘
𝐿𝑆𝐷𝑌 =  (1 − 𝛾𝐾) 𝛽𝑘

𝐿𝑆 + 𝛾𝐾  𝛽𝑘
𝐷𝑌                                 (12) 

where 𝛾𝑘 ∈ [0,1]. Numerical experiment showed the effectiveness of 

the method, the method is globally convergent under strong Wolfe line 

search. Jiang et al. (2012)  proposed another hybrid method using the 

references (Jiang et al., 2011; Wei et al., 2006b; Dai and Yuan, 1999), 

where the parameter choice βk denoted by JHJ is given as 

𝛽𝑘
𝐽𝐻𝐽

=  
||𝑔𝑘||2−max {0,   

||𝑔𝑘||

||𝑑𝑘−1||
𝑔𝑘

𝑇𝑑𝑘−1,     
||𝑔𝑘||

||𝑔𝑘−1||
𝑔𝑘

𝑇𝑔𝑘−1  }

𝑑𝑘−1
𝑇(𝑔𝑘−𝑔𝑘−1 )

.                     (13) 

 

Under Wolfe line search, they proved the global convergence of the 

method. The combination between LS and CD CG methods by Yang et 

al. (2013) gave birth to the following hybrid method denoted by LSCD 

 

𝛽𝑘
𝐿𝑆𝐶𝐷 =  max{0, min {𝛽𝑘

𝐿𝑆, 𝛽𝑘
𝐶𝐷}}.                                 (14) 

Refer to  (Babaie-Kafaki and Ghanbari, 2014; Jian et al., 2015; Lu 

et al., 2015; Babaie-Kafaki, 2013; Kaelo, 2015; Zoutendijk, 1970) for 

more hybrid CG methods. 

In contrast to some existing hybrid methods and in particular the 

hybrid method from (Jian et al., 2015; Jiang et al., 2012), we propose a 

new hybrid CG method based on the works by (Shengwei et al., 2007; 

Dai and Yuan, 1999; Rivaie et al., 2016) together with 𝛽𝑘
𝑁𝑒𝑤  for the 

purpose of this hybrid CG method given as 

 

𝛽𝑘
𝐼𝑅 =  

||𝑔𝑘||2−max {0,      
||𝑔𝑘||

||𝑔𝑘−1||
𝑔𝑘

𝑇𝑔𝑘−1  }

𝑚𝑎𝑠𝑥{ 𝑑𝑘−1
𝑇(𝑑𝑘−1 − 𝑔𝑘 ),   𝑑𝑘−1

𝑇(𝑔𝑘−𝑔𝑘−1 )}
.                                 (15) 

 

𝛽𝑘
𝐼𝑅  comprises of 𝛽𝑘

𝑅𝐴𝑀𝐼, 𝛽𝑘
𝐷𝑌,  𝛽𝑘

𝑌𝑊𝐻, and 𝛽𝑘
𝑁𝑒𝑤   

 

where    

 

 𝛽𝑘
𝑁𝑒𝑤 =

||𝑔𝑘||2

𝑑𝑘−1
𝑇(𝑑𝑘−1−𝑔𝑘 )

  ,  

 

therefore , 

 

 𝛽𝑘
𝐼𝑅 = 𝛽𝑘

𝑅𝐴𝑀𝐼   or 𝛽𝑘
𝐷𝑌  or  𝛽𝑘

𝑌𝑊𝐻  or  𝛽𝑘
𝑁𝑒𝑤 . 

    

It has been shown, for general objective functions, method from 

Shengwei et al. (2007) can produce descent direction and it is globally 

convergent, while DY has strong convergence properties and also 

known to perform better than PRP and FR under exact line search 

(Rivaie et al., 2016). The good properties of these methods motivate us 

to propose a more robust CG method that possesses sufficient descent 

under any line search technique. The organization of the paper is as 

follows. In Section 2, we present the algorithm and prove that our 

formula can always generate descent directions. Section 3 presents the 

global convergence of our method. Section 4 covers the numerical 

experimentation of our method as well as representation of our method 

against other CG methods using performance profiles by Dolan and 

More’ (2002). 
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ALGORITHM AND ITS SUFFICIENT DESCENT PROPERTY  
 
       In this section, we describe the CG algorithm and show that the 

propose formula Eq. (15) possesses the sufficient descent properties. 

 

Algorithm 1 

 

1. Initialization. Select 𝑥0 ∈  𝑅𝑛, set k = 0 

2. Computation of parameter βk  based on Eq. (6), Eq. (7) and 

Eq. (10) - Eq. (15) 

3. Generate dk  using Eq. (3). If 𝑔𝑘  = 0, then stop. 

4. Compute αk based on inexact line search Eq. (4) and Eq. (5) 

5. Variable update,   𝑥𝑘+1 =  𝑥𝑘 + 𝛼𝑘𝑑𝑘 . Compute 

𝑓(𝑥𝑘+1), 𝑔𝑘+1. 

