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Abstract 

Particulate matter with diameter less than 10µm (PM10) data usually exhibit different variations as they 
include normal days and pollution days. This paper applied quantile regression (QR) technique to 
inspect the changing relationship between predictor variables and PM10 concentrations at Petaling 
Jaya monitoring station in the year 2014 over different PM10 distributions. For comparative purpose, 
multiple linear regression (MLR) using ordinary least squares (OLS) estimation approach was also 
performed. The QR analysis results showed that the interrelationship between predictor variables and 
PM10 was not consistent across the PM10 quantile distributions and hence, proved discordancy with 
MLR estimates. The lagged PM10 concentration was the only important factor throughout the quantile 
distributions of PM10. It was found that the effects of lagged PM10, temperature, carbon monoxide (CO) 
increased from low to high quantile distributions, while the effects of lagged humidity, east-west wind 
component, wind speed and nitrogen monoxide (NO) showed the otherwise patterns. The lagged NO 
associated significantly with PM10 at low quantiles, whereas the lagged temperature and CO 
associated significantly at high quantiles only. Lagged humidity, east-west wind component and wind 
speed correlated significantly and negatively with PM10 at low and middle quantiles. Ozone (O3), 
however, had effect of changing nature from positive association at low PM10 distributions to negative 
association at high levels. Thus, QR is helpful to provide a more complete description of predictor 
variable effects on PM10 at different distributions, and may assist in PM10 management especially 
during haze periods.  
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INTRODUCTION 

In Malaysia, especially in Klang Valley region, particulate matter 

with diameter less than 10µm (PM10) has been recognized as one of the 

major air pollutants (Liew et al., 2011). PM10 is an air pollutant which 

is a mixture of solid particles and liquid droplets exists in atmosphere. 

It is a larger group of coarse particle pollutant which comprises the fine 

particles (PM2.5) and ultrafine particles (PM0.1) (Anderson et al., 2012). 

PM10 has long been the subject of researches due to its adverse health 

impacts. PM10 has found to be linked to both short-term and long-term 

health effects. The coarse particles can deposit in upper respiratory 

airways, and fine particles can penetrate even deeper into smaller 

airways and alveoli. This will bring about respiratory, lung and heart 

diseases (Peng et al., 2008). Studies have revealed that short-term 

exposure to PM10 was predominantly correlated to cardiovascular 

morbidity (Anderson et al., 2012). Furthermore, PM10 also provoked 

asthma and lung diseases while increasing hospital admissions. On the 

other hand, long-term exposure was associated with mortality from 

cardiopulmonary problems (Anderson et al., 2012). In addition, 

exposure of pregnant women to large amount of PM10 from vehicular 

emissions also increased the risk of premature defects (Vinceti et al., 

2016). Vulnerable population to PM10 pollution includes the elders, 

children and patients with lung and heart illnesses in which their health 

effects may be more serious (Anderson et al., 2012).  

In the awareness of the importance to control the air quality for the 

public interest, Malaysia Department of Environment (DOE) has 

promulgated the Air Pollution Index (API) in year 1996 to regulate five 

types of main air pollutants in which PM10 is one among them. There 

are six categories in API indicating the air quality status as shown in 

Table 1 (DOE, 2000). 

Table 1  Categorization of API. 

API Air Quality Status 

0-50

51-100 

101-200 

201-300 

>300 

>500 

Good 

Moderate 

Unhealthy 

Very Unhealthy 

Hazardous 

Emergency 

In order to monitor the concentrations of air pollutants, 52 

continuous air monitoring stations were built at strategic locations 

throughout Peninsular Malaysia, Sabah and Sarawak (DOE, 2015). 

Referring to the Recommended Malaysia Air Quality Guidelines 

(RMAQG), the 24-hour and one-year averages of PM10 concentrations 

should be maintained below 150µg m-3 and 50µg m-3, respectively. 

When the daily average PM10 concentration exceeds 150µg m-3, it 

reaches the unhealthy stage in API (DOE, 2000).  

