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Abstract  

Tropical cyclones (TCs) in the Arabian Sea have become more frequent and intense, due to climatic 

variability. These changes represent an increasing hazard to coastal communities and infrastructure 

throughout the area. Accurate calculation of cyclone wind and pressure fields is critical for cyclone 

forecasting, early warning systems and disaster response. Usually cyclones are studied with the help 

of wind-pressure models. One such model is Holland Model which utilizes a wind-pressure profile 

parameter B. This parameter which is a power exponent plays an essential role in shaping wind and 

pressure profiles. It defines that how sharply the pressure drops from the outer environment to the 

cyclone’s center. Although various models for estimating the wind-pressure profile parameter B exist 

for basins such as the Atlantic, Northwest Pacific and Bay of Bengal, no such model has been 

specifically developed for the Arabian Sea. This study addresses this gap by constructing and 

evaluating multi- linear regression (MLR) models to create such power exponents for Arabian Sea 

cyclones using best-track cyclone data from the IBTrACS dataset (1980–2023) which is the satellite 

data. Four models Bα, Bβ and Bγ for wind-pressure profile parameter B are developed for Arabian Sea 

cyclones incorporating different combinations of meteorological variables, including maximum 

sustained wind, central pressure, pressure drop, radius of maximum wind (RMW) and latitude. Model’s 

performance is assessed using adjusted R², predicted R², RMSE and MAE. Model Bγ is the best-

performing model with the predicted R² of 78%, with the lowest standard error (0.1395). We have also 

calculated B, the Holland’s wind-pressure profile parameter, on Arabian Sea data. The data used here 

is satellite data instead of aircraft data. Further, all these models including B are applied to the 

20% test dataset to validate the predicted wind-pressure profile parameters. Finally, we will 

compare Bα, Bβ and Bγ with B. For the test data Bγ shows good accuracy. Its correlation with B values 

is 0.7796. These models are used to generate both the wind and pressure profiles of Cyclone Tauktae. 

Finally, results obtained by MLR are compared with the results obtained by B.  Among all MLR models 

Bγ gives results closest to B model. So, the model Bγ is recommended as the most reliable MLR model 

for estimating the wind-pressure parameter for the Arabian Sea. 

Keywords: Holland parameter B, Wind-Pressure Profile, Multi-linear regression (MLR), Arabian Sea 

Cyclone. 
 

 

Introduction 
 

The Arabian Sea is growing increasingly vulnerable to major tropical cyclones (TCs), since their number 
and severity have increased since last decade. This Change is mostly caused by rising sea surface 
temperatures and climate changes [1]. Tropical storms in this region provide severe meteorological 
conditions such as high winds, torrential rainfall and coastal flooding  [2]. These events can cause serious 
damage to human life, homes, infrastructure and agriculture especially in countries like Oman, Pakistan, 
India and Iran. Coastal areas, which are often highly populated, face the greatest risk [3]. Because of 
these threats, it is very important to improve the way we forecast cyclones. In particular, we need 
accurate models that can estimate the wind and pressure profile inside a cyclone, so that we can reduce 
the damage through better early warning systems and disaster planning [4]. One of the most commonly 
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used model to study the internal structure of tropical cyclones is the Holland model, which provides a 
parametric formulation of the radial pressure and wind profile [5]. At the center of this model is the wind-
pressure profile parameter B, a power exponent that controls the steepness of the cyclone’s pressure 
gradient [6]. The pressure distribution in the Holland model is defined as: 

 

  𝑃(𝑟)  =  𝑃𝑐  +  ∆𝑃 𝑒
−(

𝑅𝑚𝑎𝑥

𝑟
)

𝐵

                            → (1) 

 

Where P(r) is the pressure at a radial distance r, Pn  is the ambient pressure, Pc is the central pressure, 
ΔP = Pn –Pc is the pressure drop between environmental and central pressure, Rmax is the radius of 
maximum wind and B is the shape parameter as defined above. As B increases, the pressure gradient 
nearby Rmax becomes sharper, resulting in higher wind speeds near the storm center [7]. 

 

The wind-pressure profile parameter B  is also embedded in the gradient wind speed formulation 
(ignoring Coriolis force), given by [8]: 

 

𝑉(𝑟) = [
𝐵
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𝑟
)

𝐵
⋅ 𝑒−(− 
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)
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]

1

2

              → (2) 

From this, the maximum wind speed can be derived: 

 

𝑉𝑚𝑎𝑥 = √
𝐵∆𝑃

𝑒𝜌
                                                   → (3) 

 

                                                                                                𝐵 =
𝑉2

𝑚𝑎𝑥𝑒𝜌

𝑃𝑛−𝑃𝑐
                                                  → (4) 

 

Here, ρ represents air density, e is the natural logarithm base and 𝑉𝑚𝑎𝑥  is maximum sustain wind ,These 
equations show that B serves as a mathematical link between storm intensity and pressure structure, 
making its accurate estimation crucial for both scientific understanding and effective forecasting. 