6. Test for convergence. If ||𝑔𝑘|| ≤ 𝜀  then stop. Otherwise, 

set k = k+1 and go to  2. 

 

Lemma 1. Let the sequences {xk} and {dk} be generated by the 

algorithm. Then,  𝑔𝑘
𝑇𝑑𝑘  < 0   hold true.   

 
Proof. We proceed by induction to arrive at the conclusion. Obviously, 

if k =1, we have 𝑔1
𝑇𝑑1 = −||𝑔1||2 < 0  . Assume that 𝑔𝑘−1

𝑇𝑑𝑘−1  <

0   holds true. To obtain 𝑔𝑘
𝑇𝑑𝑘  < 0  particularly for our method, we 

divide the sufficient descent analysis into four parts. We  assume 

that 𝛽𝑘
𝐼𝑅 ≠ 0. Clearly, for 𝛽𝑘

𝐼𝑅 = 0 it follows from Eq. (3),  𝑔𝑘
𝑇𝑑𝑘 =

−||𝑔𝑘||2 < 0  .  

Case I 

 If  𝑔𝑘
𝑇𝑔𝑘−1 > 0  and 

 𝑑𝑘−1
𝑇(𝑔𝑘 − 𝑔𝑘−1 ) < 𝑑𝑘−1

𝑇(𝑑𝑘−1 − 𝑔𝑘  ),   then it follows from 

𝛽𝑘
𝐼𝑅 =

||𝑔𝑘||2−  
||𝑔𝑘||

||𝑔𝑘−1||
𝑔𝑘

𝑇𝑔𝑘−1

𝑑𝑘−1
𝑇(𝑑𝑘−1−𝑔𝑘 )

=  𝛽𝑘
𝑅𝐴𝑀𝐼   . We know that   

𝑑𝑘−1
𝑇(𝑔𝑘 − 𝑔𝑘−1 ) > 0, therefore, 𝑑𝑘−1

𝑇(𝑑𝑘−1 − 𝑔𝑘  ) > 0  

holds true and for 𝑔𝑘
𝑇𝑔𝑘−1 > 0, we have 0 < 𝑐𝑜𝑠𝜃𝑘 < 1,  where θk is 

the angle between 𝑔𝑘  and  𝑔𝑘−1. From Eq. (3) and Eq. (15), we have 

𝑔𝑘
𝑇𝑑𝑘 = 𝑔𝑘(−𝑔𝑘 +  𝛽𝑘

𝐼𝑅𝑑𝑘−1) 

=  −||𝑔𝑘||2 +
(||𝑔𝑘||2 −  

||𝑔𝑘||
||𝑔𝑘−1||

𝑔𝑘
𝑇𝑔𝑘−1)𝑔𝑘

𝑇𝑑𝑘−1

𝑑𝑘−1
𝑇(𝑑𝑘−1 − 𝑔𝑘  )

 

 
 

=  −||𝑔𝑘||2 +
||𝑔𝑘||2𝑔𝑘

𝑇𝑑𝑘−1 − ||𝑔𝑘||2𝑐𝑜𝑠𝜃𝑘  𝑔𝑘
𝑇𝑑𝑘−1

𝑑𝑘−1
𝑇(𝑑𝑘−1 − 𝑔𝑘  )

 

 

=  
−||𝑔𝑘||2||𝑑𝑘−1||2 + 2||𝑔𝑘||2 𝑔𝑘

𝑇𝑑𝑘−1 −  ||𝑔𝑘||2𝑐𝑜𝑠𝜃𝑘  𝑔𝑘
𝑇𝑑𝑘−1

𝑑𝑘−1
𝑇(𝑑𝑘−1 − 𝑔𝑘  )

 

 

 =  
−||𝑔𝑘||

2
||𝑑𝑘−1||

2
+(2−𝑐𝑜𝑠𝜃𝑘)||𝑔𝑘||

2
 𝑔𝑘

𝑇𝑑𝑘−1

𝑑𝑘−1
𝑇(𝑑𝑘−1−𝑔𝑘 )

                              (16) 

 

 

From  𝑑𝑘−1
𝑇(𝑔𝑘 − 𝑔𝑘−1 ) < 𝑑𝑘−1

𝑇(𝑑𝑘−1 −  𝑔𝑘  ), where  

 

𝑔𝑘−1
𝑇𝑔𝑘 <

1

2
(||𝑑𝑘−1||2 + 𝑔𝑘−1

𝑇𝑑𝑘−1). Eq. (16) becomes 

𝑔𝑘
𝑇𝑔𝑘 <  

−||𝑔𝑘||2||𝑑𝑘−1||2 + (2 − 𝑐𝑜𝑠𝜃𝑘)||𝑔𝑘||2 1
2

(||𝑑𝑘−1||2 + 𝑔𝑘−1
𝑇𝑑𝑘−1)

𝑑𝑘−1
𝑇(𝑑𝑘−1 − 𝑔𝑘 )

 

 
 