PM10 is well known for its uniqueness and complexity for which it 

is not only emitted directly from an emission source, but is also formed 
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through a series of chemical reactions between pollutant gases or 

precursor gases such as nitrogen oxides (NOx) and sulphur dioxide 

(SO2). The natural sources of PM10 include volcanoes and forest fires, 

while the man-made sources involve industries, traffic, agriculture, 

construction and combustion (Bhattacharjee et al., 1999). Moreover, 

PM10 concentration is also influenced by meteorological parameters 

such as temperature, humidity, wind speed and direction (Liew et al., 

2011; Dominick et al., 2012). Hence, understanding of the parts played 

by different gaseous pollutants and meteorological variables in PM10

variation is crucial for directive countermeasures.  

A vast numbers of studies have been conducted to analyse the 

interrelationship between PM10 and its explanatory variables in 

Malaysia. For example, the factors correlated to daily mean PM10

during summer (May to August) in Klang Valley area has been 

examined by using multiple linear regression (MLR) (Liew et al., 

2011). The local meteorological parameters including temperature, 

humidity and wind speed were found to be correlated significantly to 

PM10 variations. Furthermore, synoptic meteorological factors and 

foreign hotspot counts were also important factors correlated to PM10, 

but local hotspot counts had little impact. MLR and Pearson correlation 

coefficient were also employed to analyse the PM10 concentrations at 

Kuching, Shah Alam and Johor Bahru monitoring stations (Dominick 

et al., 2012). The results showed that PM10 correlated negatively with 

humidity and wind speed, while correlated positively with temperature. 

In Negeri Sembilan, the PM10 concentrations were modelled by 

combining principal component analysis (PCA) with MLR and feed-

forward back-propagation (FFBP) neural network models (Ul-Saufie et 

al., 2013). The variables considered in modelling included lagged 

PM10, meteorology and air pollutants. The daily PM10 concentrations in 

Klang Valley were studied by performing anomaly detection (Shaadan 

et al., 2015). The findings demonstrated monsoon and weekend effects. 

There were more extreme PM10 concentrations occurred during 

Southwest and Northeast monsoons and during weekdays. In addition, 

wind speed was shown to be positively correlated to extreme PM10. 

Most of these studies modelled and analysed the PM10 using mean 

distribution. However, it is more meaningful to investigate the effects 

of explanatory variables at the high quantile distributions of PM10

which portraying the high anomalies, considering the health 

implications (Yu et al., 2003).  

There have been expanding literatures regarding pollution research 

showing the usefulness of quantile regression (QR) in describing a 

more thorough picture of varying effects of explanatory variables on 

PM10 or other pollutants’ distributions as well as modelling the 

nonlinear relationships. For instances, QR was used to study the ozone 

(O3) distribution in Athens (Baur et al., 2004). It was found that the 

effects of explanatory variables differ over the O3 quantile distributions 

and that QR was capable to delineate the nonlinear relationship between 

O3 and the explanatory variables. Furthermore, the prediction 

performance of QR was compared to MLR, and it was confirmed that 

QR was better for predicting the future prediction of PM10

concentrations in Seberang Perai, Malaysia (Ul-Saufie et al., 2012). 

The impacts of lagged PM10, meteorological and pollutants’ variables 

on PM10 concentrations in Makkah were also investigated by using QR 

(Munir, 2016). The various impacts of meteorological variables on O3

levels in Hong Kong were evaluated by applying QR and MLR 

techniques, and the ability of QR dealing with changing effects of 

meteorology at various percentiles was proven (Zhao et al., 2016).  

This study aims to analyse, in a detailed way, the relationship 

between PM10 and predictor variables in Petaling Jaya which is one of 

the locations experiencing high PM10 levels, using data in year 2014 by 

applying QR. However, the prediction is not in the scope of this paper. 

This paper is arranged as follows. The subsequent section presents the 

data used in this study. MLR using ordinary least squares (OLS) 

estimation method and QR models will be briefly explained in the 

following section. The next section presents the results and discusses 

their discrepancy between MLR and QR approaches. This paper is then 

ended with conclusion. 

