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Abstract 

The unsteady magnetohydrodynamic (MHD) free convection flow of  Jeffrey fluid embedded in 
porous medium past an oscillating vertical plate generated by thermal radiation with ramped wall 
temperature is investigated. The incompressible fluid is taken electrically conducting under the 
action of transverse magnetic field towards the flow. Constitutive relation of Jeffrey fluid is employed 
to model the governing equations in terms of partial differential equations with some physical 
conditions. The transformed dimensionless governing equations are solved analytically using 
Laplace transform technique. The impact of various pertinent parameters namely material parameter 
of Jeffrey fluid 1 , dimensionless parameter of Jeffrey fluid  , phase angle t , Hartmann number 

Ha , permeability parameter K , Grashof number Gr , Prandtl number Pr , radiation parameter Rd

and dimensionless time t on velocity and temperature distributions are presented graphically and 
discussed in details. It is observed that, the permeability parameter tend to retard the fluid velocity 
for ramped wall temperature but enhance the velocity for an isothermal plate. Besides that, this study 
shows, the amplitude of velocity and temperature fields for ramped wall temperature are always 
lower than isothermal plate. A comparison with the existing published work is also provided to 
confirm the validity of the present results and an excellent agreement are identical.  

Keywords: Unsteady Jeffrey fluid, MHD, porous medium, oscillating vertical plate, Laplace 
transform technique 
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INTRODUCTION 

During the last decades, considerable amount of efforts have been 
made in the study of non-Newtonian fluid because of their wide and 
practical applications in various branches of sciences and engineering, 
for instance in wire and blade coating, plastics manufacturing, dying of 
papers and textiles, food processing and movement of biological fluids. 
However, such flows are not possible to describe by a single 
constitutive relation between shear stress and rate of strain. Keeping 
this fact in mind, many models has been introduced in the literature to 
predict the rheological behavior of non-Newtonian fluids. Amongst 
them, Jeffrey model is accorded as a relatively simpler linear model 
which time derivatives are used instead of convected derivatives. The 
Jeffrey model has received special attentions from the researchers 
including Khan (2007), Hayat et al. (2010), Mekheimer et al. (2011), 
Khan et al. (2011), Qayyum et al. (2012) and so on.  

The influence of heat transfer on mixed convection of MHD 
oscillatory flow of Jeffrey fluid in a channel has been explored by 
Kavita et al. (2012). In a subsequent year, Idowu et al. (2013) expended 
the previous idea of Kavita et al. (2012) by considered the mass transfer 
and chemical reaction into the unsteady mixed convection of MHD 
oscillatory flow of Jeffrey fluid in a horizontal channel and performed 
an exact solutions for velocity, temperature and concentration using 

perturbation technique. Ali and Asghar (2014) analytically examined 
the two-dimensional oscillatory flow inside a rectangular channel for 
Jeffrey fluid with small suction using several methodologies namely 
perturbation technique, Wentzel-Kramers-Brillouin and variation of 
parameter. Nadeem et al. (2014) further studied the unsteady 
oscillatory stagnation point flow of a Jeffrey fluid using Homotopy 
Analysis Method (HAM). 

In another paper, Idowu et al. (2015a) worked on the effect of heat 
and mass transfer on MHD oscillatory flow of Jeffrey fluid through a 
porous medium in a channel in the presence of thermal conductivity, 
thermal radiation and soret. The partial differential equations are 
reduced to nonlinear ordinary differential equation by perturbation 
technique and hence solved numerically by using shooting technique 
with fourth order Runge-Kutta method. In the same year, Idowu et al. 
(2015b) continued their previous work with heat absorption and dufour 
effect and solved numerically by semi implicit finite difference scheme. 
Recently, Al-Khafajy (2016) studied analytically the influence of heat 
transfer on MHD oscillatory flow of Jeffrey fluid with variable 
viscosity model through porous medium by using perturbation 
technique. Joseph et al. (2016) applied the perturbation technique and 
analyzed the effect of variable suction on unsteady MHD oscillatory 
flow of Jeffrey fluid in a horizontal channel with heat and mass transfer. 
Other than that, a closed form solution for the effect of heat transfer on 
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unsteady MHD and radiative oscillatory flow of Jeffrey fluid in an 
inclined channel filled with porous medium and non-uniform walls are 
carried out by Sree et al. (2016). 