=
−

1
2

||𝑔𝑘||2||𝑑𝑘−1||2𝑐𝑜𝑠𝜃𝑘 + (2 −
1
2

𝑐𝑜𝑠𝜃𝑘)||𝑔𝑘||2𝑔𝑘−1
𝑇𝑑𝑘−1

𝑑𝑘−1
𝑇(𝑑𝑘−1 − 𝑔𝑘  )

 

 

<  
(2−

1

2
𝑐𝑜𝑠𝜃𝑘)||𝑔𝑘||

2
𝑔𝑘−1

𝑇𝑑𝑘−1

𝑑𝑘−1
𝑇(𝑑𝑘−1−𝑔𝑘 )

<  0      .                                           (17) 

 

 

Case II 

If  𝑔𝑘
𝑇𝑔𝑘−1 ≤ 0 and  𝑑𝑘−1

𝑇(𝑔𝑘 − 𝑔𝑘−1 ) < 𝑑𝑘−1
𝑇(𝑑𝑘−1 − 𝑔𝑘  ), 

then from Eq. (15) we have  𝛽𝑘
𝐼𝑅 =

||𝑔𝑘||2

𝑑𝑘−1
𝑇(𝑑𝑘−1−𝑔𝑘 )

= 𝛽𝑘
𝑁𝑒𝑤. Since 

 𝛽𝑘
𝐼𝑅 ≠ 0 and 𝑑𝑘−1

𝑇(𝑔𝑘 − 𝑔𝑘−1 ) > 0 implies   

  𝑑𝑘−1
𝑇(𝑑𝑘−1 − 𝑔𝑘  ) > 0. Also from  

𝑑𝑘−1
𝑇(𝑔𝑘 − 𝑔𝑘−1 ) < 𝑑𝑘−1

𝑇(𝑑𝑘−1 −  𝑔𝑘  ), we have  

 

𝑔𝑘
𝑇𝑑𝑘−1 <

1

2
(||𝑑𝑘−1||2 + 𝑔𝑘−1

𝑇𝑑𝑘−1).            (18) 

It  follows from Eq. (3), Eq. (15) and Eq. (18) 

 

𝑔𝑘
𝑇𝑑𝑘 = −||𝑔𝑘||2 +

||𝑔𝑘||2𝑔𝑘
𝑇𝑑𝑘−1

𝑑𝑘−1
𝑇(𝑑𝑘−1 − 𝑔𝑘  )

  

 

=
−||𝑔𝑘||2||𝑑𝑘−1||2 + 2||𝑔𝑘||2𝑔𝑘

𝑇𝑑𝑘−1

𝑑𝑘−1
𝑇(𝑑𝑘−1 − 𝑔𝑘  )

 

 

<
−||𝑔𝑘||2||𝑑𝑘−1||2 + ||𝑔𝑘||2(||𝑑𝑘−1||2 + 𝑔𝑘−1

𝑇
𝑑𝑘−1)

𝑑𝑘−1
𝑇(𝑑𝑘−1 − 𝑔𝑘  )

 

 

=
||𝑔𝑘||

2
𝑔𝑘−1

𝑇𝑑𝑘−1

𝑑𝑘−1
𝑇(𝑑𝑘−1−𝑔𝑘 )

 < 0                                                                                      (19) 

 

Case  III  

 
If  𝑔𝑘

𝑇𝑔𝑘−1 > 0  and 𝑑𝑘−1
𝑇(𝑔𝑘 − 𝑔𝑘−1 ) ≥ 𝑑𝑘−1

𝑇(𝑑𝑘−1 − 𝑔𝑘  ), 

then from Eq. (15) one  gets  𝛽𝑘
𝐼𝑅 =

||𝑔𝑘||2−  
||𝑔𝑘||

||𝑔𝑘−1||
𝑔𝑘

𝑇𝑔𝑘−1

𝑑𝑘−1
𝑇(𝑔𝑘−𝑔𝑘−1 )

= 𝛽𝑘
𝑌𝑊𝐻 .    

 

Since the case in consideration is for  𝛽𝑘
𝐼𝑅 ≠ 0, then for 

 𝑔𝑘
𝑇𝑔𝑘−1 > 0, we have 0 < 𝑐𝑜𝑠𝜃𝑘 < 1 and it follows from Eq. (3) 

that 

𝑔𝑘
𝑇𝑑𝑘 = 𝑔𝑘(−𝑔𝑘 +  𝛽𝑘

𝐼𝑅𝑑𝑘−1) 

=  −||𝑔𝑘||2 +
(||𝑔𝑘||2 −   

||𝑔𝑘||
||𝑔𝑘−1||

𝑔𝑘
𝑇𝑔𝑘−1)𝑔𝑘

𝑇𝑑𝑘−1

𝑑𝑘−1
𝑇(𝑔𝑘 − 𝑔𝑘−1 )

 

 

=  −||𝑔𝑘||2 +
||𝑔𝑘||2𝑔𝑘

𝑇𝑑𝑘−1 − ||𝑔𝑘||2𝑐𝑜𝑠𝜃𝑘 𝑔𝑘
𝑇𝑑𝑘−1

𝑑𝑘−1
𝑇(𝑔𝑘 − 𝑔𝑘−1 )

