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Abstract 
 
The interconnection topology of a parallel or distributed network is pivotal in ensuring good system 
performance. It can be modelled by a graph, where its edges represent the links between processor 
nodes represented by vertices. One such graph model that has gained attention by researchers since 
its founding is the chordal ring, based on an undirected circulant graph. This paper discusses the 

degree six 3-modified chordal ring, 𝐶𝐻𝑅6𝑜3, and presents its graph theoretical properties of symmetry 

and Hamiltonicity. 𝐶𝐻𝑅6𝑜3 is shown to be asymmetric, and can be decomposed into similar subgraphs, 
each consisting of only one type of node in its class if ring links are ignored. These properties aid both 
the development of a routing scheme and determining lower bounds for its chromatic number. 

Conditions for the existence of a Hamiltonian Circuit within 𝐶𝐻𝑅6𝑜3 are also discussed. The existence 
of a Hamiltonian Circuit within a network simplifies parallel processing as the processors can be 

arranged to work on a task in a linear array. An Eulerian Circuit was shown to exist in 𝐶𝐻𝑅6𝑜3. The 
existence of an Eulerian Circuit plays a role in routing in optical networks. 
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INTRODUCTION 
 

In this age of computing, more and more large networks are 

designed as parallel or distributive networks. These networks enable 

the distribution of a task among multiple processor or computing units 

respectively, such that parts of the task are worked on simultaneously 

by the processors, thereby reducing system latency. However, the 

overall performance of the network is greatly attributed to its 

interconnection topology, which dictates how the processor units are 

connected to each other, and thus how easily it is for messages to travel 

between them. 

One network topology suited for parallel and distributive networks 

is the chordal ring, proposed by Arden and Lee in 1981. The chordal 

ring is modelled after a homogenous undirected circulant graph. Its 

degree refers to the number of links each node has. Essentially halfway 

between the ring topology and the complete graph, the chordal ring has 

the desired properties of both. It is more fault tolerant than a ring due 

to having multiple paths for which a message from a source node can 

reach its destination node, and thus, also has lower network diameters 

than the ring. The application of chordal ring topologies is also more 

feasible in large networks compared complete graphs. Though, 

complete graphs have low diameters, the number of links increases 

exponentially with the number of nodes. This increases the occurrence 

of bottlenecks when multiple messages simultaneously reach a node, 

and also incurs a higher cost. 

Many researchers have focused on improving and proposing new 

chordal ring topologies throughout the years since its founding in 1981 

due to its favourable parameters of high connectivity, low 

communication delays, fault tolerance, and symmetry. One such 

improvement was increasing the degree of the topology, yielding the 

degree four traditional chordal ring, 𝐶𝐻𝑅4 [2]; the degree six 

traditional chordal ring, 𝐶𝐻𝑅6 [3]; and the degree five traditional 

chordal ring, 𝐶𝐻𝑅5 [4]. Altering the connectivity of the chordal ring, 

resulting in different types of nodes in classes was another way further 

improving the aforementioned favourable parameters. Examples of 

these ‘modified’ chordal rings were the degree six modified chordal 

ring, 𝐶𝐻𝑅𝑚6 [5] along with 𝐶𝐻𝑅6𝑚𝑎 and 𝐶𝐻𝑅6𝑚ℎ [6]; the modified 

chordal ring of degree three class, 𝐶𝑅𝑐3 [7]; the degree five modified 

chordal ring, 𝐶𝐻𝑅5_𝑘 [8]; and the degree four modified chordal ring, 

𝐶𝐻𝑅4𝑑 [9]. Over the years, the properties of the proposed chordal ring 

topologies such as symmetry [10] as well as Hamiltonicity and 

asymmetry [11] were also studied over the years, along with compact 

routing [12], optimum free-table routing [13], and broadcasting [14]. 

This paper introduces a new degree six chordal ring network 

topology, the optimised degree six 3-modified chordal ring, 𝐶𝐻𝑅6𝑜3 

and aims to discuss its properties of symmetry, Eulerity, and 

Hamiltonicity. The first part of the paper provides an introduction to 

chordal rings and their contributions as network models, the second part 

introduces the new degree six modified chordal ring, the third part 

discusses its graph theoretical properties, and the fourth part concludes 

the paper.  

 

THE OPTIMISED DEGREE SIX 3-MODIFIED CHORDAL RING, 

𝑪𝑯𝑹𝟔𝒐𝟑 
 

The degree six 3-modified chordal ring is defined as follows: 

Definition 1. The optimised degree six 3-modified chordal ring, 

𝐶𝐻𝑅6𝑜3, denoted as 𝐶𝐻𝑅6𝑜3(𝑁, 𝑠, ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6) is an 
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undirected circulant graph. The number of nodes, 𝑁 as well as all chord 

lengths ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, and ℎ6 must be divisible by 3. Every 3 nodes 

are grouped into a class. 

