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Abstract 
 
Crude oil and condensates supply and demand strives to be main authority of the sustenance of almost 
all country’s economy. The sudden rise in the oil price has forced the government to forecast the supply 
and demand of crude oil and condensates in order to make sure that the amount of crude oil meets 
the supply and demand of the country. Accurate forecasts can save cost, foresee scarcity of demand, 
and help in budgeting profit. In addition, predicting crude oil and condensate data is frequently proven 
to be a demanding task considering the various intricacies of oil data pattern. The main objective of 
this study was to forecast crude oil and condensates demand data in Malaysia using Fast Ensemble 
Empirical Mode Decomposition (FEEMD) model. The forecasting process using FEEMD model was 
performed in order to achieve the most desirable forecast accuracy of the crude oil and condensates 
data. The FEEMD model is an extension of the Empirical Mode Decomposition (EMD) model whereby 
white noise signal was added to the existing signal in the sifting process. The effectiveness of the 
proposed forecasting method was compared to other traditional models of ARIMA, ARIMAX and 
GARCH. The results revealed that the proposed FEEMD method for forecasting crude oil and 
condensates data was very promising as it achieved good forecast accuracy. 
 
Keywords: Crude oil and condensates, fast ensemble empirical mode decomposition (FEEMD), 
Tapis-blend oil prices, forecasting 
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INTRODUCTION 
 

Currently, with the instability of world’s economy, the needs and 

consumption of crude oil and its supply and demand are progressively 

becoming high, thus making it important to examine as a whole whether 

the amount of crude oil supply and demand is enough to establish a 

continuous, stable economic growth. 

In assessing the quantitative analysis of crude oil supply and 

demand, some complications may emerge in the crude oil demand 

forecasting. The main objective of this study was to forecast crude oil 

and condensates demand in Malaysia. All relevant historical data for 

crude oil and condensates were collected to predict crude oil and 

condensates demand. The prediction of crude oil depends on the crude 

oil price where it can adequately guarantee a sudden new supply and 

demand of crude oil with an increase in the production quality at a lower 

production cost (Yu et al., 2016). 

Crude oil can be defined as a mixture of hydrocarbons that lies in 

liquid state in natural underground reservoirs and remains liquid at 

atmospheric pressure after passing through surface separating facilities. 

A condensate is a very light hydrocarbon with an American Petroleum 

Institute (API)-specific gravity of greater than 50 degrees and less than 

80 degrees (Mohammadpoor and Torabi, 2015). Underground, 

condensates can either exist separately from the crude oil or dissolve in 

the crude oil. In this paper, we examined the summation of crude oil 

and condensates data in achieving the forecast. 

In the literature, forecasting methods for oil demand and supply and 

oil price can be categorized into two, which are the traditional statistical 

method (Chakra et al., 2013; Sheremetov et al., 2013; Chuanping et al., 

2010) and a hybridization of the “decomposition and ensemble” 

method (Li et al., 2012). Traditional statistical models such as ARIMA, 

Grey Model, Support Vector Machine (SVM), and Artificial Neural 

Network (ANN) have been extensively implemented in predicting 

crude oil production and demand. For example, Chakra et al. (2013) 

employed the higher-order neural network (HONN) method to forecast 

the production of oil on a sandstone reservoir located in Cambay basin 

in Gujarat, India. Sheremetov et al. (2013) applied the Time Delay 

Neural Network (TDNN) and Nonlinear Autoregressive with 

exogenous input (NARX) methods in predicting monthly Mexican oil 

and gas production. Aizenberg et al. (2016) also suggested Multilayer 

Neural Network with Multi-Valued Neurons (MLMVN) model to 

forecast oil production in the Gulf of Mexico. Zang et al. (2010) 

investigated refined oil demand in China using combined mid-long 

term forecast in the Grey model. Chuanping et al. (2011) also 

implemented ARMA method in forecasting China’s oil self-

sufficiency. Seyedan et al. (2015) applied Support Vector Machine 

method in predicting Iran’s oil consumption. 