MATERIALS AND METHODS 

The data 
Petaling Jaya air monitoring station is one of the monitoring 

stations in highly populated Klang Valley area, situated in an industrial 

area. The dataset of daily average concentrations of air pollutants 

(PM10, nitrogen dioxide (NO2), SO2, carbon monoxide (CO), O3 and 

nitrogen monoxide (NO)) and meteorological variables (temperature, 

humidity, wind speed and direction) from 1 January 2014 to 17 

December 2014 was taken from Malaysia DOE. The dataset had small 

percentages of missing values ranging from 0.29% to 1.71%. These 

missing data were estimated by linear interpolation. Inspired by 

previous works (Baur et al., 2004; Siwek & Osowski, 2012), the wind 

direction was represented by two perpendicular wind components, 

namely east-west (wx) and north-south (wy) wind components.  

As shown in the histogram in Fig. 1, the PM10 data is skewed to the 

right. Hence, the logarithmic PM10 (lnPM10) series was used in this 

study since this transformation produced series reasonably close to 

normal distribution. 

Fig. 1  Histogram of PM10 concentrations at Petaling Jaya monitoring 
station. 

Besides studying the relationship between PM10 and the predictor 

variables, this study also hopes to provide some useful information to 

PM10 forecasting model development. Thus, the predictor variables for 

modelling the MLR and QR would, thereafter, be the lagged (one-

previous-day) pollutants and meteorology mentioned above. 

Furthermore, the lagged lnPM10 concentration was also considered to 

account for the high autocorrelation (0.71) of lnPM10 data (Baur et al., 

2004; Munir, 2016). 

Multiple linear regression (MLR) with ordinary least 
squares (OLS) estimation method 

MLR model with OLS estimation method, also known as OLS 

model, is a popular statistical tool for analysing the relationship 

between response and predictor variables in various fields. It is a linear 

model expressing the response variable as a function of predictor 

variables: 

0 1 1 , 1,2, ,i i p ip iY X X i n         (1) 

where Y is the response variable (i.e. lnPM10 in our case), {

, 1, ,kX k p } are p predictor variables, and { , 0,1, ,k k p  } are 

(p + 1) regression coefficients, in which βk measures the change in mean 

of Y in one unit change of predictor Xk while other predictor variables 

are held constant. The error term  is assumed to be independent and 

identically distributed (i.i.d) with Gaussian distribution. The estimation 

of conditional expectation function  
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or equivalently, the regression coefficients is obtained by minimizing 
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where Yi is the observed response variable Y, ˆ
iY is the fitted value of Y 

and Y is the sample mean of Y. R2 spans from zero to one. Higher value 

means better goodness of fit of the model. 

Quantile regression (QR) model 
QR, as the name suggested, estimates the conditional quantile 

function, instead of the conditional mean function (Koenker & Hallock, 

2001). This method was first advanced by Koenker and Bassett in 1978 

(Koenker & Bassett, 1978). A linear QR model takes the form of 

0 1 1( ) ( ) ( ) ( ),

(0,1), 1, ,

i i p ip iY X X

i n

       



    

 
(5) 

where Y is the response variable, { , 1, ,kX k p } are p predictor 

variables, and { ( ), 0,1, ,k k p   } are (p + 1) quantile coefficients 

at the τ-th quantile. Here, the βk(τ) quantifies the change in the τ-th 

quantile of Y due to the one unit marginal change in predictor Xk. In this 

way, QR generates a set of coefficients and equations at different 

quantiles. Thus, QR is able to provide a more holistic picture of the 

effects of predictors at various PM10 distributions. The error terms are 

not imposed by any distributional assumption or homoscedasticity 

condition. As such, QR is more robust comparing to MLR. The τ-th 

conditional quantile function is then given as  
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   X β (6) 

Differing from the OLS estimation method, QR minimizes a sum of 

asymmetrically weighted absolute differences by simplex method to 

estimate the quantile coefficients: 
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where  ( ) ( 0)z z I z    and I is the indicator function. The xy-

pair or design matrix bootstrap method was used to estimate the 

standard errors since it holds under more general heteroscedasticity 

situation (Koenker, 2005). 