On the other hand, some relevant research studies on unsteady 
Jeffrey fluid past a vertical stretching/shrinking surface by considering 
different aspects of the problem can be found in Hayat and Mustafa, 
(2010), Hayat et al. (2014), Mabood et al. (2016) and Sukumar et al. 
(2016). Nevertheless, Bhaskar Reddy et al. (2015) made an attempt to 
study the flow of Jeffrey fluid between two torsionally oscillating disks 
and found that the radial axial flow has a mean steady component and 
a fluctuating component of frequency twice that of the oscillating disk. 
Meanwhile, Gao and Jian (2015) proposed the analytic solutions for 
MHD flow of Jeffrey fluid in a circular microchannel with the aid of 
separation of variable method, whereas Khan (2015) used the Laplace 
transformation technique to investigate the unsteady natural convection 
flow of Jeffrey fluid past an infinite isothermal vertical plate.  

Motivated by the above mentioned works and up to the best of 
author’s knowledge no study has been reported concerning the 
unsteady MHD free convection flow of Jeffrey fluid past an oscillating 
vertical plate immersed in a porous medium with ramped wall 
temperature in the presence of magnetic field and thermal radiation 
effects. Hence, the main purpose of the current study is to provide an 
exact solution for the simultaneous effects of porosity and magnetic 
field on unsteady MHD free convection flow of incompressible Jeffrey 
fluid over an oscillating vertical plate with ramped wall temperature 
under influence of thermal radiation by Laplace transform technique. 
Results of involved parameters for velocity and temperature profiles are 
plotted with the aid of Mathcad software and discussed in details. A 
comparative study with the existing published work is also provided 
where an excellent agreement is noticed. 

MATHEMATICAL FORMULATION  

Fig. 1  Schematic diagram of Jeffrey fluid past over an oscillating vertical 
plate embedded in porous medium. 

Consider the unsteady MHD free convection flow of 
incompressible Jeffrey fluid past an oscillating vertical plate saturated 
in porous medium under influence of thermal radiation. The 𝑥-axis is 
taken along the vertical plate in upward direction, while the 𝑦-axis is 
normal to it. The fluid is electrically conducting in the presence of 
uniform transverse applied magnetic field, 0B parallel to the 𝑦-axis. 
The geometrical configuration of the present problem as illustrated in 
Fig. 1. 

The magnetic Reynold number is chosen to be small, so that the 
induced magnetic field are negligible compared with the applied 
magnetic field (Aaiza et al., 2015; Khan, 2007). Further, it is also 
assumed that no polarization and applied voltage exist which means no 
external electric field and electric field present (Hayat et al., 2010; Gul 

et al., 2015). Initially, for time 0t  both the plate and fluid are at rest 
at constant temperature, T

in a stationary condition. After 0t  , the  
plate starts an oscillatory motion in its plane with velocity, 

 0 cos ,u U H t t (1) 

against the gravitational field, where 0U is the amplitude of the plate 

oscillation,  H t is the Heaviside step function and  is the frequency 
of the plate oscillations. At the same time, the temperature of the plate 
is raised or lowered to  

0

t
w t

T T T   when 0t t . Thereafter, at 

0t t is maintained at uniform temperature, 
wT . 

Under the above mentioned assumptions and applying the usual 
Boussinesq approximation (Ghara et al., 2012), the problem is 
governed by the set of partial differential equations 
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Here, u denotes the fluid velocity in x  direction, T is the fluid 
temperature,  is the constant density of the fluid,  is the dynamic 
viscosity, 1,2i  are the material parameters of the Jeffrey fluid, where 

1 is the ratio of relaxation to retardation times and 2 is the retardation 
time,  is the electric conductivity of the fluid, 1 is the porosity, 
is the permeability of the porous medium, g is the acceleration due to 
gravity, T is the volumetric coefficient of heat transfer, pc is the 

specific heat capacity, k is the thermal conductivity and rq is the 
radiation heat flux, respectively.  