All the first nodes in the class, 𝑁3𝑖−3 (e.g. nodes 0,3,6, …) are 

connected together by chords +ℎ1(𝑚𝑜𝑑 𝑁), −ℎ1(𝑚𝑜𝑑 𝑁), 

+ℎ2(𝑚𝑜𝑑 𝑁), and −ℎ2(𝑚𝑜𝑑 𝑁). 

All the second nodes in the class, 𝑁3𝑖−2 (e.g. nodes 1,4,7, …) are 

connected together by chords +ℎ3(𝑚𝑜𝑑 𝑁), −ℎ3(𝑚𝑜𝑑 𝑁), 

+ℎ4(𝑚𝑜𝑑 𝑁), and −ℎ4(𝑚𝑜𝑑 𝑁). 

All the third nodes in the class, 𝑁3𝑖−1 (e.g. nodes 2,5,8, …) are 

connected together by chords +ℎ5(𝑚𝑜𝑑 𝑁), −ℎ5(𝑚𝑜𝑑 𝑁), 

+ℎ6(𝑚𝑜𝑑 𝑁), and −ℎ6(𝑚𝑜𝑑 𝑁), where 𝑖 = 0,1,2, …. Further 

conditions are that ℎ1 < ℎ2, ℎ3 < ℎ4, ℎ5 < ℎ6; and 3 ≤

ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6 <
𝑁

2
. An example of CHR6o3 is shown in Fig. 1. 

 

 
 

Fig. 1 𝐶𝐻𝑅6𝑜3(33,1,6,12,3,9,9,12) 

 

The optimal diameter of 𝐶𝐻𝑅6𝑜3 is given by, 

 

𝐷(𝐺) =
1

16
(17 − 16𝑆 + 8√−4𝑆2 −

109

64
+

1719

512 ∙ 𝑆
) 

 

(1) 

where, 

 

𝑆 = √
1

192
(𝑄 +

4852 − 576 ∙ 𝑁𝑑𝑜

𝑄
) −
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768
 

 

(2) 

and, 

 

𝑄3

= (435103 + 23544 ∙ 𝑁𝑑𝑜)

+ 8√(54388 + 2943 ∙ 𝑁𝑑𝑜)2 − (1213 − 144 ∙ 𝑁𝑑𝑜)3 

 

 

(3) 

 

The average optimal path length of 𝐶𝐻𝑅6𝑜3 for 𝐷(𝐺) > 2 is given by, 

 

 

𝑑𝑎𝑣𝑜 =
1

5
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≈
4
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(4) 

 

 

 

(5) 

 
In this model, the processor nodes of a network are represented by 

the vertices of the graph of 𝐶𝐻𝑅6𝑜3, and the links connecting them are 

represented by its edges. In application, each link in the model will be 

replaced by two links in opposite directions [12]. 

 
GRAPH THEORETICAL PROPERTIES OF 𝑪𝑯𝑹𝟔𝒐𝟑 
 

Compared to the degree six traditional chordal ring [3], 𝐶𝐻𝑅6𝑜3 is 

not symmetric. This means that 𝐶𝐻𝑅6𝑜3 does not look the same if 

viewed from different nodes due to different nodes in a class of 

𝐶𝐻𝑅6𝑜3 having connections of different lengths. According to [11] 

however, a small symmetry can be seen if nodes with the same types of 

links are grouped together. This, described as asymmetry, occurs when 

the chordal ring is neither node-symmetric nor link-symmetric. Node-

symmetry refers to every pair of source and destination nodes being 

similar.  

 

Theorem 1.  CHR6o3 is not node-symmetric. 

 

Proof: Table 1 shows the generalised source and destination nodes for 

CHR6o3. 

 
Table 1 Source Nodes and their Corresponding Destination Nodes 

 
Source 
Nodes 

Destination Nodes 

𝑁3𝑖−3 𝑁3𝑖−3±𝑠 𝑁3𝑖−3±ℎ1
 𝑁3𝑖−3±ℎ2

 

𝑁3𝑖−2 𝑁3𝑖−2±𝑠 𝑁3𝑖−2±ℎ3
 𝑁3𝑖−2±ℎ4

 

𝑁3𝑖−1 𝑁3𝑖−1±𝑠 𝑁3𝑖−1±ℎ5
 𝑁3𝑖−1±ℎ6

 

 Destination nodes 
with respect to source 

nodes which are 
similar in each class. 

Destination nodes with 
respect to source nodes 
which are not similar in 

each class. 

 

From the table, it can be seen that the connections of the nodes 

𝑁3𝑖−3 → 𝑁3𝑖−3±𝑠, 𝑁3𝑖−2 → 𝑁3𝑖−2±𝑠, and 𝑁3𝑖−1 → 𝑁3𝑖−1±𝑠 are similar. 