 

 

=  
||𝑔𝑘||2𝑔𝑘−1

𝑇𝑑𝑘−1 −  ||𝑔𝑘||2𝑐𝑜𝑠𝜃𝑘 𝑔𝑘
𝑇𝑑𝑘−1

𝑑𝑘−1
𝑇(𝑔𝑘 − 𝑔𝑘−1 )

 

 

<
||𝑔𝑘||2𝑔𝑘−1

𝑇𝑑𝑘−1 −  ||𝑔𝑘||2𝑐𝑜𝑠𝜃𝑘 𝑔𝑘−1
𝑇𝑑𝑘−1

𝑑𝑘−1
𝑇(𝑔𝑘 − 𝑔𝑘−1 )

 

 

 =
(1−𝑐𝑜𝑠𝜃𝑘)||𝑔𝑘||

2
𝑔𝑘−1

𝑇𝑑𝑘−1

𝑑𝑘−1
𝑇(𝑔𝑘−𝑔𝑘−1 )

< 0          (20)  
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Case IV 

If  𝑔𝑘
𝑇𝑔𝑘−1 ≤ 0  and 𝑑𝑘−1

𝑇(𝑔𝑘 − 𝑔𝑘−1 ) ≥ 𝑑𝑘−1
𝑇(𝑑𝑘−1 − 𝑔𝑘 ), 

then from Eq. (15) we get  𝛽𝑘
𝐼𝑅 =

||𝑔𝑘||2

𝑑𝑘−1
𝑇(𝑔𝑘−𝑔𝑘−1 )

= 𝛽𝑘
𝐷𝑌.   From 

Eq. (3) and Eq. (15), it follows that  

𝑔𝑘
𝑇𝑑𝑘 = 𝑔𝑘(−𝑔𝑘 +  𝛽𝑘

𝐼𝑅𝑑𝑘−1) = −||𝑔𝑘||
2

+
||𝑔𝑘||

2
𝑔𝑘

𝑇𝑑𝑘−1

𝑑𝑘−1
𝑇(𝑔𝑘−𝑔𝑘−1 )

  

=
||𝑔𝑘||2𝑔𝑘−1

𝑇𝑑𝑘−1

𝑑𝑘−1
𝑇(𝑔𝑘−𝑔𝑘−1 )

< 0                                                   (21) 

Therefore, 𝑔𝑘
𝑇𝑔𝑘 < 0 always holds ∀k ≥ 1. Thus, the sufficient 

descent property is satisfied and the proof is completed.  

Lemma 2. The relation   0 ≤ 𝛽𝑘
𝐼𝑅 ≤

𝑔𝑘
𝑇𝑑𝑘

𝑔𝑘−1
𝑇𝑑𝑘−1

  is always true for any    

k ≥ 1. 

Proof. From Eq. (15), we know βk
IR ≥ 0. If βk

IR = 0 and 𝑔𝑘 ≠ 0, then 

by Lemma 1, we have  
𝑔𝑘

𝑇𝑑𝑘

𝑔𝑘−1
𝑇𝑑𝑘−1

> 0. Now putting into consideration, 

the four cases to show   

𝛽𝑘
𝐼𝑅 ≤

𝑔𝑘
𝑇𝑑𝑘

𝑔𝑘−1
𝑇𝑑𝑘−1

.  

Case I 

If  𝑔𝑘
𝑇𝑔𝑘−1 > 0 and  𝑑𝑘−1

𝑇(𝑔𝑘 − 𝑔𝑘−1 ) < 𝑑𝑘−1
𝑇(𝑑𝑘−1 − 𝑔𝑘 ), then 

𝛽𝑘
𝐼𝑅 = 𝛽𝑘

𝑅𝐴𝑀𝐼 . By Lemma 1 as well as inequality (17), we have  

𝛽𝑘
𝐼𝑅 =

||𝑔𝑘||2 −   
||𝑔𝑘||

||𝑔𝑘−1||
𝑔𝑘

𝑇𝑔𝑘−1

𝑑𝑘−1
𝑇(𝑑𝑘−1 − 𝑔𝑘 )

=  
(2 −

1
2

𝑐𝑜𝑠𝜃𝑘)||𝑔𝑘||2

𝑑𝑘−1
𝑇(𝑑𝑘−1 − 𝑔𝑘 )

<
𝑔𝑘

𝑇𝑑𝑘

𝑔𝑘−1
𝑇𝑑𝑘−1

.                          (22) 

Case II 

If  𝑔𝑘
𝑇𝑔𝑘−1 ≤ 0 and  𝑑𝑘−1

𝑇(𝑔𝑘 − 𝑔𝑘−1 ) < 𝑑𝑘−1
𝑇(𝑑𝑘−1 −  𝑔𝑘 ), 

then 𝛽𝑘
𝐼𝑅 = 𝛽𝑘

𝑁𝑒𝑤. From Lemma 1 and inequality (19), we get 

𝛽𝑘
𝐼𝑅 =

||𝑔𝑘||2

𝑑𝑘−1
𝑇(𝑑𝑘−1−𝑔𝑘 )