As for the decomposition and ensemble method, most previous 

literature implemented the hybridization of decomposition and 

ensemble methods for forecasting oil prices data. For example, Yu et 

al. (2016) proposed the hybridization of Ensemble Empirical Mode 

Decomposition (EEMD) and Extended Extreme Learning Machine 

(EELM) to forecast crude oil spot price data in West Texas Intermediate 

(WTI). Yu et al. (2008) also suggested forecasting WTI crude oil spot 

prices and Brent crude oil spot prices using EMD and neural network 

ensemble learning paradigm. He et al. (2012) analyzed WTI and Brent 

crude oil prices using a modified hybridization of the wavelet 
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decomposed ensemble model. Yu et al. (2015) also used a modified 

hybridization of EEMD with data characteristic driven reconstruction 

technique for WTI and Brent oil prices data. 

In general, the above models can generate satisfying forecast results 

if the forecaster follows the whole forecasting process introduced by 

the inventor of the model. Basically, the forecasting process in both 

traditional statistical models and hybrid models of decomposition and 

ensemble method involves many trial-and-error steps, which can be 

time-consuming. In addition, abundant studies have proved that the 

forecasting capability might be low if the forecaster does not follow any 

of the steps suggested by the inventor of the model. Thus, continuous 

application of traditional statistical models or hybridization of 

decomposition and ensemble methods in the forecasting procedure 

might be impractical. 

In order to overcome these traditional statistical and hybridization 

of decomposition and ensemble procedure of a model, especially 

through trial-and-error process with too many steps to follow in a 

forecasting method, we are suggesting the Fast Ensemble Empirical 

Mode Decomposition (FEEMD) model in predicting the time series 

data. The steps involving in FEEMD model for time series forecasting 

procedure is very minimal, easy to implement, and most importantly, 

give very good forecast accuracy.  

The rest of the paper is organized as follows. In the next section, 

we present the ARIMA, ARIMAX, GARCH and FEEMD methods for 

forecasting in this study. Empirical results after employing the above 

methods to real data sets of crude oil and condensates are presented in 

Section 3 where the forecast performances of these methods are 

compared among each other. Section 4 contains the concluding 

remarks. 

METHODOLOGY 

       In our work, we used traditional statistical methods such as 

ARIMA, ARIMAX, and GARCH to compare their forecast 

performances against the FEEMD method on the crude oil and 

condensates data. Tapis-blend oil prices data was chosen as an 

exogenous variable for the ARIMAX model to determine the 

robustness of the proposed FEEMD method in forecasting and to assess 

the quality of the proposed forecast methods. The forecast performance 

was measured using the Mean Average Percentage Error (MAPE) 

method. 

ARIMA model  

The general ARIMA (𝑝, 𝑑, 𝑞) model consisted of a combination of 

past values and past errors, or it can be expressed as: 

𝜙𝑝(𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝜃𝑞(𝐵)𝑎𝑡                (1) 

with 

𝜙𝑝(𝐵) = (1 − 𝜙1𝐵 − ⋯ − 𝜙𝑝𝐵𝑝), 

𝜃𝑞(𝐵) = (1 − 𝜃1𝐵 − ⋯ − 𝜃𝑞𝐵𝑞) 

where 𝐵 denotes the backshift operator and 𝑎𝑡 denotes a random 

process in a period 𝑡 with zero mean and constant variance. 𝜙𝑝(𝐵) and 

𝜃𝑞(𝐵) are regular autoregressive and moving average polynomials of 

orders 𝑝 and 𝑞. 𝑌𝑡 is appropriately transformed data series in period 𝑡,  

while (1 − 𝐵)𝑑 is the non-seasonal operators. If 𝑑 is non-zero, then 

there is a simple differencing step to remove trend (Box et al., 2008). 

ARIMAX model 
The ARIMAX model is an extension of the ARIMA model, where 

ARIMAX includes exogenous variables (Pankratz, 1991). The general 

ARIMAX model can be expressed as: 

         𝑦𝑡 =
𝛽

𝜙(𝐵)
𝑥𝑡 +

𝜃(𝐵)

𝜙(𝐵)
𝑍𝑡                         (2) 

where 𝑥𝑡 is a covariate at time 𝑡 and 𝛽 is its coefficient. 𝜙𝑝(𝐵) =

(1 − 𝜙1𝐵 − ⋯ − 𝜙𝑝𝐵𝑝) and 𝜃𝑞(𝐵) = (1 − 𝜃1𝐵 − ⋯ − 𝜃𝑞𝐵𝑞). 