However, the connections 𝑁3𝑖−3 → 𝑁3𝑖−3±ℎ1
 and 𝑁3𝑖−3 → 𝑁3𝑖−3±ℎ2

 

are not similar with those of the second node in a class of 𝐶𝐻𝑅6𝑜3, 

𝑁3𝑖−2 → 𝑁3𝑖−2±ℎ3
 and 𝑁3𝑖−2 → 𝑁3𝑖−2±ℎ4

; and those of the third node 

in a class of 𝐶𝐻𝑅6𝑜3, 𝑁3𝑖−1 → 𝑁3𝑖−1±ℎ5
 and 𝑁3𝑖−1 → 𝑁3𝑖−1±ℎ6

. Thus, 

not every pair of source and destination nodes is similar. Link-

symmetry, on the other hand, refers to the similarity of every pair of 

links between source and destination nodes. 

 

Theorem 2.  𝐶𝐻𝑅6𝑜3 is not link-symmetric. 

 

Proof: Table 2 shows the links between source and destination nodes. 

𝑠, ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, and ℎ6 are elements of the set of links, 𝐻. 

 
Table 2 Source Nodes and the Links Leading to their Corresponding 
Destination Nodes 

 
Source 
Nodes 

Links to Corresponding Destination Nodes 
(Ring Links and Chords) 

𝑁3𝑖−3 ±𝑠 ±ℎ1 ±ℎ2 

𝑁3𝑖−2 ±𝑠 ±ℎ3 ±ℎ4 

𝑁3𝑖−1 ±𝑠 ±ℎ5 ±ℎ6 

 

For all source nodes, there exist an automorphism 𝜋 of the ring links 

of 𝐶𝐻𝑅6𝑜3 such that 𝜋(±𝑠) = ±𝑠. However, there are no similar 

automorphisms for the chord lengths: 𝜋(±ℎ1) = ±ℎ3, 𝜋(±ℎ1) =
±ℎ5, 𝜋(±ℎ3) = ±ℎ5, 𝜋(±ℎ2) = ±ℎ4, 𝜋(±ℎ2) = ±ℎ6, and 𝜋(±ℎ4) =
±ℎ6. Thus, all the chords linking the source nodes of every class to their 

destination nodes in 𝐶𝐻𝑅6𝑜3 are not similar, and 𝐶𝐻𝑅6𝑜3 is 

asymmetric.  

Another observation involving symmetry that can be made 

regarding 𝐶𝐻𝑅6𝑜3 is that all the same types of nodes in a class of 

𝐶𝐻𝑅6𝑜3 are all connected through the same chords. For example, node 

𝑁3𝑖−2 can only connect to other nodes, 𝑁3𝑗−2 through chords ℎ3 and 

ℎ4, where 𝑖, 𝑗 = 0,1,2, … and 𝑖 ≠ 𝑗. Connections to other types of nodes 

in a class of 𝐶𝐻𝑅6𝑜3 are achieved through ring links. Without ring 

links, the three different nodes in a class of 𝐶𝐻𝑅6𝑜3 will form disjoint 

subgraphs consisting of only one type of node in a class. Furthermore, 
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since all the chords ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, and ℎ6 are divisible by 3, all 

three different types of nodes in a class of 𝐶𝐻𝑅6𝑜3 has essentially the 

same types of chord connections. Symmetry and asymmetry are one of 

the advantages of implementing chordal rings as network 

interconnection toplogy models.  Since there are similar nodes, the 

complexity of routing and broadcasting can be reduced since the similar 

nodes utilise the same algorithms. 

A good measure of connectivity and robustness within a network 

besides bisection bandwidth is the existence of a Hamiltonian Circuit. 

A Hamiltonian Circuit in 𝐶𝐻𝑅6𝑜3 visits every node exactly once and 

returns to its source node. This also implies that links in a particular 

Hamiltonian Circuit isolated from 𝐶𝐻𝑅6𝑜3 are disjoint. Chordal rings 

may have multiple Hamiltonian Circuits, two by definition in the case 

of 𝐶𝐻𝑅4 [2] and three in the triple loop network of 𝐶𝐻𝑅6 [3]. This 

property makes chordal rings less succeptible to multiple link failures, 

since the Hamiltonian Circuit may still be maintained [15]. As long as 

a Hamiltonian Circuit exists in a network, there is still a path from any 

source node to any destination node for a message to travel, despite 

increased latency. 

 

Theorem 3. All chord combinations for any CHR6o3 subject to the 

definition have at least one Hamiltonian circuit. 

 

Proof: All the nodes and ring links of CHR6o3 form a regular graph of 

degree two whereby all nodes are connected to one another. 