Following Narahari and Ishak (2011), the radiation heat flux under 
Rosseland approximation is as follows 

4
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4 ,
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q

k y

  
 
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(5) 

where   denotes the Stefan-Boltzmann and 1k is the absorption 
coefficient. Assuming the temperature differences within the flow are 
sufficiently small, such that 4T is a linear temperature function which 
can be expanded by Taylor series expansion about T . Hence, 
neglecting higher order terms takes the form 

4 3 44 3 ,T T T T   (6) 

In view of equations (5) and (6), therefore equation (3) is simplified to 
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Introducing the following dimensionless variables (Ali et al., 
2014; Das and Neog, 2015; Khalid et al. 2015) 

2
* * * *0 0
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(8) 

into equations (2), (7) and (4) yields the following dimensionless 
expressions (  notations are dropped for simplicity) 
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The adequate initial and boundary conditions in non-dimensional form 
are 
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Here, 

 

2 2 2
2 0 1 0

2 2
0 0

3

3
0 1

1, , ,

16, Pr , .
3

pT w

U B
Ha

K U U

cg T T T
Gr Rd

U k kk

   


  

   
 

  


  

(12) 

In which  is refer to dimensionless Jeffrey fluid parameter, K is the 
permeability parameter, Ha is the Hartmann number, Gr is Grashof 
number, Pr is the Prandtl number and Rd is the radiation parameter, 
respectively.  

SOLUTION OF THE PROBLEM 

In order to obtain the analytical solutions for the coupled partial 
differential equations (9) and (10) under conditions (11), the Laplace 
transform technique is used. Thus, applying the Laplace transform to 
equations (9)-(10) and using initial conditions, the following equations 
in  ,y q are:  
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with transformed boundary conditions 
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where  ,u y q and  ,y q indicate the Laplace transform of  ,u y t

and  ,y t , repectively. The arbitrary constants 1 , 2 , 3 and 4

are given by 
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By taking equation (16) into equation (14), yield the following 
expression  
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Using the second shift property (Samiulhhaq et al., 2014a) 
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Thus, the result for temperature profile can be written as  
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where 1L denoting the inverse Laplace transform,  1H t  is the 

Heaviside unit step function and  erfc is the complimentary error 
function.  

Then, inserting equation (18) into equation (13) subject to boundary 
conditions (15), result in 
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Now to determine the inverse Laplace of equation (24), we split 
equation (24) in the following form 
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Inverting equation (28) gives 

http://www.foxitsoftware.com/shopping


Mohd Zin et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 13, No. 2 (2017) 49-59  

52 

   11 cos ,G t H t t (30) 

and applying the inversion formula of compound function (Khan et al., 
2010)  to equation (29), leads to the following expression 
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Here  t is a delta function and  1I is the modified Bessel function 

of the first kind of order one. Since  1 ,u y qinvolved of multiplication 
of two functions, then the convolution theorem is used  
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In order to find the solution for  2 ,u y q, we write equation (25) 
as follow 
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The inverse Laplace of equation (36) is 
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Rewrite equation (37) into two set of functions, and let 
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Here,  1 ,A y tcan be presented as a convolution product 
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and the function of  12 ,G y t is already calculated in equation (31), 

whereas the inverse Laplace transform of  2 ,A y qis same as in 
equation (21).  Hence, using equations (31) and (42), the solution of 
equation (39) results 
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Thus,  22 ,u y t implies 
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Again, using the second shift property, the solution of equation (25) can 
be obtained as 
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Consequently, the complete solution for velocity distribution is given 
by 
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Solution for an isothermal plate 

In order to highlight the effect of ramped temperature distribution 
of the plate on the fluid flow, the same problem subjected to the 
constant wall temperature are solved, and both solutions are compared. 
The solutions for temperature and velocity profiles for the case of an 
isothermal plate can be expressed as 
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respectively. 

Nusselt number and skin friction 

In this section, the expression of Nusselt number, Nu and skin 
friction  for both cases, ramped wall temperature and an isothermal 
plate are discussed. The dimensionless Nusselt number and skin friction 
are defined as 
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Substituting equations (22) and (48) into (50), thus the Nusselt 
number for ramped wall temperature and isothermal are given by 
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While, introducing equations (47) and (49) into (51), the skin friction 
for both ramped wall temperature and constant wall temperature can be 
written as  
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and 

   1 3 ,iso t t    (55) 

where  1 , 2 , 3i i  are given by 
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respectively.  

