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Abstract Soil-based crop recommendation plays a critical role in precision agriculture, 

especially under increasing climate uncertainty and resource limitations. This study proposes a 

clustering-based framework that leverages unsupervised machine learning to group crops 

according to soil parameters. A labelled dataset of 2,201 soil samples covering 22 crop types was 

analysed to uncover patterns linking soil profiles with crop suitability. The results reveal clear 

distinctions among crop groups, with generalist crops like rice and maize appearing across 

multiple clusters, while crops such as apple and grape form tighter, more specific groupings. 

These insights highlight natural affinities between soil chemistry and crop behaviour, offering a 

practical, data-driven basis for region-specific crop planning and soil resource optimization. The 

study contributes toward scalable, interpretable decision tools for sustainable agriculture, 

particularly in environments where efficient land and input management are critical. Unlike prior 

studies that employ clustering generically, this work comparatively evaluates multiple 

unsupervised algorithms under agricultural conditions, integrating soil nutrient dynamics into 

interpretable cluster formation. 

Keywords: Clustering Analysis, Data mining, K-Means clustering, Crops segmentation, Precision 

agriculture, Soil crop compatibility.  
 

 

Introduction 
 

Background and Context 
Agriculture continues to be the most important sector of the global economy [1]. It provides us with one of 
the most basic needs we have, food. Unfortunately, the agriculture sector remains highly volatile and is 
easily influenced by external factors, such as environmental and economic risks, including climate change, 
soil degradation, and biodiversity loss, which directly impacts commodity prices [2][3]. The increases in 
global population and urbanization also place significant stress on sustainable agriculture. 
 
In order to address food demand, we need to understand what crops, environmental conditions and market 
conditions are happening in real time. To respond to this continuous agriculture these sustainable 
agricultural smart technologies needed to be integrated use in off-farm applications using IoT along with 
on-farm applications using Machine learning (ML). [4] The automation of farm wide action and being able 
to make decisions based visited performances data will help farmer's farm maximize both yields and 
profitability.[5]. 
 
Clustering analysis is an unsupervised ML process being used to identify trends and segmentation by 
attributes including crop types, soil types, and environmental data [6]. It permits classification of the 
optimum conditions for crop production, yield forecasting, and efficient resource allocation [7]. Early crop 
mapping, especially before harvest, has been shown to improve productivity by contributing to growth 
monitoring and yield forecasting, and by identifying areas of high productivity [8]. 
 
Clustering can allow segmentation of fields by soil type, moisture, and climate as well as group crops when 
similar growing conditions can create efficiencies in harvesting schedules and advance prediction of future 
trends. [9] When applied, clustering can provide stakeholders with the means for improved decisions to 
enhance crop management and total productivity in agriculture. [10]  
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Related Work 
 

Internet of Things (IoT) and ML are continuously transforming the conventional agriculture practices to 
sustainable, data drive approach. The advancement of technology in this sector is able to address 
several issues such as soil degradation, climate variability, and water scarcity problem. For crop 
segmentation clustering analysis is increasingly being utilized, making it a valuable tool for optimizing 
resource allocation and predicting yields. 

 

[11] integrates IoT and ML system for real time soil nutrient monitoring and crop recommendation. [12] 
presented a comprehensive review of IoT and ML based precision agriculture frameworks focused on 
predictive analytics for decision making. [13] developed a crop recommendation system that combines 
soil, weather, and grain storage data to suggest suitable crops. By analysing nutrient levels and climatic 
variables, the system helps farmers make data-driven decisions to improve yield and fertilizer efficiency. 

 

[14] proposed a semi-supervised constrained K‑Means clustering method to map soil texture in hilly 
areas using limited labelled samples along with topographical and land use features. [15] delineated 
management zones in olive groves using unsupervised methods like K-Means, hierarchical clustering, 
and DBSCAN, showing that the choice of clustering technique significantly affects the quality of zone 
delineation. [16] used ISO cluster unsupervised classification with Sentinel-2 and Landsat-8 data to 
predict soil nutrient indices such as phosphorus, iron, and pH, achieving recognition rates of 97%, 
94.05%, and 69% respectively, thereby supporting early fertility assessment. [17] proposed Deep Crop 
Clustering (DCC), a deep unsupervised clustering method that uses contractive learning and nearest–
farthest neighbor sorting to map crops without labelled data, achieving better performance than 
conventional methods. [18] used explainable AI (XAI) to analyse how soil chemical and microbial factors 
affect microbial respiration's temperature sensitivity (Q₁₀), revealing that microbial communities play a 
dominant role under climate stress. 