In order to evaluate the goodness of fit of QR model, pseudo R2

measure ( 1R
) which is analogous to R2 in MLR model was used 

(Koenker & Machado, 1999). However, dislike R2 which assesses the 

global goodness of fit, 1R
measures the local goodness of fit of QR 

model at the τ-th quantile. It is computed by 
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(8) 

where ˆ
iY is the fitted value of Y for the τ-th QR model and Yq is the 

sample quantile of Y estimated by the restricted QR model including 

intercept only. 1R
is also ranged [0,1], and the value closer to one 

indicates better goodness of fit of the QR model. 

The MLR and QR methods were implemented by R software. 

RESULTS AND DISCUSSION 

Initially, MLR and QR were estimated by using all predictor 

variables. For QR model, the quantile coefficients were estimated at 

quantiles from 0.05 to 0.95 with increment of 0.05. Next, the predictors 

which were insignificant at 10% significance level for both regressions 

were removed to fit a simpler model. The bootstrap method resampled 

randomly. By a few times of experiments, it was observed that the 

significance of variables varied within 5% and 10% significance level. 

Hence, 10% significance level was chosen to obtain a more consistent 

result. For the same reason, 200 replicates were selected for 

bootstrapping. After removal of insignificant variables, the regression 

models were left with lagged lnPM10, temperature, humidity, east-west 

wind component, wind speed, CO, O3 and NO. The variance inflation 

factor (VIF) values for the included predictors are all below 10 (ranged 

from 1.30 to 4.50), indicating no serious multicollinearity among them 

(Zhao et al., 2016). Fig. 2 summarizes the estimated quantile 

coefficients as well as the MLR estimates. The dots with grey-shaded 

area are the estimated quantile coefficients with the 90% bootstrap 

confidence interval. The red horizontal line is the MLR estimate, with 

two parallel dashed lines representing the 90% confidence interval. The 

black horizontal line indicates zero value. 

Fig. 2  Quantile regression from 0.05 to 0.95 quantiles. 

From Fig. 2, it can be seen that the MLR estimates show that there 

are only three significant predictors, namely, the lagged PM10

concentration, humidity and wind speed, correlated to PM10

concentration as their confidence intervals do not include zero value. 

The lagged PM10 concentration shows positive correlation, as expected, 

since the previous-day concentration can linger in atmosphere and 
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contribute to the next-day concentration (Munir, 2016). On the other 

hand, the lagged humidity and wind speed correlate negatively to PM10

concentration. This is because high humidity is usually related to high 

rainfall amounts which dilute the PM10 concentrations in the 

atmosphere (Dominick et al., 2012). Negative coefficient of wind speed 

indicates that wind speed acted as dispersing agent of PM10

concentrations in the region. However, there have been mixing results 

with respect to the nature of association between wind speed and PM10

(Shaharuddin et al., 2008). Therefore, its effect is worth investigates 

more deeply by using QR.  

On the other side, QR offers richer information regarding the 

effects of predictors. Similar to the MLR estimate, the lagged PM10 is 

positively and significantly associated with PM10 at all quantiles, 

suggesting the persistence effect of previous-day PM10 concentration. 

Moreover, the positive persistence effect increases as the quantile 

increases. This explains that the previous-day PM10 concentration had 

larger effect on the next-day concentration at extreme PM10 distribution 

compared to low level distributions. 

The lagged temperature is significant only at 0.90 quantile with 

positive association. This can be explained from two aspects. The 

elevation in temperature promoted the formation of secondary PM10

(Munir, 2016). Furthermore, it is also well known that PM10 pollution 

in Malaysia was linked closely to the peatland burning or forest fires 

from neighbouring country (Shaharuddin et al., 2008). Hence, at the 

extreme PM10 values, temperature tended to show its strong effect 

where it encouraged the burning activities in wide scale. 

The effect of lagged humidity is negative which is same as that in 

the MLR model. Nonetheless, the magnitudes of the effect are not 

constant but decreasing across quantiles and are significant from 0.05 

to 0.80 quantiles. This might tell that humidity did not play a crucial 

role during PM10 peaks. 

The lagged east-west wind component is significant at 0.05 and 

0.50 quantiles with negative association with PM10 concentrations. The 

negative coefficients may imply the eastern wind that brought about the 

PM10 concentrations. 