LIMITING CASES 

Case 1: Solution in the absence of MHD, porosity and 
radiation 

By considering 0Ha  , 0Rd  and K  , the correspond 
solution of velocity profile for ramped wall temperature is reduced to 
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While, the velocity profile for an isothermal plate is  
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Fig 2.  Comparison of velocity profile for an isothermal case in equation 
(62) with equation (31) obtained by Khan (2015) when 1 1   , 

0.5Gr  , Pr 0.71 and 0.5t  .  

Clearly in Fig. 2, the graph of an isothermal plate in equation (62) 
is matched well with those obtained by Khan (2015). Hence, we can 
say our present results found are in an excellent agreement.  

Case 2: Solution in the absence of 1

By taking 1 0  , the solution of equations (47) and (49) can be 
reduce to second grade fluid filled in a porous space. Thus, the velocity 
profile for the case of ramped wall temperature is given by 
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in which 
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While, the solution of velocity for isothermal plate in this case can be 
written as 
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Here, 
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However, by making 0,Ha  0Rd  , K  and 1Gr  , the 
above equations (63) and (65) lead to the following expressions 
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where  3 ,Ru y t is now become 
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and 
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Here, P r 1 and the arbitrary constants are given by 
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It is noted that, the solution of equation (69) is identical with the 
published result obtained by Samiulhaq et al. (2014b). This fact is 
shown in the Fig. 3 where the graph of solution (69) is matched well 
with the equation (11) in Samiulhaq et al. (2014b). Hence, with this 
evidence, the accuracy of our finding is confirmed. 

Fig 3.  Comparison of velocity profile of an isothermal case in equation 
(69) with equation (11) obtained by Samiulhaq et al. (2014b) when 

1 0 . 8   , 1Gr  , P r 0 . 7 1 and 0 . 5t  .    

Case 3: Solution for Stokes’ First Problem 

In addition, by taking 0  into equations (47) and (49) lead to 
following expression 

         1, , , , 1 1 ,r a m pa R Ru y t u y t u y t u y t H t    (71) 

     1 3, , , ,iso au y t u y t u y t  (72) 

where 
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t y
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y L u
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H t L y
u y t H t e e I L us duds

u s


  


   

(73) 

These solutions correspond to the Stokes’ first problem of Jeffrey fluid 
for case of ramped wall temperature and an isothermal plate over an 
impulsive motion of the plate, respectively. 

RESULTS AND DISCUSSION 

The effect of porosity on unsteady MHD free convection flow of 
Jeffrey fluid corresponding to the cosine oscillation of the plate with 
ramped wall temperature in the presence of magnetic field and thermal 
radiation was remarked and the governing equations subjected to initial 
and boundary conditions (4) was solved analytically by means of 
Laplace transform technique. In order to reveal the physical 
interpretation of foregoing parameters such as material parameter of 
Jeffrey fluid 1 , dimensionless Jeffrey fluid parameter  , phase angle 

t , Hartmann number Ha , Grashof number Gr , permeability 
parameter K , Prandtl number Pr , radiation parameter Rd and 
dimensionless time t on the obtained solutions, the numerical results 
for velocity and temperature are computed and shown graphically in 
Fig. 4-16. The numerical result for skin friction and Nusselt number are 
also provided for some physical quantities of interest and analyzed 
through tabular forms.  

Influence of material parameter of Jeffrey fluid 1 (when  are 
fixed values) on velocity profile is displayed in Fig. 4 for both ramped 
wall and isothermal cases.  From this figure, it is observed that the 
velocity increase with increasing values of 1 for ramped wall 
temperature and an isothermal plate. However, at certain point, the 
trend of ramped wall temperature is changed, where the velocity is 
decreasing as 1 increase. On the other hand, in Fig. 5 the effect of 
dimensionless Jeffrey fluid,  (when 1 are fixed values) on velocity 

is showed the reverse behavior where an increase of  slow the motion 
of the fluid. Similar pattern is noticed in Fig. 6 when both 1 and 
are set for a same values. 