 

[19] developed a hybrid model that integrates ensemble learning (bagging, boosting, stacking) with 
K‑Means clustering to recommend optimal crops for varying environmental conditions, improving 
predictive robustness. [20] examined a range of ML classifiers within a crop recommendation 
implementation based on clusters, where crops were grouped using K-Means clustering, and classifiers 
recommended 2–3 crops from clusters to evaluate each system’s accuracy without increasing 
complexity. [21] developed an ML approach to evaluate soil fertility and moisture content, allowing for 
tailored irrigation and fertilization applications to evaluate the precision of farming practices. 

 

[22] developed a framework for dynamic zone delineation that combines NDVI, elevation, and soil texture 
data that utilizes clustering and a geographically weighted regression to account for spatial yield 
variability [23] in unsupervised ML applications for irrigation management of rice fields with the use of 
spatial PCA and multispectral data. Indicators of seasonal soil moisture variability were identified through 
two management zones where significant differences could be documented throughout multiple cycles. 
[24] created a clustering approach to incorporate climate and NDVI time series data with SPEI, 
designating seasons as dry, normal, or wet prior to clustering with a K-Means algorithm. This clustering 
approach provided more correspondence between soil properties and soil zones than traditional 
clustering methods even in dry years. 

 

[25] created a hybrid spectral–cLHS approach to sample soil organic carbon. Their hybrid method 
increases covering the environmental axes while providing improved quality training data by combining 
spectral clustering with conditioned Latin hypercube sampling for SOC prediction. [26] investigated 
sunflower yield differences due to crop year and planting density across a productivity zone. The data 
indicated positive responses of sunflower yields to density optimizations in high and mid-zone 
productivity levels during wet years, while low-zone productivity levels had poor responses. The work 
indicated that factors could enter into adaptive field management with weather patterns changing. 

 
Materials and Methods 
 

This research leverages unsupervised ML algorithms to cluster crops based on soil parameters. The 
objective is to identify sets of crops that require similar soil nutrients for optimal growth, thereby enabling 
better agricultural planning. The dataset for this research was sourced from the Kaggle agricultural 
database. The research methodology follows the Cross-Industry Standard Process for Data Mining 
(CRISP-DM), which is internationally recognized framework for all stages of the data mining process, 
including data collection, data preparation, model building, and assessment as illustrated in Figure 1. 
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Figure 1. Architecture of proposed Methodology 

 

 

As shown in Figure 1, the collected dataset is pre-processed to handle missing values, noise, and 
outliers. Then feature engineering was performed to select the relevant variable and reduce the 
dimensionality of the dataset. The dataset is then split into training, validation, and testing subset using 
random split technique. For the model selection, three different unsupervised algorithms, K-means 
clustering, DBSCAN, and Agglomerative Clustering, were applied to identify the best algorithm that could 
recognize the inherent pattern of the data. For K-means clustering, the optimal number of clusters was 
determined using the Elbow Method, Silhouette Analysis, and Gap Statistic Method. Together, these 
methods ensure both the appropriate cluster count and robust internal cohesion for the soil crop dataset. 

 

Data Collection and Preprocessing 
The free and open-sourced dataset was taken from Kaggle in CSV format. It contains data for about 22 
different crops, including both fruits and vegetables such as rice, maize, pigeon peas, kidney beans, 
chickpeas, and moth beans. Each crop type was then assigned a unique class label, which is 
represented mathematically in Equation 1. 

𝐶 = {𝑐1, 𝑐2, 𝑐3, 𝑐4, … , 𝑐𝑛} (1) 

 

The collected dataset D is then processed to enhance its quality and make it suitable for the ML 
algorithm. The pre-processing step involves identifying and replacing incomplete, inaccurate, irrelevant, 
or noisy data. To handle missing values, row wise deletion was applied. This approach removes records 
with missing values to maintain the integrity of the remaining dataset. The dataset D is represented as a 
matrix of size m x n where m is the number of rows and n is the number of columns. Let xij represent the 
value of the jth feature in the ith row. Let R ⊆ {1,2,…,m} be the set of rows containing missing values. The 
dataset D’ after removing rows with missing values is given by equation 2. 