The lagged wind speed shows significant impact from low to 

middle quantiles. Like humidity, it also has declining effect on PM10

when passing through towards high concentration distribution. The 

wind speed is negatively associated with PM10 except at 0.95 quantile. 

Hence, it can be said that wind speed had the clearing effect on PM10

concentrations in normal days. At high levels, the positive though 

insignificant correlation means that the wind accumulated PM10

concentrations. This may due to the fact that the wind blew the PM10

from outside the country, suggesting that the PM10 pollution was 

regional during peak period. This is in agreement with the findings in 

previous studies (Shaharuddin et al., 2008; Shaadan et al., 2015). 

Although the air pollutants are anticipated to have positive impacts 

on PM10, lagged CO demonstrates significant negative impact at high 

PM10 distributions (τ = 0.90, 0.95). The lagged O3 exhibits complex 

relationship with PM10 since its effect changes from positive to negative 

when moving across quantiles. Similar pattern also occurs on lagged 

NO. The lagged O3 shows significant effect at two extreme quantile 

distributions with opposite signs. The positive coefficients of O3 at low 

quantiles may be due to the common precursor gases such as NOx and 

volatile organic compounds (VOCs) (Bhattacharjee et al., 1999; 

Rahman et al., 2015). The lagged NO shows positive and significant 

effect at low quantile distributions. This is logical as NO is one of the 

constituents of NOx. The increase in previous-day NO concentration 

tends to raise the next-day PM10 concentration. On the other hand, the 

negative coefficients of the lagged CO and O3 at high PM10 distribution 

may suggest the different emission origins with PM10. CO and O3 were 

predominantly attributed to vehicular emissions (Rahman et al., 2015), 

while high PM10 concentrations were mostly because of the biomass 

burning from outside the country.  

To conclude, the lagged PM10 concentration is the only predictor 

which exhibits significant effect at all PM10 levels. The lagged 

humidity, east-west wind component, wind speed and NO are 

significant at low and/or middle quantiles, whereas lagged temperature 

and CO demonstrates their dominant effects merely at high PM10 levels. 

The lagged O3 shows significant impact at both tails of PM10

distributions. The QR has shown its ability to uncover the 

heterogeneous effects of various predictors throughout the quantiles. 

Particularly, the MLR approach fails to detect the significant impacts 

of lagged temperature, east-west wind component and air pollutants on 

PM10 concentrations since they are significant at either ends of the PM10

distributions only. Therefore, QR is competent to contribute deeper 

insights on the effects of predictors.  

Furthermore, 1R
also proved that the goodness of fit of the model 

varies over different quantiles. Fig. 3 presents the 1R
of QR model at 

different quantiles.  

Fig. 3  1R
of the QR model for quantiles from 0.05 to 0.95 

The values of 1R
drop from 0.29 at 0.05 quantile to 0.28 at 0.15 

quantile, and then steadily grow up to 0.46 at 0.95 quantile. This 

suggests that the PM10 distributions at high levels are better explained 

by the model compared to the lower quantiles. This might suggest that 

the lagged air pollutants and meteorology played larger role in PM10

variation during haze period than any other time. 

CONCLUSION 

This paper studied the effects of lagged pollutants and meteorology 

on the concentration of PM10. The QR was able to unveil the 

heterogeneous effects of predictors at different PM10 distribution levels 

which were otherwise hidden by the MLR method. For example, the 

lagged PM10 was not only having positive and significant association 

with the next-day PM10 concentration, but its strength rose as the 

quantile increases. Furthermore, MLR estimates indicated that the 

lagged temperature, east-west wind component and air pollutants were 

not significant, but QR showed significant effects at either high or low 

ends of distributions which the central tendency MLR estimates unable 

to detect. Moreover, the goodness of fit showed that the model 

explained the PM10 distribution better at high quantiles than at low 

quantiles.  

In conclusion, QR is a more favourable comprehensive tool than 

MLR as it renders deeper understanding of the effects of predictors at 

various distribution levels of PM10. It is also more flexible to be applied 

to non-Gaussian or heteroscedastic data. In the meantime, the results 

are readily to be interpreted. Finally, it is hoped that the analysis from 

this study can help in air quality control during haze episodes as well 

as developing forecasting model.  
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