The variation of phase angle t upon velocity is analyzed in Fig. 
7. Obviously, the fluid is oscillating between -1 and 1 which shows an 
oscillatory behaviour. Also, this figure can easily check the accuracy of 
our results where the obtained solutions (47) and (49) are satisfied the 
boundary condition given in equation (11). Hence, due to this fact we 
can say both mathematical and graphical results are found in excellent 
agreement and we are confident our present results are accurate.  

The impact of magnetic field or Hartmann number Ha on velocity 
profile is demonstrated in Fig. 8. As expected, an increase in Ha

reduces the fluid motion. In physical point of view, this is because of 
the Lorentz force similar to the drag force, which arises due to the 
application of magnetic field to an electrically conducting fluid and 
gives rise to a resistance force. Due to this force, the motion of fluid 
flow in momentum boundary layer tends to retard and thus decrease the 
fluid velocity.  
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Fig. 4  Velocity profile for different values of 1 , when 2  , 2t  , 

2Ha  , 1K  , 1Gr  , Pr 0.71 , 2Rd  and 0.5t  .  

Fig. 5  Velocity profile for different values of  , when 1 2  , 2t  , 

2Ha  , 1K  , 1Gr  , Pr 0.71 , 2Rd  and 0.5t  .       

Fig. 6  Velocity profile for different values of Jeffrey fluid parameter, when 
2t  , 2Ha  , 1K  , 1Gr  , Pr 0.71 , 2Rd  and 0.5t  . 

   
Fig. 7  Velocity profile for different values of t , when 1 1   ,  

2Ha  , 1K  , 1Gr  , Pr 0.71 , 2Rd  and 0.5t  .         

Fig. 8  Velocity profile for different values of Ha , when 1 1   , 

2t  , 1K  , 1Gr  , Pr 0.71 , 2Rd  and 0.5t  .         

Fig. 9  Velocity profile for different values of K , when 1 1   , 

2t  , 2Ha  , 1Gr  , Pr 0.71 , 2Rd  and 0.5t  .        

Fig. 10  Velocity profile for different values of Gr , when 1 1   , 

2t  , 2Ha  , 1K  , Pr 0.71 , 2Rd  and 0.5t  .         

Fig. 11  Velocity profile for different values of Pr , when 1 1   , 

2t  , 2Ha  , 1K  , 1Gr  , 2Rd  and 0.5t  .       
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Fig. 12  Velocity profile for different values of Rd , when 1 1   , 

2t  , 2Ha  , 1K  , 1Gr  , Pr 0.71 and 0.5t  .       

Fig. 13  Velocity profile for different values of t , when 1 1   , 

2t  , 2Ha  , 1K  , 1Gr  , Pr 0.71 and 2Rd  .         

Fig. 14  Temperature profile for different values of Pr , when 2Rd  and 
0.5t  . 

Fig. 15  Temperature profile for different values of Rd , when Pr 0.71

and 0.5t  . 

Fig. 16  Temperature profile for different values of t , when Pr 0.71 and 
2Rd  . 

Fig. 9 depicts the effect of permeability parameter K on velocity 
distribution. It is noticed that, as K increase, the velocity for an 
isothermal case is increase but decrease for the case of ramped wall 
temperature. Furthermore, from Fig. 10, the influence of Grashof 
number Gr on velocity field. A rise in Gr to the enhancement of 
thermal effect which give intensify of the fluid flow. 

In addition, the effect of Prandtl number, Pr on velocity is 
interpreted in Fig. 11. Three different values of Pr = 0.71,1.0,7.0 are 
chosen which correspond to air, electrolyte and water respectively. It is 
found that, the velocity decrease with increasing Pr . This situation 
occur because of high values of Prandtl number have high viscosity and 
small conductivity, this will make the fluid thick and consequently 
decelerate the fluid velocity. 

Fig.12 indicates the velocity distribution for various values of 
radiation parameter Rd . Velocity is clearly enhanced considerably 
with increasing values of Rd . Physically this is due to the rate of 
energy transport to the fluid increase as the intensity of radiation 
parameter increase and thereby the fluid velocity increases. Then, Fig. 
13 shows the velocity profile is increasing function of dimensionless 
time t . 