Historically, the concept of  cyclone pressure fields modeling originated with Schloemer’s exponential 
model [6]: 

         𝑃(𝑟)  =  𝑃𝑐  +  ∆𝑃 𝑒−
R𝑚𝑎𝑥

𝑟                       → (5) 

 

Later, Holland improved this model by introducing the profile parameter B to better capture variability in 
pressure decay. The inclusion of B allows the model to pretend a wider range of cyclone structures from 
compact, intense systems to broader, weaker ones. 

 

To understand the effect of the wind-pressure profile parameter B visually, Figure 1(a) illustrates 
pressure profiles generated by using Equation (1) and Figure 1(b) illustrates wind profile generated by 
using Equation (2). As shown in Figure 1(a), increasing B sharpens the pressure gradient near Rmax and 
Figure1(b) shows the gradient wind speed increases near the core while decreasing further outward [7]. 

 

     
 

Figure 1. Effect of parameter B on wind-pressure profile (a) pressure versus radial distance from Cyclone 
center and (b) Wind speed versus radial distance from Cyclone center. 

 

 

 

a b 
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Since the development of the analytical wind-pressure Holland model (1980), numerous statistical, 
mathematical and numerical models  have been developed to estimate the wind-pressure  parameter  B 
using cyclone observational data across various ocean basins [5]. In the Australian region, Love et al.  
proposed one of the initial statistical model, suggesting a logarithmic relationship between wind-pressure 
profile parameter B and pressure drop (ΔP), highlighting how wind-pressure profile parameter B 
increases with increasing storm intensity [9]. Hubert et al. [10] refined this with a simple linear model 
directly relating wind-pressure profile parameter B to the deviation of central pressure from a reference 
value (980 hpa), while Harper and Holland  proposed another linear form that adjusted wind-pressure 
profile parameter B relative to a baseline pressure of 900 hpa, suitable for operational use in Australia 
[11]. In the Atlantic basin, Vickery et al. presented a more comprehensive linear regression model 
combining both ΔP and radius of maximum wind (RMW) to recognize their combined influence on 
cyclone structure [12]. Willoughby and Rahn built on this method by adding wind speed and latitude to 
RMW, allowing for better depiction of cyclones throughout latitudinal zones [13]. In the Bay of Bengal, 
Jakobsen et al.  applied a physical model derived from the gradient wind balance equation, expressing 
wind-pressure profile parameter B in terms of wind speed and ΔP, which proved effective in modeling 
storm surge conditions in shallow coastal waters [14]. A significant development was made by Holland, 
who introduced a reviewed form of the wind-pressure profile parameter B, termed Bs, which combined 
not only ΔP but also cyclone translation speed, the rate of central pressure change (∂Pc/∂t) and latitude. 
This made the model more approachable to dynamic storm conditions [15]. Harper et al. and Knaff et al. 
created region-specific calibration formulas in the Northwest Pacific (NWP) using ΔP, RMW and latitude 
for pre and post-landfall circumstances [7]. More recently, Fang et al. developed advanced statistical 
and machine learning models, comparing them to classical methods and representing that including 
RMW, pressure trends and latitude significantly improves the accuracy of wind-pressure profile 
parameter B and Bs estimates in the NWP region [16]. 

 

Despite this extensive study in other ocean basins, there is presently no statistical model for estimating 
the wind-pressure profile parameter B for the Arabian Sea. In this study, we aim to address this gap by 
developing an MLR model for estimating the wind-pressure profile parameter B.  

 
Materials and Methods 
 

Data Source 
This study used tropical cyclone data for the Arabian Sea from the International Best Track Archive for 
Climate Stewardship (https://www.ncei.noaa.gov/products/international-best-track-archive), Version 4, 
which covered the period 1980 to 2023. The dataset contains essential cyclone variables include such 
as date, time, latitude, longitude, maximum sustained wind speed (WIND), minimum central pressure 
(Pc) and radius of maximum wind (RMW). These records were obtained directly from the NOAA Climate 
Data Repository. To assure data quality and consistency, the following Quality control criteria [8] were 
applied: (1) Geographical boundaries were limited to 50–75°E longitude and 5–25°N latitude to capture 
the Arabian Sea region; (2) only cyclones with WIND ≥ 35 m/s were retained to focus on storms of at 
least tropical storm intensity; (3) central pressure values were constrained to the range of 870–1000 hpa; 
and (4) RMW values exceeding 150 km were excluded to remove weak or abnormally large systems. A 
total of 310 profile were retained from these criteria. The dataset was randomly split into a training set 
(80%) and test set (20%) to validate model performance. 