D′= {xi ∈ D | i ∈! R} (2) 

 

The outliers are removed by utilizing a technique called the Z-scores. Outliers distort the results of 
machine learning models and reduce their accuracy. The Z-score for a data point f in an attribute A’ is 
calculated using the mean μ and standard deviation σ of A, as expressed in equation 3.  

𝑍 =
𝐴′ − 𝜇

𝜎
 (3) 

The final stage of data preprocessing involves the encoding for categorical variable C can be represented 
mathematically by equation 4. 
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𝑓: 𝐶 → 𝑍 (4) 

 

Exploratory Data Analysis (EDA) 
A comprehensive Exploratory Data Analysis (EDA) was done on pre-processed datasets in order to 
understand structure, relationship and hidden patterns. The process started with statistical data summary 
including mean, median and standard deviations in order to explore the data distribution. Table 1 
presents the statistical summary of the different feature sets available in the given data set. 

 

Table 1. Statistical Summary of crop dataset 

 

Statistic Nitrogen Phosphorus Potassium Temperature Humidity pH Rainfall 

Count 2200.00 2200.00 2200.00 2200.00 2200.00 2200.00 2200.00 
Mean 50.55 53.36 48.14 25.61 71.48 6.46 103.46 
Std 36.91 32.98 50.64 5.06 22.26 0.77 54.95 
Min 0.00 5.00 5.00 8.82 14.25 3.50 20.21 
25% 21.00 28.00 20.00 22.76 60.26 5.97 64.55 
50% 37.00 51.00 32.00 25.59 80.47 6.42 94.86 
75% 84.25 68.00 49.00 28.56 89.94 6.92 124.26 
Max 140.00 145.00 205.00 43.67 99.98 9.93 298.56 

 

 

For further visual interpretations histogram were generated understand the distribution and variability of 
each feature in the dataset. The histograms for pH, temperature, and humidity were bell-shaped, 
reflecting a normal distribution. Therefore, these features are well-suited for use in ML models without 
requiring any transformation. The histogram of potassium and phosphorus showed skewness and 
demands transformation. The humidity histogram shows two main peaks, representing two different 
groups in the dataset. These groups could represent crops grown in different weather conditions or 
regions. The distribution of crop features is shown in figure 2. 

 

 
Figure 2. Histogram for Crop Feature Distribution 
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To identify relationships among the features in the pre-processed dataset, a correlation matrix was 
generated to determine the final feature set that would be used to train the ML model. Figure 3 presents 
correlation matrix heatmap for the given data set. Each cell of the matrix represents the Pearson 
correlation coefficient between two features. The colour of the heatmap indicate the strength and 
direction of relation of two features. The analysis reveals phosphorus and potassium have a strong 
correlation indicating a fundamental dependency for instance soil composition. Independent relationship 
exists among other feature set, which can be beneficial in predictive modeling as they may provide 
unique information. The statistical and correlation insights, particularly highlighted the relevance of soil 
nutrients and pH values. 

 

 
 

Figure 3. Correlation matrix of soil features 

 

 

Feature Engineering 
Feature engineering allows to selected feature sets that not only show meaningful variation across 

samples but also reflected significant properties that influence crop growth. Feature involved extracting 

relevant features expected to significantly influence model outcomes. This process enhances the dataset 

by creating new features from existing ones and enriching the data structure. Mathematically, let 

F={f1,f2,…,fn} represent the set of original features in the dataset. Through feature engineering, a new 

feature set F 'is generated as represented by equation 5 

F′={g(f1, f2, …, fk)} (5) 

 

Where:  

 

g is a feature transformation function 

 

Data Split Training and Testing Sets 
In this phase the data is split into three distinct subsets for ML algorithms i.e., the training set (D train), 
validation set (Dval), and test set (Dtest), ensuring that there is no overlap between them. The split is 
typically based on proportions such as 70-80% for training, 10-15% for validation, and 10-15% for testing, 
satisfying the condition as shown in equation 6. 

Dtrain +Dval + Dtest = 1 (6) 
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The training set is used to train the model by minimizing the loss function and learning the parameters, 
and the model is also trained with the validation set for hyperparameter tuning and model performance 
monitoring, as indicated in Equation (7). The test set is used for the final evaluation of the model's 
performance on new data. 