GARCH model 
The GARCH model can be expressed as follows: 

ln (
𝐶𝑡

𝐶𝑡−1
) = 𝜇 + 𝜀𝑡                (3) 

𝑣𝑡 = 𝜔 + 𝛽𝑣𝑡−1 + 𝑢𝑡−1                              (4) 

where 𝐶𝑡 is the time-𝑡 of the “crude oil”, 𝑣𝑡 = 𝜎𝑡
2 is the variance, 

and 𝜀𝑡 = 𝜎𝑡𝑧𝑡 is the innovation for date 𝑡. Here, 𝑧𝑡 is either a standard 

normal variable or the empirical random variable with a mean of zero 

and a variance of one. For GARCH(1,1), 𝑢𝑡 = 𝛼𝜀𝑡
2 (Bollerslev, 1986). 

Fast ensemble empirical mode decomposition (FEEMD) 
model  

Empirical mode decomposition (EMD) 
In the theory of EMD, any series 𝑥(𝑡) can be decomposed using the 

following equation (Huang et al, 1998): 

𝑥(𝑡) = ∑ 𝐼𝑀𝐹𝑖(𝑡) + 𝑅𝑛(𝑡)𝑛
𝑖=1

            (5) 

where {𝐼𝑀𝐹𝑖(𝑡)}, (𝑖 = 1,2, ⋯ , 𝑛) are the Intrinsic Mode Function 

(IMF) and {𝑅𝑛(𝑡)} is the residue. Basically, the computational steps of 

EMD are as follows: 

Step 1: Identify all the local extremes of the raw series {𝑥(𝑡)}. 

Step 2: Connect all the local maxima and the local minima by two 

cubic splines to generate the corresponding upper envelop series 
{𝑥𝑢(𝑡)} and down envelop series {𝑥𝑑(𝑡)}, respectively. 

Step 3: Calculate the mean envelop series {𝑥𝑚𝑒𝑎𝑛(𝑡)} as: 

𝑥𝑚𝑒𝑎𝑛(𝑡) =
𝑥𝑢(𝑡)+𝑥𝑑(𝑡)

2
            (6) 

Step 4: Execute the extracting computation as: 

𝑍(𝑡) = 𝑥(𝑡) − 𝑥𝑚𝑒𝑎𝑛(𝑡)               (7) 

Step 5: Examine whether the extracted series {𝑍(𝑡)} is an IMF 

component; if yes, set 𝐼𝑀𝐹(𝑡) = 𝑍(𝑡) and replace the series {𝑥(𝑡)}
with the residual 𝑟(𝑡) = 𝑥(𝑡) − 𝐼𝑀𝐹(𝑡); if no, replace the series 
{𝑥(𝑡)} with the extracted series {𝑍(𝑡)} and repeat Step 2 to Step 4 

until the following terminating threshold is reached: 

𝜍𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 = ∑
[𝑍𝑗−1(𝑡)−𝑍𝑗(𝑡)]

2

[𝑍𝑗−1(𝑡)]
2 ≤ 𝛿𝑚

𝑡=1
            (8) 

where 𝑚 is the length of the data in the original series {𝑥(𝑡)}, δ is 

the terminating threshold, and 𝑗 is the number of the iterative 

computation. Basically, the terminating threshold value falls into 

the range of [0.2, 0.3]. 

Step 6: The procedure in Step 1 to Step 5 are repeated until all the 

IMFs have been obtained. 

Ensemble empirical mode decomposition (EEMD) 
The EEMD algorithm added different realizations of white noise 

series to the original series 𝑥𝑡, then adopted the standard EMD 

procedures to obtain the IMFs (Wu and Huang, 2009). The 

computational steps of the EEMD are given as follows: 

Step 1: Calculate 𝑥𝑘(𝑡) = 𝑥(𝑡) + 𝜔𝑘(𝑡), where {𝜔𝑘(𝑡)}, (𝑘 =
1,2,3, ⋯ , 𝑁) are the different realizations of white Gaussian noise 

series, and 𝑁 is the number of times to add the noise series inside the 

original series 𝑥(𝑡). 