 

Methods 
 
Step 1: Exploratory and Descriptive data Analysis 
Descriptive Analysis  is used to   understand the distribution and central tendencies of key parameters 

[18] .The analysis involved to calculating the central tendency (mean, median and mode), dispersion 

(standard deviation, minimum and maximum), and distribution shape (skewness). Mean (𝜇) and 
Standard Deviation (σ) evaluate the average behavior and variability of each parameter. Its mathematical 
expression is as given in equation (6) & (7). 

 

𝝁 =
𝟏

𝒏
∑ 𝒙𝒊𝒏

𝒊=𝟏                        → (6) 

𝝈 = √
𝟏

𝒏
∑ (𝒙𝒊 − 𝝁)𝟐𝒏

𝒊=𝟏           → (7) 

Histograms with fitted normal distribution curves were employed to visually assess distribution patterns 
and detect asymmetry. This analysis describes the intensity and structural aspects of tropical cyclones 
in the Arabian Sea. 
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Step 2: Pearson Correlation Test 
 

To explore the linear relation  between   two variables  with values ranging from -1 (strong negative  

correlation) to +1 (strong positive correlation)  Pearson correlation coefficients were calculated [19]. The 

correlation coefficient r is computed as: 

𝑟 =
∑ (𝑛

𝑖=1 𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)

√∑ (𝑥𝑖−𝑥̅)2 ∑ (𝑦𝑖−𝑦̅) 2𝑛
𝑖=1  𝑛

𝑖=1

         → (8) 

 

Step 3: Multicollinearity Test 
 

To estimate multicollinearity between the independent variables, the Variance Inflation Factor (VIF) was 

calculated for each predictor using the formula below [20]. 
 

𝑉𝐼𝐹𝑖 =
1

1−𝑅𝑖
2                          → (9) 

 

Where 𝑅𝑖
2 is the coefficient of determination for the 𝑖𝑡ℎ independent variable regressed against the 

remaining values. VIF values below 5 are generally considered acceptable, while values exceeding 10 
are often cited as indicative of serious Multicollinearity. However, following the argument presented by 
O’Brien (2007), such rules of thumb should not be rigidly applied. O’Brien highlights that even VIF values 
of 10, 20 or higher may be acceptable if the regression coefficients remain statistically significant, 
confidence intervals are narrow and the model has high descriptive power. In this study, although 
maximum sustained wind and Pc suggested VIF values surpassing 10, both variables were retained due 
to their strong theoretical importance, high statistical significance (p < 0.001), and the excellent 

performance of the regression models [20]. Thus, while Multicollinearity is recognized, it does not 

compromise the validity or interpretability of the regression results. 

 

Step 4: Multiple Linear Regression (MLR) 
 

Multiple linear regression is known as statistical method was used to model the  relation between one 

independent variable (response) and two or more independent variables (predictors)  [21]. The general 

MLR equation is: 

 𝐵𝑖 =  𝐵0+ 𝐵1  𝑥𝑖1 +  𝐵2 𝑥𝑖2 +  𝐵3 𝑥𝑖3 + ⋯ … … … +  𝐵𝑗 𝑥𝑖𝑗 +∈𝑖     → (10) 

Where: 𝐵𝑖 is dependent variable, 𝑥𝑖 represents independent variables, 𝐵𝑗  is regression coefficients and  

∈𝑖 is the random error term. 

 

MLR assumes a linear relationship between the dependent variable and each predictor and estimates 
regression coefficients that quantify the contribution of each independent variable. This method is widely 
used for prediction, trend analysis and understanding the influence of multiple factors on a target 
outcome 

 
Step 5: Model Evaluation Criteria 
 

Model performance was estimated using the statistical metric such as Coefficient of Determination (R²) 
which measures goodness of fit of a model. If R² value is near to 1, it indicates a better fit of the model 
to the data, Adjusted (R²) accounts for extra predictors, Root Mean Square Error (RMSE) and Mean 
Absolute Error (MAE) [17]. 

                                                          R2 = 1 − 
∑ (Oi−n

i=1 Fl)
2

= ∑ (Oi−n
i=1 O̅l)

2  
                  → (11) 

             Radj
2 = 1 −

(1−R2)(1−n)

n−p−1  
                    → (12) 

              RMSE =  √
1

n
∑ (Fi −n

i=1 Ol)
2             → (13) 

              MAE =  
1

n
∑ |Fi − Ol

n
i=1 |                  → (14) 

 

Where, 𝐹𝑙 is the predicted value, 𝑂𝑙 is the observed value, 𝑂̅𝑙  is mean of observed values, p is number 

of predictors and n is the number of observations. Lower RMSE and MAE values indicate higher 
prediction accuracy. 
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Results and Discussion 
 

Data Analysis 
To study the structural characteristics of intense tropical cyclones over the Arabian Sea, the descriptive, 
exploratory and correlation analysis was executed on six key variables: latitude (LAT), maximum 
sustained wind speed (WIND), central pressure (Pc), pressure drop (ΔP), radius of maximum wind 
(RMW) and Holland B parameter. The summary of descriptive statistics are presented in Table 1. 