 

Theorem 4. A Hamiltonian circuit of CHR6o3 cannot contain the 

following in its sequence of links 

a. {+𝑠, −𝑠} 

b. {−𝑠, +𝑠} 

c. {+ℎ1, −ℎ1} 

d. {−ℎ1, +ℎ1} 

e. {+ℎ2, −ℎ2} 

f. {−ℎ2, +ℎ2} 

g. {+ℎ3, −ℎ3} 

h. {−ℎ3, +ℎ3} 

i. {+ℎ4, −ℎ4} 

j. {−ℎ4, +ℎ4} 

k. {+ℎ5, −ℎ5} 

l. {−ℎ5, +ℎ5} 

m. {+ℎ6, −ℎ6} 

n. {−ℎ6, +ℎ6} 

 

Proof: The ‘snowflake’ geometrical representation in Fig. 2 shows the 

three different nodes in a class of 𝐶𝐻𝑅6𝑜3 represented by three 

different ‘snowflake’ models. It can be seen by following the direction 

of the dendrites, which represent the connectivity of nodes in 𝐶𝐻𝑅6𝑜3, 

that such link combinations cannot exist in a sequence within a 

Hamiltonian Circuit of 𝐶𝐻𝑅6𝑜3. Besides that, such chord combinations 

are not allowed in a Hamiltonian Circuit because they imply revisiting 

a node. 

 

Theorem 5. Any Hamiltonian circuit of CHR6o3 must contain some 

combination of ring links. 

 

Proof: It can be observed that all the same nodes of a class are 

connected by chords in Fig. 2. For example, a node 𝑁3𝑖−3 is connected 

to nodes, 𝑁3𝑖−3+ℎ1
, 𝑁3𝑖−3−ℎ1

, 𝑁3𝑖−3+ℎ2
, and 𝑁3𝑖−3−ℎ2

. The other 2 

nodes in the class, 𝑁3𝑖−2 and 𝑁3𝑖−1 will change in the same way as their 

‘snowflake’ models, as shown in Fig. 2, are identical but with different 

chords. Without any ring links, 𝐶𝐻𝑅6𝑜3 will be disconnected into 3 

node disjoint subgraphs, which cannot exist in a Hamiltonian circuit. 

The converse of a Hamiltonian Circuit in 𝐶𝐻𝑅6𝑜3 is the Eulerian 

Circuit. It is a simple path that passes through every link, instead of 

nodes, in 𝐶𝐻𝑅6𝑜3 exactly once and returns to its initial node. Since this 

path can visit a particular node multiple times, the conditions for its 

existence in 𝐶𝐻𝑅6𝑜3 are less complex than those of the existence of a 

Hamiltonian Circuit. The existence of an Eulerian Circuit can be 

determined by node degrees alone. If and only if all nodes in a graph 

network have even degrees, and if the sum of the degrees of all nodes 

is an even number, there exists an Eulerian Circuit. 

 

Theorem 6. 𝐶𝐻𝑅6𝑜3 contains at least one Eulerian Circuit. 

Proof: A graph must only have even degrees and the sum of the degrees 

of every node must be even to contain at least one Eulerian Circuit, as 

stated by Leonhard Euler in the Seven Bridges of Königsberg problem. 

𝐶𝐻𝑅6𝑜3 is a homogenous interconnection topology where all nodes 

have the same connectivity i.e. the same degree of 6, which implies it 

is modelled after a 6 −regular graph. There are no nodes with odd 

degrees, and the sum of all the degrees of all vertices is 6𝑁. 6𝑁 is 

always an even number regardless of whether the network size is even 

or odd. 

The concept of Eulerity plays several key roles in parallel 

processing as it maps out disjoint paths within a network. The ordering 

of logic gates in a network is optimised through Eulerity [16]. 

Furthermore, in the case where the same message is routed through an 

optical network through all-to-all routing, the message will be assigned 

the same wavelength and needs to travel through link-disjoint paths 

[17].  

 

 
 

Fig. 2 The ‘Snowflake’ Geometrical Representation of 𝐶𝐻𝑅6𝑜3 
 

 
CONCLUSIONS 
 

A new degree six modified chordal ring was introduced in this 

paper and some of its graph theoretical properties were discussed. The 

degree six 3-modified chordal ring, 𝐶𝐻𝑅6𝑜3 was shown to be 

asymmetric and conditions for the existence of a Hamiltonian Circuit 

within its networks were presented and justified. These properties are 

important in developing a routing scheme for 𝐶𝐻𝑅6𝑜3. An Eulerian 

Circuit was also shown to exist in 𝐶𝐻𝑅6𝑜3. Eulerity is important for 

network applications which require link-disjoint paths, such as optical 

routing of the same message. 
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