<
𝑔𝑘

𝑇𝑑𝑘

𝑔𝑘−1
𝑇𝑑𝑘−1

.          (23) 

Case III 

If  𝑔𝑘
𝑇𝑔𝑘−1 > 0 and  𝑑𝑘−1

𝑇(𝑔𝑘 − 𝑔𝑘−1 ) ≥ 𝑑𝑘−1
𝑇(𝑑𝑘−1 − 𝑔𝑘 ), then 

𝛽𝑘
𝐼𝑅 = 𝛽𝑘

𝑌𝑊𝐻. From Lemma 1 and inequality (20), we have 

𝛽𝑘
𝐼𝑅 =

||𝑔𝑘||2−  
||𝑔𝑘||

||𝑔𝑘−1||
𝑔𝑘

𝑇𝑔𝑘−1

𝑑𝑘−1
𝑇(𝑔𝑘−𝑔𝑘−1 )

<
𝑔𝑘

𝑇𝑑𝑘

𝑔𝑘−1
𝑇𝑑𝑘−1

.                         (24) 

Case IV 

If  𝑔𝑘
𝑇𝑔𝑘−1 ≤ 0 and  𝑑𝑘−1

𝑇(𝑔𝑘 − 𝑔𝑘−1 ) ≥ 𝑑𝑘−1
𝑇(𝑑𝑘−1 −  𝑔𝑘 ), 

then 𝛽𝑘
𝐼𝑅 = 𝛽𝑘

𝐷𝑌. Using both Lemma 1 and Eq. (21) to get  

𝛽𝑘
𝐼𝑅 =

||𝑔𝑘||2

𝑑𝑘−1
𝑇(𝑔𝑘−𝑔𝑘−1 )

=
𝑔𝑘

𝑇𝑑𝑘

𝑔𝑘−1
𝑇𝑑𝑘−1

.           (25) 

Thus, the proof is completed. 

GLOBAL CONVERGENCE 

      Throughout this section, we assume the following assumptions to 

be able to establish the global convergence of the proposed method, 

Assumption(1) : 
I. The level set  𝑀 = {𝑥 ∈ 𝑅𝑛: 𝑓(𝑥) ≤ 𝑓(𝑥0)} is bounded. 

II. In some neighborhood 𝑁 of 𝑀, the function is continuously 

differentiable and its gradient is Lipchitz continuous. i.e, there 

exist a constant 𝐿 > 0  such that 

||∇𝑓(𝑥) − ∇𝑓(𝑦)|| ≤ 𝐿||𝑥 − 𝑦||, ∀𝑥, 𝑦 ∈ 𝑁.            (26) 

The implication of this assumption on the function f, there exist a 

constant 𝛾 ≥ 0  such  that 

||∇𝑓(𝑥)|| ≤ 𝛾, ∀𝑥 ∈ 𝑁.              (27) 

The result of the following lemma, usually called Zoutendijk condition, 

is use to prove the global convergence of the proposed method. Refer 

to (Zoutendijk, 1970, Dai et al., 2000) for the proof. 

Lemma 3. Let Assumption(1) holds and consider any CG method of 

the form  𝑥𝑘+1 =  𝑥𝑘 + 𝛼𝑘𝑑𝑘    and the direction 

𝑑𝑘+1 = −𝑔𝑘+1  +  𝛽𝑘
𝐼𝑅 𝑑𝑘   𝑑0 = −𝑔0  where αk satisfies Eq. (4) 

and Eq. (5). Then, 

∑
(gk

Tdk)2

k≥1 < +∞.                                                                         (28) 
||gk||2

From Lemma 3,we have the following theorem which present the 

global convergence of the proposed method. 

Theorem 1.  

Let Assumption(1) holds and the sequence {𝑥𝑘} and {𝑑𝑘} be 

generated by Algorithm 1 with 𝛽𝑘
𝐼𝑅, αk is obtained by Eq. (4) and Eq. 

(5). Then 

liminf
𝑘→∞

||𝑔𝑘|| = 0             (29) 

Proof. We proceed by contradiction to arrive at the conclusion. 