Dtrain, Dval, Dtest = randomSplit(D, [training, Validation, 
testing], seed) 

(7) 

 

Model Selection and Configuration 
With the processed dataset, we applied three unsupervised learning algorithms:K-Means, DBSCAN, and 
Agglomerative Clustering are used. This selection is based on algorithms capability to address explicit 
data characteristics and clustering requirements.   

 

K-Means is a partitioning clustering method that minimizes intra-cluster variance. It is extremely efficient 
for datasets with numerical features and offers clear, non-overlapping clusters K-Means minimizes the 
sum of squared distances (SSD) between data points and their respective cluster centroids. 
Mathematically, this is expressed in equation 8. 

𝐽 = ∑ ∑ ||𝑥𝑖 − 𝜇𝑖||𝑗∈𝐶𝑖
𝑘
𝑖=1

2 (8) 

 

J is the total SSD for 𝑘 clusters and 𝐶𝑖 is the set of points assigned to cluster 𝑖. 𝜇𝑖 is the centroid of cluster. 
The optimal number of clusters is determined using techniques such as the Elbow Method, Silhouette 
Analysis, and Gap Statistics. 

 

DBSCAN works well for datasets that have clusters in unusual shapes and can identify noise and outliers, 
and also does not rely on the user to define the number of clusters. DBSCAN generates groups by 
grouping points that are close to each other, and consider those in regions with lower densities as noise. 
The key parameters to set for DBSCAN are epsilon point 𝜖, which specifies the maximum allowable 
distance between two data points for them to be treated as part of the same neighborhood, along with 
the minimum count of neighboring points needed for an area to qualify as a dense cluster. Any point that 
has at least the specified minimum number of neighbors within this distance 𝜖 is regarded as a core point 
can be defined as a core point. Clusters can grow by repeatedly including density-connected points, as 
can be seen in equation 9. 

𝐶𝑜𝑟𝑒 𝑃𝑜𝑖𝑛𝑡: |𝑁(𝑝)| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 (9) 

 

Agglomerative Clustering is a hierarchical approach where every data point is treated as its own cluster 
at the beginning, and then clusters are progressively combined based on a measure of similarity. It 
outputs a dendrogram to show how the clusters relate to each other in a hierarchical fashion. The linkage 
criterion gives a distance between clusters. The common metrics are Single Linkage, which has a 
distance of the closest points of two clusters, Complete Linkage which has a distance of the furthest 
points of two clusters, and Average Linkage which has the average distance between all of the points in 
two clusters. The criteria for merging is stated in equation 10 of article. This diminishes within cluster 
variance and maximizes between cluster separation. 

𝐷(𝐴, 𝐵) = 𝑚𝑖𝑛𝑎𝜖𝐴,𝑏𝜖𝐵||𝑎 − 𝑏|| (10) 

 
Results and Discussion 
 

The clustering models were applied to a dataset of 2201 soil samples classified for 22 different crops. 
Key attributes include NPK (Nitrogen, Phosphorus, Potassium) levels, temperature, humidity, pH, and 
rainfall. The primary objective is to cluster crops that can thrive on similar soils based on these features. 
The simulation environment used to cluster crops was implemented in Anaconda Jupyter Notebook. For 
simulation purpose only the features containing numerical values of the soil’s chemical properties were 
included. Nitrogen, Phosphorus, Potassium and pH were therefore selected as four-dimensional feature 
space. Although the dataset also included environmental variables such as temperature, humidity, and 
rainfall, but these were excluded from the feature sets to preserve emphasis on basic soil chemistry. The 
selected four features were the most influential indicators of soil fertility and directly determine crop 
suitability, while climatic parameters vary seasonally and may obscure underlying nutrient-based 
relationships. Figure 3 further justified the selection of feature set by showing weak associations between 
the environmental factors and the soil nutrients. The outcomes of the chosen clustering algorithms are 
discussed as follow; 
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K-means Clustering 
In this study we utilized K-means as the first choice for crop clustering. For accurate clustering results in 
K-mean analysis number of clusters to be formed should be known in advance. After detailed literature 
review, we applied three techniques for determine the optimal number of clusters for K-means clustering 
including Elbow method, Silhouett method and Gap Statistics method.  