Step 2: Decompose the series {𝑥𝑘(𝑡)}, (𝑘 = 1,2,3, ⋯ , 𝑁) by 

executing the standard EMD to obtain their corresponding IMF modes 

{𝐼𝑀𝐹𝑚
𝑘(𝑡)}, (𝑚 = 1,2,3, ⋯ , 𝑀), where 𝑀 is the number of decomposed 

IMF modes in the 𝑘 round. 

http://www.foxitsoftware.com/shopping
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Step 3: Compute the average of the corresponding series {𝐼𝑀𝐹𝑚
𝑘(𝑡)}

as: 

𝐼𝑀𝐹̅̅ ̅̅ ̅̅
𝑚(𝑡) =

1

𝑁
∑ 𝐼𝑀𝐹𝑚

𝑘(𝑡)𝑁
𝑘=1                (9) 

Step 4: Repeat the above averaging procedure to complete the 

whole EEMD decomposition. The original signal series 𝑥(𝑡) will be 

formatted as below: 

𝑥(𝑡) = ∑ 𝐼𝑀𝐹̅̅ ̅̅ ̅̅
𝑚(𝑡) + 𝑟𝑝(𝑡)

𝑝
𝑚=1           (10) 

where {𝐼𝑀𝐹̅̅ ̅̅ ̅̅
𝑚(𝑡)}, (𝑚 = 1,2, ⋯ , 𝑝) are the EEMD decomposed 

IMFs, {𝑟𝑚(𝑡)} is the corresponding residue, and 𝑝 is the number of the 

final EEMD-based IMFs. 

This paper proposed forecasting via the FEEMD method (Liu et al, 

2015). The steps to achieve the FEEMD method are as follows: 

Step 1: Follow the steps in building the EEMD algorithm. Set the 

final number of IMF, which is 𝑝 = 1; hence during EEMD sifting 

process, it will give 2 IMFs, which are the first IMF and a residue 

(IMF2). 

Step 2: Compare the MAPE of the residue (IMF2) with the actual 

data. 

Step 3: Forecast the residue (IMF2). 

Mean average percentage error (MAPE)  
To investigate the performance of the proposed model, MAPE was 

used as the error performance criterion. The equation for calculating 

MAPE is as follows: 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝐴𝑡−�̂�𝑡

𝐴𝑡
|𝑁

𝑡=1 𝑋100            (11) 

where 𝐴𝑡 is the actual data, �̂�𝑡 is the forecasted data, and 𝑁 is the 

number of samples in the data series. 

CRUDE OIL AND CONDENSATES DATA SERIES 

          Fig. 1 shows the monthly time series plot for crude oil and 

condensates and the Tapis-blend oil prices from January 2002 to 

February 2015. The time series plot for crude oil and condensates 

showed numerous changing turning points, volatility, and fluctuations 

in the series. It also showed spikes (red oval) during March 2006 and 

March 2011. The crude oil and condensates demand showed a 

decreasing pattern after several months and continued decreasing 

throughout the years. As for the Tapis oil price, it was stable in the 

beginning and suddenly decreased after a promising increment in July 

2008. However, the prices recovered from the decrement after a few 

months and gradually became stable at the beginning of the year. 

FORECASTING RESULTS 

        For the forecasting process, we implemented ARIMA, ARIMAX, 

GARCH, and FEEMD procedures in modelling and forecasting crude 

oil and condensates data series.  

ARIMA, ARIMAX, and GARCH modelling  
        For ARIMA and ARIMAX models, we differenced the crude oil 

and condensates and Tapis-blend oil prices (𝑑 = 1) to make the data 

stationary and then the ARIMA model was built using Minitab software 

and ARIMAX model using SAS software. Fig. 2 shows the ACF and 

PACF for crude oil and condensates and Tapis-blend oil prices after the 

differencing process while Fig. 3 shows the stationary series 

        The model that gave the best MAPE for the crude oil and 

condensates data series was ARIMA (1,1,0) while the best model 

chosen for covariates exogenous variable was ARIMAX (1,2,1). 

To compute the GARCH model, we used Microsoft Excel 2010 and 

following GARCH methodology, the values for α, β, and γ were 

generated directly using Excel 2010 after we maximized the likelihood 

function. The final value for 𝛼 = 0, 𝛽 = 0.0688, and 𝛾 = 0.0004. 