          

                Table 1. Descriptive Analysis of Key Cyclone Parameters 

 

S.no Variable Mean St.Dev Minimum Median Maximum Mode N for Mode Skewness 

1 LAT (°N) 16.734 3.013 10.370 16.900 23.000 14.4 6 -0.08 

2 WIND (m/s) 48.262 10.095 33.439 46.300 69.449 38.583 17 0.28 

3 Pc (hpa) 955.45 16.11 924.00 957.00 992.00 937 12 -0.14 

4 ΔP (hpa) 49.23 16.79 19.00 46.00 82.00 36, 67 9 0.24 

5 RMW (km) 27.530 13.818 9.260 27.780 92.600 27.78 53 1.48 

6 B Parameter 1.5223 0.2205 0.9447 1.5512 1.9239 1.49407 6 -0.58 

 

 

 

 
 

Figure 2. Histogram with Normal Curve of LAT  Figure 3. Histogram with Normal Curve of WIND 

 

 

As shown in Figure 2, the frequency distribution of  cyclone formation latitude (LAT) with a fitted normal 
curve in the Arabian Sea reveals that the majority of cyclones are develop between 14°N and 20°N. The 
average latitude is 16.73°N, with a standard deviation of 3.013, indicating a wide spread around the 
average. The distribution is approximately symmetric, with a skewness of -0.08, indicating a minor 
preference for lower latitudes. The histogram resembles the normal curve. Figure 3 depict that  the 
frequency distribution of maximum wind speed (WIND) with a fitted normal curve reveal that most cyclone 
wind speeds range  from 33 m/s to 69 m/s, with a mean of 48.26 m/s and a standard deviation of 10.10.  

 

The distribution is moderately right-skewed (skewness = 0.28), indicating a higher frequency of moderate 
wind speeds and a few cyclones with extreme intensities. The mode, 38.58 m/s, was seen 17 times, 
reflecting the most common intensity range. The curve fits reasonably well, confirming a somewhat 
normal pattern with moderate variability. 
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Figure 4. Histogram with Normal Curve of Pc        Figure 5. Histogram with Normal Curve of ΔP 

 

 

Figure 4 displays the frequency distribution of central pressure (Pc) based on a fitted normal distribution. 
The chart indicates that cyclone core pressures varied from 924 hpa to 992 hpa, with a mean of 955.45 
hpa and a standard deviation of 16.11. The distribution is nearly symmetrical, supported by a skewness 
of – 0.14, implying a balanced occurrence of low and high central pressures. The most frequently 
observed pressure was 937 hpa, appearing 12 times. The symmetry confirms Pc’s normally distributed 
nature in this dataset. Referring to Figure 5, the frequency distribution of pressure drop (ΔP) indicates 
that most cyclones experienced a pressure drop between 19 hpa and 82 hpa, with a mean of 49.23 hpa 
and a standard deviation of 16.79. The distribution is slightly right-skewed (skewness = 0.24), suggesting 
that while moderate pressure drops are common, some cyclones had very high drops. Two modes (36 
hpa and 67 hpa) appeared most frequently. This indicates that while moderate pressure drops dominate, 
a few cyclones exhibit much larger pressure differences, reflecting higher intensity systems. 

 

 
 

Figure 6. Histogram with Normal Curve of RMW       Figure 7. Histogram with Normal Curve of B 

 

 

Figure 6 depicts that frequency distribution of RMW, which has a right-skewed profile, with the majority 
of values between 10 km and 40 km and a few extreme cases reaching up to 92.6 km. The average 
RMW is 27.53 km with a standard deviation of 13.82 and the high skewness (1.48) indicates significant 
variability in cyclone structure. The normal curve does not fit perfectly, highlighting the presence of 
outliers and asymmetry in cyclone wind radius distribution. Figure 7 shows the profile parameter B, which 
controls the sharpness of the pressure gradient, has a mean of 1.5223 and a standard deviation of 
0.2205 with values ranging from 0.9447 to 1.9239. The negative skewness of - 0.58 indicates a left-
skewed distribution, with more frequent higher B values and fewer low-B outliers. The mode 1.4941 
occurred 6 times. The fitted normal distribution has a minor asymmetry indicating natural variations in 
the sharpness of the pressure gradient in Arabian Sea cyclones. 