 

Elbow method evaluates total intra-cluster variation or the within cluster sum of squares WSS as a 
function of the number of clusters. The average Silhouette method, calculates the average silhouette 
score for different numbers of clusters (k), with the optimal k being the one that maximizes the silhouette 
score.  

 

The Gap Statistics method compares intra-cluster variation for different k values against expected values 
from a null reference distribution, where the optimal number of clusters is the one that maximizes the 
gap.  

 

The results of the Elbow, Silhouette, and Gap Statistics methods are presented in Figures 4, 5, and 6, 
respectively.  

 

Elbow method as shown in figure 4 gives four clusters for the given dataset. Likewise, silhouette method 
as shown in figure 5 gives four clusters. Gap Statistics method also suggested a maximum of four 
clusters.  Based on these findings, four clusters were set for K-means algorithm analysis. 

 

 
Figure 4. Optimal number of clusters using Elbow Method 

 

 
Figure 5. Optimal number of clusters using Silhouette Method 
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Figure 6. Optimal number of clusters using Gap Method 

 

 

The analysis of K-means clustering on selected feature sets of the soil dataset using four clusters is 
shown in figure 7. The algorithm groups crop with similar soil characteristics into a single cluster. Some 
crops for example rice, maize, chickpea, and black gram appeared in multiple clusters because the data 
set contains varieties of rice with different soil preferences, while others were found in only one cluster 
due to more specific soil requirements. The presence of these crops in multiple clusters suggests that 
the clusters are not mutually exclusive and that the features used for clustering is overlapping. Similarly 
fruits like grapes and apple are grouped exclusively into a single cluster, indicating that these crops have 
distinct environmental and nutrient requirements. These results show how the clustering analysis groups 
crops that can grow in many soil types along with those crops which requires specific soil conditions. 
 

 

 
 

Figure 7. K-Mean Clustering of crop data into four groups 
 

 

 “Cluster0” in K-means, represents group of crops (rice, maize, chickpea, mung bean, pigeon peas, lentil, 
and jute) which requires soil with high nitrogen, moderate phosphorus and potassium, and a neutral pH. 
This cluster is ideal for leguminous and fiber crops. “Cluster1” in K-means, represents crop group (coffee, 
maize, chickpea, and pigeon peas) which require soils with balanced nutrient levels and slightly acidic 
pH and these crops grow well with moderate rainfall and temperature. “Cluster2” categorized crops which 
requires soil having low nitrogen but very high phosphorus and potassium levels with a slightly acidic 
pH. Such soil is well suited for fruit bearing crops like grapes and apples.  Finally, the last cluster 
“Cluster3” contains crops (rice, maize, coconut, lentil, and mango) having acidic soils and lower nutrient 
concentrations. The distinct ranges of nitrogen (N), phosphorus (P), potassium (K), and pH values across 
four clusters is shown in Figure 8, each representing different soil conditions suitable for various crops 
as represented in Table 2.  
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Table 2. Crop suitability mapping based on K-Means soil cluster characteristics. 

 

Cluster N_min N_max P_min P_max K_min K_max ph_min ph_max 

Cluster0 58 140 5 95 15 84 5.01 7.99 
Cluster1 0 78 5 80 5 85 4.19 6.70 
Cluster2 0 78 5 80 5 85 6.28 8.76 
Cluster3 0 40 120 145 195 200 5.51 6.49 

 

 
Figure 8. Cluster-wise distribution of N, P, K, and pH values derived from K-Means analysis 

 

 

Determining which crops are in the same cluster can be useful in customizing agricultural practices and 
interventions. If one of the clusters is linked to a soil type or climate, for example, the crops within that 
cluster, will have similar needs or adapt to climate and/or soil alike allowing for more precise farming 
practices. The pie chart (Figure 9) displays the pattern of 20 different crops drawn from four clusters 
giving a visual representation of how different crops grouped within each of those clusters. Each slice of 
the pie chart is the proportion within a particular cluster, and the size of the slice represents the number 
of crops that are in that cluster. 

 

 
Figure 9. Distribution of 20 crops across four clusters based on soil suitability 
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DBSCAN Clustering 
The same dataset was utilized for DBSCAN clustering and was used to validate the results obtained 
from K-means. DBSCAN method excels at identifying noise or outlier points, making it particularly 
suitable for real-world datasets where irregularities and anomalies are common. DBSCAN’s ability to 
detect clusters of arbitrary shapes is also beneficial, especially when clusters are not spherical or evenly 
distributed. 