FEEMD modelling  
     After we implemented FEEMD algorithm using Matlab, with 0.3 as 

the standard deviation for the stopping criterion, Fig. 4 depicts the first 

and second IMFs for crude oil and condensates data series 

      The second IMF was compared with the actual data to forecast the 

crude oil and condensates. For the first IMF, it showed a very high 

frequency while the second IMF exhibited a smooth trend of the crude 

oil and condensates data. Various researchers found that the frequency 

of the first IMF may not be quite useful because its high peak may give 

low forecast accuracy (Liu et al, 2015). Therefore, in this study, we 

eliminated the first IMF and only used the second IMF in the 

forecasting process using FEEMD. We also chose only one iterating 

process for IMF in order to achieve the simplest forecasting steps and 

save time for the forecasting process, while still giving highly precise 

forecasts. 

Forecast results 
     Table 1 shows the MAPE for crude oil and condensates data series 

using ARIMA, ARIMAX, GARCH, and FEEMD models. The data was 

divided into two, which are in-sample forecast (152 data points) and 

out-sample forecast (18 data points). 

Table 1  In-sample and out-sample forecasts for crude oil and 
condensates data series using ARIMA, ARIMAX, GARCH, and FEEMD 
models. 

Methods 

MAPE (%) 

In-sample 

Forecast 

Out-sample 

Forecast 

ARIMA 2.8298 4.5030 

ARIMAX 3.0289 4.1600 

GARCH 3.0361 4.0888 

FEEMD 1.4987 1.8922 

      Fig. 5 and Fig. 6 demonstrate the time series plot for in-sample and 

out-sample forecasts of the crude oil and condensates data using 

ARIMA, ARIMAX, GARCH, and FEEMD models. 

      From Table 1, Fig. 5, and Fig. 6, FEEMD gave the highest MAPE 

compared to the other methods. The least precise in-sample forecast of 

the crude oil and condensates data series was by the GARCH model, 

followed by ARIMAX model, then ARIMA model. For the out-sample 

forecast, the least precise model was the ARIMA model, followed by 

ARIMAX model and then GARCH model. For the in-sample forecast, 

GARCH model gave the lowest MAPE because the spikes and 

volatility of the in-sample crude oil and condensates data series were 

deviated the largest from the actual data, thus affecting the GARCH 

model’s performance. In comparing between the ARIMA and 

ARIMAX models for in-sample forecast, ARIMA gave better MAPE 

than the ARIMAX model. This is because the ARIMAX forecasting 

model was based on the exogenous variable that can fill in the spikes in 

the series. Based on the Tapis-blend oil prices data series, it showed a 

slightly random data pattern with not too many spikes in the Tapis-

blend oil prices data series, hence giving low forecast accuracy. 

For the FEEMD model, it gave the highest MAPE because the 

second IMF smoothed the crude oil and condensates data series. 

However, for out-sample forecast of crude oil condensates using 

FEEMD (see Fig. 6), the first eleven observations did follow the actual 

data series but the 12th to 18th observations of the second IMF just 

became smooth and did not follow the spikes of the data. 

http://www.foxitsoftware.com/shopping
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Fig. 1  Time series plot for crude oil and condensates (‘’000bpd) and Tapis-blend oil prices (USD/b) from January 2002 to February 2015. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  ACF and PACF for crude oil and condensates and Tapis-blend oil prices after 𝑑 = 1.
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Fig. 3 Stationary series of crude oil and condensates and Tapis-blend oil prices after 𝑑 = 1  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4 First and second IMFs for crude oil and condensates data series. 
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Fig. 5  Crude oil and condensates in-sample forecast with ARIMA, ARIMAX, GARCH, and FEEMD models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6   Crude oil and condensates out-sample forecast with GARCH, and FEEMD models.
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CONCLUSIONS 

This paper has presented a novel forecasting method of crude oil 

and condensates based on the FEEMD method. The proposed 

decomposed and ensemble FEEMD method was compared with 

traditional statistical methods of ARIMA, ARIMAX and GARCH. 

Through FEEMD, crude oil and condensates data series were 

decomposed into  

two IMFs: the first IMF was the high-frequency crude oil and 

condensates data and the second IMF was the smooth trend of the crude 

oil and condensates data series. The second IMF of the crude oil and 

condensates data series was compared with the actual data. The MAPE 

of the proposed FEEMD model gave more precise forecast accuracy as 

compared to the other methods while reducing the trial-and-error 

process in forecasting that is common in other traditional statistical 

models, thus saving a lot of time. 
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