Furthermore, it can be analyzed from Fig. 14 that, the temperature 
profile is reduced when Pr is increased. Physically, this is because high 
values of Pr tends to decrease the thermal conductivity which make 
the heat diffuses more slowly from the plate compared to smaller values 
of Pr .Thus decrease the temperature distribution.  

Meanwhile, Fig. 15 illustrates the influence of radiation Rd on 
temperature field. As anticipated, an increase in Rd increase the 
temperature profile since radiation parameter signifies the relative 
contribution of conduction heat transfer to thermal radiation transfer. 
Finally, it is found from Fig. 16 that, the temperature profile increase 
due to an increase in the dimensionless time, t . 

The numerical results of Nusselt number and skin friction under 
varying different emerging parameters are computed from analytical 
expressions (52), (53), (54), (55) and provided in the form of tables. 
Table 1 presented the influence of t , Pr and Rd on the Nusselt 
number which measures the rate of heat transfer at the surface of the 
plate. It is depicted that, the rate of heat transfer for both ramped wall 
and isothermal cases deceases for large values of t and Rd , whereas 
an increase in Pr has shown the opposite effect. Meanwhile, It is 
clearly seen from Table 2, the skin friction for both cases are enhanced 
with an increase of Gr and Rd . However, increasing values of Ha , 
K and Pr reduced the skin friction for ramped wall temperature and 
an isothermal plate.  
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Table 1  Variation of Nusselt Number for different values of parameters. 

t Rd Pr rampNu
isoNu

0.8 0.5 0.71 0.694 0.434 
1.5 0.5 0.71 0.402 0.317 
2.0 0.5 0.71 0.322 0.274 
1.0 1.0 0.71 0.672 0.336 
1.0 1.5 0.71 0.601 0.301 
1.0 2.0 0.71 0.549 0.274 
1.0 2.0 1.0 0.651 0.326 
1.0 2.0 7.0 1.724 0.862 
1.0 2.0 100 6.515 3.257 

Table 2  Variation of skin friction for several values of parameters when 
1 2   , 3t  and 0.5t  .  

CONCLUSION 

The unsteady MHD free convection flow of incompressible Jeffrey 
fluid past an oscillating vertical plate immersed in a porous medium 
with ramped wall temperature in the presence of magnetic field and 
thermal radiation has been studied analytically by Laplace transform 
technique. Graphical results for velocity and temperature profiles are 
obtained for embedded parameters and discussed. Corresponding 
expressions of Nusselt number and skin friction for both ramped wall 
and isothermal plate are calculated and presented in tables. A 
comparative study between the present results and the previous work in 
the sense of limiting cases are provided and a better agreement is 
gained. The following main points are concluded from this study: 

- the boundary layer thickness for ramped wall temperature is 
always less than isothermal plate. 

- An increase in K enhance the fluid flow for an isothermal 
plate but decelerate the fluid velocity for the case of ramped 
wall temperature.   

- The rising of Ha increase the Lorentz force, which further 
resist the fluid motion. As a results, it decrease the fluid 
velocity.  

- The presence of Rd leads to an increase the velocity and 
temperature profiles for both cases.  

- Larger values of Pr leads to a reduction in the velocity and 
temperature.  

- Gr acts as a boosting agent for velocity profile for both 
ramped wall and an isothermal plate due to an increase in 
buoyancy force. 

ACKNOWLEDGEMENT 

The authors would like to acknowledge of Higher Education 
(MOHE) and Research Management Centre-UTM for the financial 
support through vote number 4F13, 15H80 and 13H74 for this research. 

REFERENCES 

Aaiza, G., Khan, I., Shafie, S. (2015). Energy transfer in mixed convection mhd 
flow of nanofluid containing different shapes of nanoparticles in a channel 
filled with saturated porous medium. Nanoscale Research Letters. 10(490): 1-
14. 