Suppose that  liminf
𝑘→∞

||𝑔𝑘|| ≠ 0, it implies that there exists 𝑚 > 0 

such that  

||𝑔𝑘|| ≥ 𝑚, ∀𝑘 ≥ 0.                                            (30) 

From Eq. (3), we have 

(𝛽𝑘
𝐼𝑅 𝑑𝑘−1   )

2 =  (𝑑𝑘 + 𝑔𝑘  )
2              (31) 

It follows from Eq. (31) and Lemma 2. 

||𝑑𝑘||2 = (𝛽𝑘
𝐼𝑅  )2||𝑑𝑘−1||2 − 2𝑔𝑘

𝑇𝑑𝑘 − ||𝑔𝑘||2 

≤ (
𝑔𝑘

𝑇𝑑𝑘

𝑔𝑘−1
𝑇𝑑𝑘−1

  )
2

||𝑑𝑘−1||2 − 2𝑔𝑘
𝑇𝑑𝑘 − ||𝑔𝑘||2.                        (32) 

Dividing both side of Eq. (32) by (𝑔𝑘
𝑇𝑑𝑘 )2 to get 

||𝑑𝑘||2

(𝑔𝑘
𝑇𝑑𝑘 )2 ≤

||𝑑𝑘−1||2

(𝑔𝑘
𝑇𝑑𝑘 )2 −

2

𝑔𝑘
𝑇𝑑𝑘

−
||𝑔𝑘||2

𝑔𝑘
𝑇𝑑𝑘

=
||𝑑𝑘−1||2

(𝑔𝑘
𝑇𝑑𝑘 )2 − (

1

||𝑔𝑘||
+

||𝑔𝑘||

𝑔𝑘
𝑇𝑑𝑘

 )
2

+
1

||𝑔𝑘||2

≤
||𝑑𝑘−1||2

(𝑔𝑘−1
𝑇𝑑𝑘−1 )

2 +
1

||𝑔𝑘||2.                                       (33) 
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Hence   

 
||𝑑𝑘||2

(𝑔𝑘
𝑇𝑑𝑘 )

2 ≤ ∑
1

||𝑔𝑖||
2

𝑘
𝑖=1 ≤

𝑘

𝑚2,                                                         (34) 

 

Furthermore, 

 

(𝑔𝑘
𝑇𝑑𝑘 )

2

||𝑑𝑘||2
≥ 𝑚2 ∑

1

𝑘

𝑘
𝑖=1 = +∞,                                                           (35) 

 

This contradict Zoutendijk condition in Eq. (28). Hence proof 

completed.  
 

 

NUMERICAL RESULTS 
 

      In this section, experimentation of our proposed method has been 

carried out against some hybrid as well as some modified methods in 

the literature, to weigh the robustness of the algorithm with  𝛽𝑘 = 𝛽𝑘
𝐼𝑅 . 

To effect this, some test functions from (Andrei, 2008) and (Andrei, 

2004) were considered. The inexact line search condition Eq. (4) and 

Eq. (5) were used in the computation for all formulas for easy 

comparison. 

     In carrying out the simulations, the number of iterations (IT), the 

number of function evaluations (NF) and CPU time (t) were put into 

consideration as parameters to determine the numerical strength of the 

proposed formula IR as compared with some  hybrid methods and 

modified methods. The value of 𝜇 > 1  in the cases of MDY and MFR 

as presented in (Jiang and Jian, 2013). For this experiment, 𝜇 = 1.2  to 

avoid ambiguity is taken for both cases. For all the formulas under 

consideration, we take 𝛿 = 0.0001  and 𝜎 = 0.01 for the purpose of 

this experiments and ||𝑔𝑘|| ≤ 𝜀, where  𝜀 = 10−5 is considered as 

the stopping criterion. We implemented the method using MATLAB 

R2015b (8.6.0.267246) in double precision arithmetic on a DELL 

computer, intel(R) Core (TM) i7-4790 CPU 3.60 GHz, 2TB HDD and 

16.00GB RAM. A total of sixty (60) test functions gave birth to about 

seven hundred and fifty (750) problems resulted from different 

dimensions and initial points. The symbol (-)  implies failure in 

numerical computation while (*) means that number of iterations or 

function evaluations exceeded the maximum limit set. For iteration, we 

set 5000 as the maximum while 20000 is the maximum for number of 

function evaluations. 

      The simulation results obtained from test functions in Table 2 and 

3 were used to compared the numerical strength of the method in this 

paper as compared to the hybrid CG methods such as 𝛽𝑘 = 𝛽𝑘
𝐻𝑆𝐷𝑌  by 

Dai and Yuan (2001), 𝛽𝑘 = 𝛽𝑘
𝐿𝑆𝐷𝑌  by Liu and Li (2014), 𝛽𝑘 = 𝛽𝑘

𝐽𝐻𝐽
 

by Jiang et al. (2012), 𝛽𝑘 = 𝛽𝑘
𝐿𝑆𝐶𝐷 by Yang et al. (2013)  and 

𝛽𝑘 = 𝛽𝑘
𝑁 by Jian et al. (2015), also some modified CG methods  such 

as 𝛽𝑘 = 𝛽𝑘
𝑊𝑌𝐿 by Wei et al. (2006b) , 𝛽𝑘 = 𝛽𝑘

𝑀𝐹𝑅 R and 𝛽𝑘 = 𝛽𝑘
𝑀𝐷𝑌 

by Jiang and Jian (2013). 

Graphically, the performance of the proposed hybrid method 

versus HSDY, LSCD, JHJ, LSDY, JHJ and N hybrid methods are 

produced in Fig. 1 through Fig. 9 based on the umber of iteration (IT), 

the number of function valuations (NF) and CPU time (t) using 

performance  profiles by Dolan and More’ (Dolan and Moré, 2002). 