 

According to the descriptive study, the majority of Arabian Sea cyclones originate between 14 and 20 
degrees N, with modest wind speeds and near-normal core pressure distributions. Pressure drop and 
wind speed are marginally right-skewed, however RMW is significantly skewed and showing structural 
variability. The Holland B parameter is left-skewed indicating frequent strong pressure gradients. Overall, 
the data show both common tendencies and significant variation in cyclone structure throughout the 
area. 
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The Pearson correlation test evaluates linear relationships among the cyclone parameters of latitude, 
wind speed, pressure drop (ΔP), radius of maximum wind (RMW), central pressure (Pc) and the Holland 
B parameter. The outcomes are presented in Table 2 below. 
 

       Table 2. Pearson Correlation Test for Tropical Cyclone Parameter 

S.no Variables Correlation Coefficient (r) 

1 ΔP and WIND 0.952 

2 Pc and WIND - 0.959 

3 Pc and ΔP - 0.977 

4 B parameter and WIND 0.557 

5 B parameter and ΔP 0.283 

6 B parameter and LAT 0.312 

7 B parameter and RMW - 0.220 

8 Pc and RMW 0.335 

9 RMW and WIND - 0.376 

10 RMW and ΔP - 0.370 

 

 

As shown in Table 2, the most significant positive correlation is between wind speed and pressure drop 
(r = 0.952), confirming that greater pressure gradients are connected with higher wind intensities. 
Similarly, central pressure shows strong negative correlations with both wind speed and pressure drop, 
reinforcing its inverse role in cyclone intensity. The Holland B parameter shows a moderate positive 
relationship with wind speed and latitude, suggesting that more intense and equator ward cyclones tend 
to exhibit steeper pressure gradients. However, its correlation with RMW and Pc is weak, indicating that 
wind-pressure profile parameter B is more strongly influenced by dynamic factors such as intensity than 
by storm size or absolute pressure alone. These findings support the regression model outcome, where 
wind speed, pressure drop and latitude were significant predictors of the B parameter, while RMW was 
not, due to its weak correlation with intensity related variables. 

 

VIF Test and MLR Model: 
To model the wind-pressure profile parameter B based on observed cyclone characteristics, four ordinary 
least squares (OLS) regression models were developed and assessed. These models employed various 
combinations of predictors, including maximum wind speed (WIND), central pressure (Pc) pressure drop 

(ΔP), radius of maximum wind (RMW) and latitude (LAT). Here we use 80% of data to build the MLR. 
Table 4 Represent the performance of each model. 
 

MLR Model Bα: 

A multi-linear regression analysis was conducted to model the wind-pressure profile parameter B using 
wind speed (WIND), latitude (LAT) and radius of maximum sustained winds (RMW) as predictors. The 
regression equation comes out to be the following. 

 

  Bα = 0.3568 + 0.019716 WIND - 0.00170 LAT + 0.001351 RWM     → (15) 

 

This explains that 78.00% of the variance in the Holland profile parameter B (adjusted R² = 77.91%, 
predicted R² from 10-fold cross-validation = 77.73%). All predictors were statistically significant (p < 
0.001), but LAT variable was statistically insignificant (p = 0.238).Despite moderate Multicollinearity 
between WIND and ΔP (VIF<2), the model’s overall fit was moderate (standard error = 0.1395). Its 
performance was statistically comparable to Model Bβ and Model Bγ But more complex and less 
interpretable due to the non-significant predictor. 

 

MLR Model Bβ: 

A multi-linear regression model was developed to estimate the wind-pressure profile parameter B by 
using maximum wind speed (WIND) and latitude (LAT). The regression equation is: 

 

Bβ=0.4817 + 0.018349 WIND - 0.00274 LAT     → (16) 
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The model demonstrates excellent performance, explaining adjusted R² = 77.31%, cross-validated R² = 
77.26 in the wind-pressure profile parameter B. The WIND predictors are highly significant (p < 0.001), 
including latitude borderline statistical significance for LAT (p = 0.058). This makes Bβ less reliable due 
to one marginal predictor. No Multicollinearity is present for WIND and LAT (VIF = 1.08). The standard 
error of the regression (S = 0.1414) and cross-validation error (10-fold S = 0.1414) are both low 
confirming strong predictive accuracy. The residual diagnostics indicate some large residuals. No serious 
violations of regression assumptions are observed. Model Bγ is better than Model Bβ, suggesting that 
including RMW significantly improves the estimation of the wind-pressure profile parameter B for 
cyclones in the region. 

