Morphology and luminescence of photo-electrochemically synthesized porous silicon: Influence of varying current density

Asad Thahe a,b, Hazri Bakhtiar b,* , Noriah Bidin b , Zainuriah Hassan c , Zainal Abidin Talib d, Uday Basheer e , Dauda Abubakar c, Muhammad Aizi Mat Salim b, Motahher Abdallah Qaeed f , Hasan Alqaraghuli g

a Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
b Laser Center, Institute Ibnun Sina, Universiti Teknologi Malaysia, Skudai 81310 Johor, Malaysia
c Institute of Nano Optoelectronics Research and Technology (INOR), Universiti Sains Malaysia, 11800 USM Penang, Malaysia
d Department of Physics, Faculty of Science, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
e UTM Centre for Low Carbon Transport, Institute for Vehicle and Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
f Faculty of Education, Department of Physics, Hodeidah University, Al Hodeidah, Yemen
g Faculty of Electrical Engineering, Mechatronics and Automatic Control Department, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia

* Corresponding author: hazri@utm.my

INTRODUCTION

During last two decades the research on porous silicon (PSi) received renewed interests due to the feasibility of opto-electronic applications (Batoel et al., 2016; Bisi et al., 2000). Such PSi structures possess distinct room temperature photoluminescence in the visible regions of the electromagnetic spectrum (Pap et al., 2006). They are widely applied in the field of micro-electronics, opto-electronics (Nahor et al., 2011), chemicals manufacturing (Canham, 1990), biological sensors (Lazarouk et al., 1996) and in biomedical devices (Steiner and Lang, 1995) though the integrated circuits industry is dominated by crystalline silicon (CSI). The anodization of single-crystal Si has resulted in an extensive array of mechanical sensors because of its intrinsic properties such as direct energy band gap (Batoel et al., 2016). Although microporous Si presents a very high specific surface (Hussein et al., 2016) but PSi has distinct optical properties different from the bulk one and maintains the crystallinity of the substrates.

Despite much development there is a constant demand for fabricating high quality PSi with desired porosity. Driven by this need, we prepared PSi using photo-electrochemical etching with varying direct current (DC) densities at constant etching time. This technique offers the opportunity of synthesizing photoluminescent materials with uniform pores and selective wavelength emission. The morphology and PL spectral properties of such synthesized PSi are determined as a function of current density. It is demonstrated that the anodization current density play a significant role in controlling the etching ratio and morphology of the PSi specimen. Present systematic method may constitute a basis for the production of high quality PSi.

MATERIALS AND METHODS

A slightly doped n-type Si (111) wafer was used to prepared the PSi using photo-electrochemical etching method. Prior to the etching process, the substrates were washed in an ultrasonic bath containing acetone solution, subsequently rinsed with deionized water, and then dried under pure nitrogen gaseous atmosphere. The entire etching procedure was conducted in a Teflon cell. The Si wafer was used as an anode while a Pt mesh was employed as the counter electrode which was linked to the external DC power supply. The electrolyte was comprised of a mixture of 48% HF, 99.90% ethanol and 30% H2O2 with the mole ratio of 2:1:1. Ethanol was added to the aqueous HF solution to increase the wettability of the Si surface and to eliminate the H2 bubbles generated on the Si interface. This in turn, enhanced the homogeneity of the PSi layer. The experiment was conducted at a steady etching duration of 30 min and varying etching current densities of 15, 30 and 45 mA/cm2. The front surface of Si was irradiated using a halogen lamp (300 W) source to increase the concentration of holes on the surface. These holes on the Si surface facilitated the dissolution reactions and thus enhanced the etching procedure. Finally, the porous PSi samples that were immersed in ethanol are dried under nitrogen.
flow.

The PL spectra of Psi samples were recorded using Jobin Yvon HR 800 (UV, Edison, NJ, USA) with an He–Cd laser (325 nm, 20 mW) as excitation source. The morphological analyses were performed using field emission scanning electron microscopy (FESEM, Leo Supra 50VP, Carl Zeiss, Germany) and atomic force microscopy (AFM). The energy band gap of the samples was obtained from photoluminescence data.

RESULTS AND DISCUSSION

FESEM and AFM analysis

Fig. 1(A–C) show the top views of FESEM images for the PSI samples anodized at 15 mA/cm², 30 mA/cm² and 45 mA/cm². An enhancement in the porosity with increasing current density is clearly observed. Moreover, the morphology and the thickness of PSI structures were evolved depending on the anodization current density changes. This confirms that the current density has significant impact on the shape and size of the pores. The formation of regular columns of Si nanocrystal with pores (hole) is seen. At 15 mA/cm² of current density, the porous Si exhibits relatively few pores (Fig. 1(A)). The sample grown at higher anodization current density of 30 mA/cm² (Fig. 1(B)) displayed higher porosity with columnar structure, which is uniform across the entire surface. However, at anodization current density of 45 mA/cm², the pore spaces between the columns become relatively smaller and filled with etched Si but with increased pore volume as shown in Fig. 1(C).