 

Four groups were formed by the DBSCAN algorithm namely -1, 0, 1, and 2 as shown in figure 10. Data 
points having few neighboring points or were too distant from other points were marked as outliers and 
was grouped under cluster -1. Whereas clusters 0, 1, and 2 represent the three distinct clusters identified 
within the dataset. These clusters group crops with similar features based on soil characteristics chosen 
during training phase. Points within each cluster are closer to one another according to the epsilon 
distance parameter, forming dense regions.  

 

 
 

Figure 10. DBSCAN clustering results showing three dense clusters and one outlier group (Cluster -1) 
based on soil features 

 

 

In DBSCAN cluster 0 is the largest and most diverse, encompassing a wide variety of crops. Cluster 1 
uniquely classifies moth beans, which is due to a small but distinct set of features. Cluster 2 includes 
grapes and apple similar to K-means results, highlighting their unique soil requirements compared to 
other crops. Also, crops like orange, mango, and pomegranate are also the part of clusters 2. This 
consistency suggests that these crops share well defined soil features that make them easier to group. 

 

Agglomerative clustering 
Agglomerative clustering is a hierarchical clustering technique that further assesses the dataset as 
compared to the other clustering algorithms. It treats each data point as its own cluster and successively 
merges the closest clusters until a stopping criterion is met. This method provides a tree-like structure 
known as dendrogram that reveals relationships between clusters.  

 

In the proposed study this technique marks Cluster 0 as the most diverse cluster, containing a wide 
range of crop like rice, maize, chickpea, kidney beans, pigeon peas, moth beans, mung bean, black 
gram, lentil, pomegranate, mango, orange, papaya, coconut, jute. Whereas the Cluster 1 includes 
legumes (such as kidney beans, moth beans, and lentils) and fruit-bearing crops (including pomegranate, 
mango, orange, and coconut). Cluster 2 represents a mix of grains, fruits, and cash crops. Figure11 
represents the hierarchical clustering of the crop dataset. 
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Figure 11. Hierarchical clustering of the crop dataset 

 

 

The utilization of three different clustering algorithms helped in cross validation of the clustering 
outcomes, offering more robust conclusions about the grouping of crops in the dataset. All three 
algorithms identified similar groupings for many crops, with noticeable overlaps in clusters.  

 

Agglomerative clustering results were closely aligned with clustering results of K-means. The cluster 0 
of these two algorithm results had a broad range of crops partially similar to DBSCAN cluster 0. Whereas 
the cluster 1 in all three algorithms particularly focuses on legumes and fruits. Cluster 2 in K-means and 
Agglomerative clustering is comparable to DBSCAN’s Cluster 2, representing that certain crop like 
apples and grapes are steadily grouped together.  

 

 

Other than the visual interpretations for optimal number of clusters, we used Silhouette Coefficient 
measure to check how each crop fits in its cluster.  The average silhouette scores for K-means, DBSCAN 
and Agglomerative clustering are 0.56, 0.49 0.52 respectively. This analysis confirmed that most crops 
were appropriately grouped within their respective clusters. The slight overlap observed for rice and 
maize appearing in multiple clusters reflects agronomic adaptability rather than algorithmic limitation. 

 
Conclusions 
 
In this investigation, we applied three unsupervised clustering algorithms, K-Means, DBSCAN, and 
Agglomerative clustering to assess the relationships between soil properties and crop suitability. The 
results identified numerous clusters where statistically significant soil nutrient properties, pH ranges, and 
crop types are closely associated with each other. 
 
Through the comparative analysis of the three clustering algorithms, our research uncovered 
interpretable consistent crop groups based on feature set selected. The proposed data driven framework 
can assist agronomist with farmland planning, especially in resource-limited regions facing climate 
variability. 
 
In our future work, we will focus on enhancing the result accuracy and depth of clustering results through 
the integration of additional feature sets such as rainfall patterns, irrigation data, and remote sensing 
visuals. In addition, we will investigate the incorporation of explainable AI within the proposed framework 
to offer greater transparency and trust in the decision-making process, or for other forms of stakeholder 
engagement. Overall, the proposed framework provides a scalable and interpretable platform for 
precision agriculture, feeding into the development of sustainable and resilient food systems within 
changing environments. 
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