 

MLR Model Bγ:  

Multi-linear regression is used to model the wind-pressure profile parameter B based on WIND and 
radius of maximum wind (RMW). The model equation is:  

 

Bγ = 0.3292 + 0.019650 WIND + 0.001410 RWM    → (17) 

 

The model explains approximately 77.89% adjusted R² in wind-pressure profile parameter B, with a 
cross-validated R² of 77.75%, indicating strong and stable predictive performance. Both WIND and RMW 
are statistically significant (p < 0.05), and the close match between training and cross-validation metrics 
(10-fold R² = 77.73%) indicates high model stability and minimal over fitting. Multicollinearity present 
between WIND and RMW (VIF < 2) does not affect model validity. Residual analysis confirms that no 
influential outliers are detected. Model Bγ is a consistent predictor of the B parameter and support its use 
in modeling cyclone structure in the Arabian Sea. 

Note:  

Models which included central pressure (Pc), pressure drop (ΔP) and latitude (LAT) in various 
combinations, consistently underperformed with adjusted R² values around 62.88%–62.94% and 
significantly higher standard errors (~0.1807–0.1808). Moreover, most included predictors such as RWM 
and LAT were statistically insignificant (p > 0.75) in these models. These models suffer from both weak 
fit and poor generalization performance (10-fold R² around 62.50–62.85%). Therefore, in subsequent 
analysis we will restrict our focus to the models Bα, Bβ, and Bγ only. 

 

Comparative Analysis of Models  
To assess the best predictive approach for estimating the wind-pressure profile parameter B for Arabian 
Sea cyclones, three multi-linear regression models were developed and evaluated based on statistical 
performance and theoretical relevance. Table 3 represents the performance of each models .Model Bα 
incorporating maximum sustained wind speed (WIND) and radius of maximum wind (RMW), explained 
that the adjusted R² = 77.89% of the variance in B with a predicted R² of 77.75%. Although WIND and 
RMW were statistically significant. Model Bβ improved upon this by replacing RMW with latitude (LAT), 
achieving an adjusted R² of 77.37% and a predicted R² of 77.18%. All predictors were significant and 
latitude added substantial value although multicollinearity exists between WIND and LAT. Model Bγ 
which included WIND, RMW and LAT. It explained that 78.00% of the variance (adjusted R²) with a 
predicted R² of 77.73 %, with the standard error (0.1395) is achieved. WIND and RMW predictors were 
highly significant and although moderate multicollinearity existed between WIND and RMW, it did not 
affect the model’s predictive reliability. Based on these results, Model Bα is recommended as the most 
robust and accurate method for estimating the wind-pressure profile parameter B, balancing theoretical 
consistency with excellent predictive power. In contrast, Model Bγ appears to be the weakest, largely 
due to its reliance on the LAT variable, which has limited explanatory power and is not statistically 
significant in the context of wind-pressure profile parameter B estimation.  

                                                  

Table 3 Performance metrics of multi-linear Regression models 

 

Model Predictors R² 
(%) 

Adj. R² 
 (%) 

Pred. R² 
 (%) 

S 10-
fold S 

10-fold 
R² (%) 

Significant 
Predictors 

Insignificant 
Predictors 

Bα WIND,LAT and RWM 78.00 77.91 77.73  0.1395 0.1399 77.75 WIND(p=0.000), 
 RWM (p=0.000) 

LAT(p=0.238) 

Bβ WIND,LAT 77.00 77.31 77.18  0.1414 0.1414 77.26 WIND (p=0.000) LAT(p=0.058) 

Bγ WIND, RWM 78.00 77.89 77.75 0.1395 0.1400 77.73 WIND p=0.000), 
RWM (p=0.000) 

– 
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Model Validation on Test Data 
We applied MLR models Bα, Bβ and Bγ to the remaining 20% (96 data points) of the dataset to validate 
their predictive accuracy and performance. Each model utilized a distinct combination of predictor 
variables to estimate the wind-pressure profile parameter B. The wind-pressure parameter B values 
predicted by MLR models are compared with the values calculated by the Holland model. Show in Figure 
8. 

 

 
 

Figure 8 Comparison of wind-pressure profile parameter estimated from MRL Models Bα, Bβ and Bγ 

with Holland parameter B 

 

 

The comparative result of MLR models and Holland model are discuss in Table 4. Results show that, 
Model Bγ shows overall best performance as compared to other models, achieving an R² of 0.7564. It 
also demonstrated the lowest error metrics MSE (0.0759) and RMSE (0.2756), signifying excellent 
predictive accuracy and minimal deviation from wind-pressure profile parameter B values by Holland 
model. Model Bβ exhibited moderate predictive power with an R² of 0.6747. It had relatively higher 
residual error and RMSE (0.2925) indicating greater deviations from Holland modal values. Model Bα 
Show improved performance with an R² of 0.6038 and a reduced RMSE of 0.2778 indicating a better fit 
and lower prediction error compared to Model Bβ while comparing to Holland model values. 