Fig. 1 Top view of FESEM images of synthesized PSI obtained using the current density of: (A) 15 mA/cm², (B) 30 mA/cm², and (C) 45 mA/cm².

Fig. 2 Cross-sectional view of FESEM images of the PSI obtained at different anodization current density of (A) 15 mA/cm², (B) 30 mA/cm², and (C) 45 mA/cm².

Photoluminescence spectra

Fig. 2(A–C) illustrate the cross-sectional views of the as-prepared samples. It shows the formation of nonparallel and partially cracked Si walls with narrow and asymmetrical holes between them. The sample synthesized at anodization current density of 15 mA/cm² (Fig. 2(A)) displayed higher degree of nonparallel and partially cracked Si walls of length 9.155 μm. The sample grown at 30 mA/cm² of anodization current density showed substantially wider pores, which are irregular across the entire surface (Fig. 2(B)) with increased thicknesses up to 28.81 μm. At 45 mA/cm² of current density (Fig. 2(C)) these Si walls are differentiated from the sharp pin-shaped holes of lengths of up to 60.96 μm. Furthermore, an increase in the anodization current density led to a reduction of the column size of the Si NCs.

Fig. 3 depicts the AFM micrographs of all three samples. Sample grown at current density of 15 mA/cm² revealed a root mean square (rms) surface roughness of 0.20 μm which is increased to 0.23 μm and then to 0.57 μm for 30 mA/cm² and 45 mA/cm² respectively. Furthermore, sample synthesized at 45 mA/cm² was found to be highly porous having varying shapes such as gouges, tunnels and crevasses.

Fig. 3 Cross-sectional view of AFM images of the grown PSI obtained at different anodization current density of: (A) 15 mA/cm², (B) 30 mA/cm² and (C) 45 mA/cm².

Fig. 4: Room temperature PL spectra of all PSI samples.
Discussion

It is asserted that the observed increase in the samples porosity and an enhancement in the PL intensity accompanied by the blue shift with increasing anodization current are strongly correlated. Thus, the variation in the anodization current and etching time duration have strong affect on the light emitting properties of synthesized PSi (Behzad et al., 2012; Abd et al., 2013; Al-Jumaili et al., 2016). The increasing porosity of the sample that led to an widening in the energy band gap at higher current density is in good agreement with other reported values (Rajabi and Dariani 2009).

The etched surfaces for samples grown at current density of 30 mA/cm², and 45 mA/cm² (Fig. B and C in FESEM and AFM images) are irregular and characterized by heterogeneous pores. The pits are obviously formed by an anisotropic etching process, given that the electrolyte disrupts the formation of a passivation layer on the flat etching area faster than the perpendicular sidewalls (Lee et al., 1998). Upon further etching and increased anodization from 15 mA/cm² to 45 mA/cm², the initial vertical pores are rapidly extended and broadened into gouges and tunnels without forming holes. Furthermore, with increasing anodization the developed pores are progressively interconnected by forming initial undetectable edges of the remaining non-etched layer to appear distinct.

Variation in the anodization current density also influenced the PL intensities, and energy band gap. This enhancement is ascribed to the mounting surface roughness of the PSi nanostructures (Ramizy et al., 2011). Moreover, the observed decreasing and then increasing trend of PL intensity with increasing in the current density is attributed to a large number of dangling bonds in the PSi morphology. This large number of dangling bonds in the PSi exists due to their exposure to the atmosphere which in turn acts as major channel for non-radiative recombination (Abd Rahim et al., 2012; Behzad et al., 2012). Likewise, size distribution is also an important aspect where broader size distribution can cause a drop in the PL intensity (Young et al., 2006; Abd et al., 2013).

CONCLUSION

The effects of anodization current densities on the morphology and PL spectra of as synthesized PSi were examined. It was demonstrated that by varying the anodization current density it is possible to control the porosity and the visible light emitting properties of such PSi. Good quality PSi samples were achieved. PL spectra revealed prominent peaks together with large blue shift which supported the presence of strong nanoporous structures. Strong surface roughness is established to be responsible for the reduction of the Si crystal lattice size at higher anodization current density. Based on the results it is affirmed that the efficiency of PSi based photo-detectors can be improved by controlling etching current density assisted porosity.

ACKNOWLEDGEMENT

The authors would like to express their thanks to the Malaysian government through FRGS vot 4F815 for the financial support in this project.

REFERENCES