Al- Khafajy, D. G. S. (2016). Effects of heat transfer on MHD oscillatory flow 
of Jeffrey Fluid with variable viscosity through porous medium. Advances in 

Applied Science Research. 7(3): 179-186.  
Ali, A., Asghar, S. (2014). Analytic solution for oscillatory flow in a channel for 

Jeffrey Fluid. Journal of Aerospace Engineering. 27: 644-651. 
Ali, F., Khan, I., Shafie, S. (2014). Closed form solutions for unsteady free 

convection flow of a second grade fluid over an oscillating vertical plate. PLoS 

ONE. 9(2): 1-15. 
Bhaskar Reddy, G., Sreenadh, S., Hemadri Reddy, R., Kavitha, A. (2015). Flow 

of a Jeffrey Fluid between torsionally oscillating disks. Ain Shams 

Engineering Journal. 6: 355-362.  
Cortell, R. (2014). Fluid flow and radiative nonlinear heat transfer over a 

stretching sheet. Journal of King Saud University-Science. 26: 161-167. 
Das, R. K., Neog, B. C. (2015). MHD flow past a vertical oscillating plate with 

radiation and chemical reaction in porous medium. IOSR Journal of 
Mathematics. 11(1): 46-50.  

Gao, C.,  Jian, Y. (2015). Analytical solution of magnetohydrodynamic flow of 
Jeffrey Fluid through a circular microchannel. Journal of Molecular Liquids. 
211: 803-811.  

Ghara, N., Das, S., Maji, S. L., Jana R. N. (2012). Effect of radiation on MHD 
free convection flow past an impulsively moving vertical plate with ramped 
wall temperature. American Journal of Scientific and Industrial Research. 
3(6): 376-386.  

Gul, A., Khan, I., Shafie, S., Khalid, A. and Khan, A. (2015). Heat transfer in 
MHD mixed convection flow of a ferrofluid along a vertical channel. PLoS 

ONE. 10(11): 1-14.  
Hayat, T., Mustafa, M. (2010). Influence of thermal radiation on the unsteady 

mixed convection flow of a jeffrey fluid over a stretching sheet. Z. 

Naturforsch. 65a: 711-719. 
Hayat, T., Iqbal, Z., Mustafa, M., Alsaedi, A. (2014). Unsteady flow and heat 

transfer of jeffrey fluid over a stretching sheet. Thermal Science. 18(4): 1069-
1078.  

Hayat, T., Khan, M., Fakhar, K., Amin, N. (2010). Oscillatory rotating flows of 
a fractional Jeffrey Fluid filling a porous space. Journal of Porous Media. 
13(1): 29-38. 

Idowu, A. S., Jimoh, A., Ahmed, L. O. (2015a). Effect of heat and mass transfer 
on MHD oscillatory flow of jeffrey fluid in a porous channel with thermal 
conductivity and soret. Journal of Research in National Development. 
13(2):Chapter 30.  

Idowu, A. S., Jimoh, A., Ahmed, L. O. (2015b). Impact of heat and mass transfer 
on MHD oscillatory flow of Jeffrey Fluid in a porous channel with thermal 
conductivity, dufour and soret. Journal of Applied Sciences and 
Environmental Management. 19(4): 819-830.  

Idowu, A. S., Joseph, K. M., Daniel, S. (2013). Effects of heat and mass transfer 
on unsteady MHD oscillatory flow of Jeffrey Fluid in a horizontal channel 
with chemical reaction. IOSR Journal of Mathematics. 8(5): 74-87. 

Joseph, K. M., Magaji, A. S., Peter, A., Tijani, N. Z. (2016). Effect of variable 
suction on unsteady MHD oscillatory flow of Jeffrey Fluid in a horizontal 
channel with heat and mass transfer. Journal of Scientific and Engineering 

Research. 3(3): 599-610.  
Kavita, K., Ramakrishna Prasad, K., Aruna Kumari B. (2012). Influence of heat 

transfer on MHD oscillatory flow of Jeffrey Fluid in a channel. Advances in 

Applied Science Research. 3(4): 2312-2325.  
Khalid, A., Khan, I., Khan, A., Shafie, S. (2015a). Unsteady MHD free 

convection flow of casson fluid past over an oscillating vertical plate 
embedded in a porous medium. Engineering Science and Technology, an 

International Journal. 18: 309-317.  
Khan, I. (2015). A note on exact solutions for the unsteady free convection flow 

of a Jeffrey Fluid. Zeitschrift für Naturforsch. 70(6): 272-284.  
Khan, I., Ali, F., Sharidan, S., Norzieha, M. (2010). Exact solutions for 

accelerated flows of a rotating second grade fluid in a porous medium. World 

Applied Sciences Journal. 9: 55-68. 
Khan, M., Iftikhar, F., Anjum, A. (2011). Some unsteady flows of a Jeffrey Fluid 

between two side walls over a plane wall. Zeitschrift für Naturforsch. 66a: 745 
– 752. 