 

Among the tested models, the WIND + RMW predictor combination provided the most reliable and 
parsimonious fit. Both predictors were statistically significant (p < 0.001), with the model achieving high 
explanatory power (R² ≈ 78%) and the lowest RMSE in validation (0.2756). Although including LAT 
marginally increased validation R², its insignificance and higher error values make it less robust 
compared to the WIND–RMW model. 

 

Table 4. Comparison of wind-pressure profile parameter estimated from MRL Model Bα, Bβ and Bγ. 

With Holland B 

 

S.no Model Predictors R² Residual Residual² MSE RMSE 

1 Bα WIND, RMW and LAT 
0.6038 

0.2778 
0.0772 0.0772 0.2778 

2 Bβ WIND and LAT 0.6747 0.2925 0.0856 0.0856 0.2925 

3 Bγ WIND and RMW 0.7564 0.2756 0.0759 0.0759 0.2756 

  

 
 
 

 

1

1.2

1.4

1.6

1.8

2

2.2

1 11 21 31 41 51 61 71 81 91

Wind-pressure profile  parameter B MLR models vs. Holland model

Bα Bβ Bγ Holland B
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Cyclone Tauktae Wind-pressure profile: Analysis of MLR Models and 
comparison with Holland Model  
A real case validation of MLR models presented here is conducted using the data of Cyclone Tauktae. 
It will ensure that the MLR models developed in this study are not only mathematically accurate but also 
physically meaningful. Cyclone Tauktae is the most intense recent category 4 cyclones in the Arabian 
Sea. The central pressure, maximum sustained wind, Radius of Maximum wind, latitude and longitude 
data for cyclone Tauktae  are taken from the IBTrACS .The wind-pressure profile parameter B, which 
controls the shape of the cyclone’s radial pressure and wind distribution are estimated by using multi-
linear regression models Bα, Bβ and  Bγ  and  compared with Holland model. These estimated wind-
pressure profile parameter B values are then applied to the empirical Holland wind-pressure model 
(Equation 1 and Equation 2) to generate wind and pressure profiles for Cyclone Tauktae. The wind-
pressure  profile are tested by Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Correlation 
Coefficient (R2), and Nash–Sutcliffe Efficiency (NSE), to compare the accuracy of each MLR models 
wind-pressure profile with Holland model wind-pressure profile show in Table 5.  
 

Table 5. Wind-pressure Profile Error Metrics of MLR Models Compared to Holland B Model 

 

Tauktae Cyclone Pressure Profile 

S.no Model RMSE R² MAE NSE 

1 Bα 0.3631 0.9999 0.3234 0.9996 

2 Bβ 0.4295 0.9999 0.3821 0.9994 

3 Bγ 0.3630 0.9999 0.3233 0.9996 

Tauktae Cyclone Wind Profile 

1 Bα 0.3687 0.9999 0.3503 0.9980 

2 Bβ 0.4378 0.9998 0.4161 0.9972 

3 Bγ 0.3685 0.9999 0.3501 0.9980 

 

 

Model Bγ demonstrated the highest accuracy in both wind-pressure profile estimations. 
For the pressure profile it achieved the lowest RMSE (0.3630), lowest MAE (0.3233) and perfect 
correlation and efficiency scores R² (1.9999) and NSE (0.9996), indicating an almost exact match with 
the Holland profile. Model Bα, a simplified version using WIND, LAT and RMW, also performed very well, 
though slightly less accurate than Bγ. In contrast, Models Bβ, showed higher error values and less reliable 
performance. Shown in Figurer 9(a). Similarly, Model Bγ also produced the most accurate wind profile.it 
achieved the lowest RMSE (0.3685) and MAE (0.3501), along with a perfect R² (0.9999), indicating near 
perfect alignment with the Holland model. Model Bα followed closely with an RMSE of 0.3687 and MAE 
of 0.3503, still offering a good approximation of the observed wind pattern. However, Models Bα   and 
Bβ, showing higher deviations and lower reliability in their wind profile predictions. Shown in Figure (b) 

 

(a)                                                                                    (b) 

Figure 9. Comparison of wind-pressure profile of cyclone Tauktae between MLR models and the 
Holland model (a) Pressure Profile (b) Wind Profile 
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This case study provides strong evidence that the MLR-Base models designed specifically for Arabian 
Sea cyclones are practically effective. In particular, Model Bγ is validated as the most reliable and 
physically consistent model for estimating the wind-pressure profile parameter B parameter and its 
results are equally accurate and reliable as Holland Model.  The Holland wind-pressure profile of Cyclone 
Tauktae confirms its usefulness for future applications in cyclone modeling, forecasting and hazard 
assessment in the Arabian Sea region. The Bα model also showed strong performance, supporting its 
utility as a simplified but reliable model. But models Bβ wind-pressure profile showed relatively larger 
deviations with the comparison of Holland Model.  