Performance rofile is non-arguably one of the best software for 

performance comparison between CG based methods for 

unconstrained optimization problems of the  set of solvers S on a test 

set P of problems. For  every 𝑛𝑝  problems, we assume there exist ns 

solvers, denotes 𝑡𝑝,𝑠 as the executing time (or number of 

iteration,number of function evaluation or others) required to solve 

problem p by solver s. The ratio defined by 

 

 

𝑟𝑝,𝑠 =
𝑡𝑝,𝑠

min {𝑡𝑝,𝑠: 𝑠 ∈ 𝑆}
 

is the base of the comparison, the performance on problem p by  

solver s is compare with the best performance by any solver on this 

problem. Assuming that a parameter 𝑟𝑀 ≥ 𝑟𝑝,𝑠 for all p,s is chosen 

and if and only if solver s does not solve problem p. We would like 

to  obtain an overall assessment though performance of  solver s on 

any given problem might be of interest. Then, we have 

𝜌𝑠(𝑡) =
1

𝑛𝑝

 𝑠𝑖𝑧𝑒{𝑝 ∈ 𝑃: log𝑝,𝑠 𝑟 ≤ 𝑡}. 

𝜌𝑠(𝑡) is the probability for the solver s ∈ S that a performance ratio 𝑟𝑝,𝑠  

is within a factor 𝑡 ∈ 𝑅𝑛 of the best ratio. The ρs is the cumulative 

distribution function for the performance ratio, since a plot of the 

performance reveals all of the major performance characteristics. The 

value of 𝜌𝑠(1) is given as the probability a solver will win over other 

solvers. Based on the above performance profile, a solver with large 

probability 𝜌𝑠(𝑡) are preferred. In other words, the solver at the top 

most right of the figure represent the best solver. 

Fig. 1 – Fig. 6 are taken out from Fig. 7- Fig. 9 to clearly show the 

strength of the proposed method versus other hybrid methods in 

consideration. It shows clearly from the performance profile, the 

proposed hybrid method is the best since the solver is at the most top 

right on the Fig. 1- Fig. 6 based on IT, NF and t. The proposed method 

has high speed of convergence and in the end its able solve most of 

tested problems above others. 

 

 
 

Fig.  1  Performance profile based on Iteration for IR versus hybrid 
methods(LSCD, LSDY and N) 

 

 
 

Fig.  2  Performance profile based on Function evaluation. IR  
versus hybrid methods(LSCD, LSDY and N)
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32 NONDQUAR 5,5000 (1,-1,...1),-1,1,3 
33 DQDRTIC 5,10,50,500,5000 (1,-1,...1),3,5,6 
34 DIXMAANA 4,12,32,400,4000,10000 2,3,4,8,13 
35 DIXMAANB 4,12,32,400,4000,10000 2,3,4,8,13 
36 DIXMAANC 4,12,32,400,4000,10000 2,3,4,8,13 
37 DIXMAAND 4,12,32,400,4000,10000 2,3,4,8,13 
38 DIXMAANL 4,12,32,400,4000,10000 2,3,4,8,13 
39 Partial Perturbed Quadratic 12,120,1200 0.5,1.5,3.5,5.5,7.5 
40 Broyden Tridiagonal 12,400,4000,40000 -3,-1,1,3 
41 Almost Perturbed Quadratic 2,2000,8000 0.5,2.5,4.5,6.5 
42 Tridiagonal Perturbed 

Quadratic 
600,60000 0.5,2.5,6.5,9.5 

43 HIMMELBHA 4,12,120,1200 (0,2,...,2) 
44 STAIRCASE 4,32,400,4000,40000 1,2,4,7 
45 LIARWHD 4,40,400,4000,40000 4,5,6,7 
46 DIAGONAL 6 2,10,100,1000,10000 1,3,5,9 
47 DIXON3DQ 400 -1,1,2,3 
48 DENSCHNB 40,400,4000 1,3,4 
49 SINQUAD 40,400,4000 0.1 
50 BIGGSB 1 4,400,4000 0,2,3,5 
51 Generalized quartic GQ1 4,40,400,4000 1,2,3,5 
52 Diagonal 7 2,10,200,2000 1 
53 Diagonal 8 2,20,200,2000 1 
54 Full Hessian 2 1 
55 Generalized quartic GQ2 4,32,40,400,4000 1,2,3,4 
56 EXTROSN B 40000 3 
57 ARGLINB 4,8,40,400,4000 (0.01,0.001,...,0.001),1.5,2.5,3.5 
58 FLETCHCR 4,32,40,400,4000 0.5,1.5,2.5,3.5 
59 HIMMELB G 4,16,40,400,4000 1.5,2.5,5.5,7.5 
60 DIAGONAL 9 2,10,200,500,1000 1,2,4,6 