Khan. M. (2007). Partial slip effects on the oscillatory flows of a fractional 
Jeffrey Fluid in a porous medium. Journal of Porous Media. 10(5): 473-487.  

Mabood, F., Abdel-Rahman, R., Lorenzini, G. (2016). Numerical study of 
unsteady Jeffrey fluid flow with magnetic field effect and variable fluid 
properties. Journal of Thermal Science and Engineering Applications. 8: 1- 9.  

Mekheimer, K. S., Husseny S. Z-A., Ali A. T., Abo-Elkhair R. E. (2011). Lie 
Point Symmetries and Similarity Solutions for an Electrically Conducting 
Jeffrey Fluid. Physica Scripta. 83: 1-7. 

Ha K Gr Rd Pr ramp
iso

1.0 0.5 0.5 0.5 0.71 0.889 1.000 
1.5 0.5 0.5 0.5 0.71 0.877 0.985 
2.0 0.5 0.5 0.5 0.71 0.865 0.970 
2.0 1.0 0.5 0.5 0.71 0.740 0.856 
2.0 1.5 0.5 0.5 0.71 0.693 0.814 
2.0 2.0 0.5 0.5 0.71 0.668 0.791 
2.0 2.0 1.0 0.5 0.71 0.759 1.005 
2.0 2.0 1.5 0.5 0.71 0.850 1.219 
2.0 2.0 2.0 0.5 0.71 0.941 1.433 
2.0 2.0 2.0 1.0 0.71 0.964 1.470 
2.0 2.0 2.0 1.5 0.71 0.981 1.495 
2.0 2.0 2.0 2.0 0.71 0.995 1.515 
2.0 2.0 2.0 2.0 1.0 0.969 1.477 
2.0 2.0 2.0 2.0 7.0 0.811 1.185 
2.0 2.0 2.0 2.0 100 0.659 0.812 

http://www.foxitsoftware.com/shopping
http://www.foxitsoftware.com/shopping


Mohd Zin et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 13, No. 2 (2017) 49-59  

59 

Nadeem, S., Tahir, B., Labropulu, F., Akbar, N. S. (2014). Unsteady oscillatory 
stagnation point flow of a Jeffrey Fluid.  Journal of Aerospace Engineering. 
27: 636-643.  

Narahari, M., Ishak, A. (2011). A radiation effects on free convection flow near 
a moving vertical plate with newtonian heating. Journal of Applied Sciences. 
11(7): 1096-1104.  

Pantokratoras, A., Fang, T. (2013). Sakiadis flow with nonlinear Rosseland 
thermal radiation. Physica Scripta. 87: 1-5.  

Qayyum, A., Awais, M., Alsaedi, A., Hayat, T. (2012). Unsteady squeezing flow 
of Jeffrey Fluid between two parallel disks. Chinese Physics Letters. 29(3): 1-
4. 

Samiulhaq, Ahmad, S., Vieru, D., Khan, I., Shafie, I. (2014a). Unsteady 
magnetohydrodynamic free convection flow of a second grade fluid in a 
porous medium with ramped wall temperature. PLoS ONE. 9(5): 1-9.  

Samiulhaq, Khan, I., Ali, F., Shafie, S. (2014b). Free convection flow of a 
second grade fluid with ramped wall temperature. Heat Transfer Research. 
45(7): 579-588.   

Sree, H. K., Sudheer Kumar, M., Vijayatha, D. (2016). MHD heat transfer 
oscillatory flow Jeffrey Fluid in an inclined channel filled with porous 
medium. Chemical and Process Engineering Research. 44: 26-30.  

Sukumar, M., Krishna Murthy, M., Varma, S. V. K., Rajinikanth, K. (2016). Slip 
effects on MHD flow of Jeffrey Fluid over an unsteady shrinking sheet with 
wall mass transfer. Middle-East Journal of Scientific Research. 24(6): 1920-
1925.  

http://www.foxitsoftware.com/shopping