 

Further, MLR Bγ model is used to analyze the wind-pressure profile of cyclone Tauktae.  According to 
the Bγ model of wind profile, the strongest wind is observed between 6 km and 10 km from the center of 
the cyclone to the outer radius with wind speed range between 30.5 m/s to 37.78 m/s. This range is 
classified as the Severe Hazard Zone according to Siffir-Simpson Hurricane Scale [22], where the wind 
is strong enough to cause major structural damage, uproot trees, destroy power lines and trigger 
dangerous storm surges near the coast. For this zone, our forecasts are very close to the real-Tauktae 
observations(44 -47) m/s regarding major structural damages , uprooted trees, power outages and storm 
surge particularly in the areas like Vera Val, Diu and Mumbai as reported by the India Meteorological 
Department (IMD, 2021) . This confirms the validation of our findings using statistical techniques.  

 

From 10 km to 30 km, wind speed is gradually decreasing from about 37.2 m/s to 30.2 m/s. This region 
falls under the Moderate Hazard Zone, where damage can include broken rooftops, damaged 
infrastructure, collapsed weak buildings and heavy rainfall. The forecasted impact in this zone closely 
aligns with observed damages in Junagadh and surrounding districts. These areas are still highly 
dangerous, especially for poorly constructed structures. This shows a close coincidence between the 
results obtained by our models and the real data.  

 

Between 30 km and 60 km, the wind speed dropped further, ranging from 30.2 m/s down to 24.5 m/s. 
This is the Low Hazard Zone, where the cyclone may cause moderate damage such as fallen signboards, 
partial roof damage, urban flooding, and disruption of basic services like electricity and transportation 
conditions that were consistent with field reports from Rajkot and Bhavnagar. Beyond 60 km from the 
cyclone center, wind speeds fell below 24.5 m/s, marking the Very Low Hazard Zone. Here, the cyclone’s 
impact becomes weaker, with risks limited to light flooding, waterlogging and minor infrastructure issues 
such as broken tree branches or brief power outages consistent with observations in cities like 
Ahmedabad [23]. These actual wind field data of the cyclone Tauktae validates the accuracy of the MLR. 

 
Conclusions 
 
In this study four multiple linear regression (MLR) models Bα, Bβ and Bγ and one are developed to 
estimate the wind-pressure profile parameter B for tropical cyclones in the Arabian Sea. These models 
use cyclone key parameters (independent variables) such as wind speed (WIND), central pressure (Pc), 
pressure drop (ΔP), radius of maximum wind (RMW) and latitude (LAT). Model Bγ with independent 
variables, maximum sustained wind, ΔP and LAT (latitude) is the most statistically accurate model. It 
achieved the highest adjusted R² (78%) with the lowest standard error (0.1395), and all predictors were 
statistically significant. While Model B£ with independent variable maximum sustained wind and ΔP also 
give strong accuracy. Models Bα and Bβ, have moderate R² (77% and 78%) compare to the above models 
and showed higher residuals and error values. The models are validated by testing on 20% dataset and 
comparing the results with wind-pressure profile parameter B. Model Bγ showed excellent predictive 
accuracy, with an R² of 0.7564, RMSE of 0.2756, and MAE of 0.0759 demonstrating a strong fit. While 
Models Bα and Bβ displayed weaker predictive accuracy (R² = 0.6747 and 0.6038, respectively) than the 
above two models. For further validation, these models were tested on the most intense category 4 
Arabian Sea Cyclone Tauktae dataset. The wind-pressure profile of cyclone Tauktae estimated by MLR 
models were compared with B wind-pressure profile. Among all models Bγ have most closely accurate 
pressure and wind profile structures. Model Bγ is recommended as the most reliable statistical MLR 
model for estimating the wind-pressure parameter B for the Arabian Sea. 
 
The model Bγ can be used to observe the wind and pressure profile of any cyclone. It provides a clear 
and accurate understanding of the cyclone’s structure and dynamics. This model can be used to estimate 
the cyclone’s intensity and assess its potential impact on surrounding regions. 
 
Our future work will focus on refining these models by integrating advanced machine learning 
techniques, such as neural networks, which can capture nonlinear interactions among predictors more 
effectively. Additionally, incorporating more granular observational datasets, such as high-resolution 
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ERA5 reanalysis and satellite based wind field measurements. This will enhance both model robustness 
and generalizability. Ultimately, this work lays the foundation for a reliable, region-specific modeling 
framework to support operational cyclone forecasting in the Arabian Sea. 
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