No Function Dim Initial points 

1 Extended Rosenbrock 2 (-1.2,1),2,5,8,10 
2 Extended White Holst 2 (-1.2,1),3,15,17 
3 Extended Beale 2 (1,0.8,...,0.8) 
4 Extended Penalty 10,50,10000,20000 (1,2,...n),9,17 
5 Perturbed Quadratic 2,4,32,500,1500,100000 -2, 0.5,5,8,13 
6 Raydan 1 2,10,100,10000,50000 1,11 
7 Raydan 2 2,20,200,20000,70000 1,3,6,9 
8 Diagonal 1 2,8,80,800,8000 1,4,7,10,17 
9 Diagonal 2 2,4,12,200,2000 1,10,20 
10 Diagonal 3 2,20,500,20000 1,12 
11 Hager 2,8,200,500 1,1.5,3.5,4.5,6.5 
12 Extended Tridiagonal 1 2,7000,70000 2,4,6,8,10 
13 Extended 3 Exponential Terms 20, 5000,100000 0.1,0.5 
14 Generalized Tridiagonal 2 4,12,12000 -1,1,5,10,15 
15 Diagal 4 2,200,500,5000 1,3,7,11,18 
16 Diagonal 5 2,4,200,1000, 10000 1.1,1.2,3.1,4.1,5.1 
17 Generalized PSC 1 120000 (3,0.1...0.1),6,12,18 
18 Extended PSC 1 12000 (3,0.1...0.1),8,16 
19 Extended Block Diagonal BD 1 12000,40000 1.1,3.1,7.1 
20 Extended Cliff 2,12,120,200 -3,3,6 
21 Quadratic Diagonal Perturbed 2,4,120,200,10000 0.5,2.5,4.5,6.5,8.5 
22 Extended Hiebert 2 0,1,7,13,21 
23 Quadratic 2,10,200,20000 1,13,15,17 
24 Extended Quadratic Penalty 400,4000,7000 1,2,3,4,5 
25 Extended Quadratic Penalty 2 4000 1 
26 A Quadratic 2 4,12,40,4000,8000 0.5,3.5,7.5,9.5,12.5 
27 Extended EP1 4,40,800,1000 1.5,3.5,5.5,6.5,8.5 
28 Extended Tridiagonal 2 10,200, 2000,100000 1,4,12,20 
29 TRIDIA 100,400,4000 1,2,3,4,5 
31 NONDIA 4,12,40,120,12000 -1,-2,2,3 

Table 2. List of test functions 
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Fig.  3 Performance profile based on CPU time. IR versus hybrid  
methods (LSCD, LSDY and N) 

Fig.  4 Performance profile based on Iteration. IR versus hybrid 
methods(HSDY an d JHJ ) 

Fig.  5 Performance profile based on Function Evaluation. IR  
versus hybrid methods (HSDY and JHJ) 

Fig. 6 Performance profile based on CPU time. IR versus hybrid  
methods(HSDY and JHJ) 

Fig. 7 Performance profile based on Iteration. IR versus hybrid  
methods(HSDY,  JHJ, LSCD, LSCD and N) 

Fig. 8 Performance profile based on Function Evaluation. IR  
versus hybrid methods(HSDY, JHJ, LSCD, LSCD and N) 

Fig. 9 Performance profile based on CPU time. IR versus hybrid  
methods(HSDY, JHJ, LSCD, LSCD and N) 

Fig. 10 Performance profile based on Iteration. IR versus WYL, 
MDY  and MFR 
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Fig. 11 Performance profile based on Function Evaluation. IR  
versus WYL, MDY and MFR 

Fig. 12 Performance profile based on CPU time. IR versus WYL, 
MDY  and MFR 

From Fig. 9 – Fig. 12. The proposed hybrid method shown to be top 

performer when compared with modified methods (WYL, MFR and 

MDY) on the bases of number of iteration, number of function 

evaluation and CPU time. 

CONCLUSION 

Absorbing the advantages of some classical CG methods gave rise to 

hybrid methods in order to avoid the jamming phenomenon associated 

with them and to improve on their numerical strengths. We proposed a 

new type of hybrid CG method for solving unconstrained optimization 

problems. The proposed method satisfied sufficient descent condition 

irrespective of the line searches condition. The global convergence of 

the  proposed method has been established under line search conditions 

Eq. (4) and Eq. (5). The parameter 𝛽𝑘
𝐼𝑅 contains 𝛽𝑘

𝐷𝑌 , 𝛽𝑘
𝑅𝐴𝑀𝐼 ,  𝛽𝑘

𝑌𝑊𝐻

and 𝛽𝑘
𝑁𝑒𝑤. The 𝛽𝑘

𝑁𝑒𝑤. constructed purposely for the proposed method. 

The simulation results of the proposed method showed to be efficient 

and robust as compared with hybrid CG methods (HSDY, JHJ, LSCD, 

LSCD and N). Furthermore, the proposed method is more robust than 

modified CG methods (WYL, MDY and MFR) for µ > 1. 

Simultaneously, for clarity of purpose, the performance profiles by 

Dalon and More’ are applied to show the effectiveness and robustness 

of the proposed method.  
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