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Abstract

Tropical cyclones (TCs) in the Arabian Sea have become more frequent and intense, due to climatic
variability. These changes represent an increasing hazard to coastal communities and infrastructure
throughout the area. Accurate calculation of cyclone wind and pressure fields is critical for cyclone
forecasting, early warning systems and disaster response. Usually cyclones are studied with the help
of wind-pressure models. One such model is Holland Model which utilizes a wind-pressure profile
parameter B. This parameter which is a power exponent plays an essential role in shaping wind and
pressure profiles. It defines that how sharply the pressure drops from the outer environment to the
cyclone’s center. Although various models for estimating the wind-pressure profile parameter B exist
for basins such as the Atlantic, Northwest Pacific and Bay of Bengal, no such model has been
specifically developed for the Arabian Sea. This study addresses this gap by constructing and
evaluating multi- linear regression (MLR) models to create such power exponents for Arabian Sea
cyclones using best-track cyclone data from the IBTrACS dataset (1980—2023) which is the satellite
data. Four models Bq, Bg and By for wind-pressure profile parameter B are developed for Arabian Sea
cyclones incorporating different combinations of meteorological variables, including maximum
sustained wind, central pressure, pressure drop, radius of maximum wind (RMW) and latitude. Model’s
performance is assessed using adjusted R?, predicted R2, RMSE and MAE. Model By is the best-
performing model with the predicted R? of 78%, with the lowest standard error (0.1395). We have also
calculated B, the Holland’s wind-pressure profile parameter, on Arabian Sea data. The data used here
is satellite data instead of aircraft data. Further, all these models including B are applied to the
20% test dataset to validate the predicted wind-pressure profile parameters. Finally, we will
compare Bq, Bg and By with B. For the test data By shows good accuracy. Its correlation with B values
is 0.7796. These models are used to generate both the wind and pressure profiles of Cyclone Tauktae.
Finally, results obtained by MLR are compared with the results obtained by B. Among all MLR models
By gives results closest to B model. So, the model By is recommended as the most reliable MLR model
for estimating the wind-pressure parameter for the Arabian Sea.

Keywords: Holland parameter B, Wind-Pressure Profile, Multi-linear regression (MLR), Arabian Sea
Cyclone.

Introduction

The Arabian Sea is growing increasingly vulnerable to major tropical cyclones (TCs), since their number
and severity have increased since last decade. This Change is mostly caused by rising sea surface
temperatures and climate changes [1]. Tropical storms in this region provide severe meteorological
conditions such as high winds, torrential rainfall and coastal flooding [2]. These events can cause serious
damage to human life, homes, infrastructure and agriculture especially in countries like Oman, Pakistan,
India and Iran. Coastal areas, which are often highly populated, face the greatest risk [3]. Because of
these threats, it is very important to improve the way we forecast cyclones. In particular, we need
accurate models that can estimate the wind and pressure profile inside a cyclone, so that we can reduce
the damage through better early warning systems and disaster planning [4]. One of the most commonly

e-ISSN 2289-599X| DOI: https://doi.org/10.11113/mjfas.v21n6.4552 2844


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

MJFAS

Parveen et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 21 (2025) 2844-2856

used model to study the internal structure of tropical cyclones is the Holland model, which provides a
parametric formulation of the radial pressure and wind profile [5]. At the center of this model is the wind-
pressure profile parameter B, a power exponent that controls the steepness of the cyclone’s pressure
gradient [6]. The pressure distribution in the Holland model is defined as:

Rmax\B
P(r) = P, + AP (7)) > (1)
Where P(r) is the pressure at a radial distance r, P, is the ambient pressure, Pc is the central pressure,
AP = Pn —Pc is the pressure drop between environmental and central pressure, Rmax is the radius of
maximum wind and B is the shape parameter as defined above. As B increases, the pressure gradient
nearby Rmax becomes sharper, resulting in higher wind speeds near the storm center [7].

The wind-pressure profile parameter B is also embedded in the gradient wind speed formulation
(ignoring Coriolis force), given by [8]:

1
2

V(ir) = [ L (Rmax)B ) e_(_%)s] 50

pair r

From this, the maximum wind speed can be derived:

Vinax = % -2 (3)

B = V2 maxep > (4)

Pp—P.

Here, p represents air density, e is the natural logarithm base and V,,,,,, is maximum sustain wind ,These
equations show that B serves as a mathematical link between storm intensity and pressure structure,
making its accurate estimation crucial for both scientific understanding and effective forecasting.
Historically, the concept of cyclone pressure fields modeling originated with Schloemer’s exponential
model [6]:

Rmax

P(r) = P, + APe 2> (5)

Later, Holland improved this model by introducing the profile parameter B to better capture variability in
pressure decay. The inclusion of B allows the model to pretend a wider range of cyclone structures from
compact, intense systems to broader, weaker ones.

To understand the effect of the wind-pressure profile parameter B visually, Figure 1(a) illustrates
pressure profiles generated by using Equation (1) and Figure 1(b) illustrates wind profile generated by
using Equation (2). As shown in Figure 1(a), increasing B sharpens the pressure gradient near Rmax and
Figure1(b) shows the gradient wind speed increases near the core while decreasing further outward [7].
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Figure 1. Effect of parameter B on wind-pressure profile (a) pressure versus radial distance from Cyclone
center and (b) Wind speed versus radial distance from Cyclone center.
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Since the development of the analytical wind-pressure Holland model (1980), numerous statistical,
mathematical and numerical models have been developed to estimate the wind-pressure parameter B
using cyclone observational data across various ocean basins [5]. In the Australian region, Love et al.
proposed one of the initial statistical model, suggesting a logarithmic relationship between wind-pressure
profile parameter B and pressure drop (AP), highlighting how wind-pressure profile parameter B
increases with increasing storm intensity [9]. Hubert et al. [10] refined this with a simple linear model
directly relating wind-pressure profile parameter B to the deviation of central pressure from a reference
value (980 hpa), while Harper and Holland proposed another linear form that adjusted wind-pressure
profile parameter B relative to a baseline pressure of 900 hpa, suitable for operational use in Australia
[11]. In the Atlantic basin, Vickery et al. presented a more comprehensive linear regression model
combining both AP and radius of maximum wind (RMW) to recognize their combined influence on
cyclone structure [12]. Willoughby and Rahn built on this method by adding wind speed and latitude to
RMW, allowing for better depiction of cyclones throughout latitudinal zones [13]. In the Bay of Bengal,
Jakobsen et al. applied a physical model derived from the gradient wind balance equation, expressing
wind-pressure profile parameter B in terms of wind speed and AP, which proved effective in modeling
storm surge conditions in shallow coastal waters [14]. A significant development was made by Holland,
who introduced a reviewed form of the wind-pressure profile parameter B, termed Bs, which combined
not only AP but also cyclone translation speed, the rate of central pressure change (dP./dt) and latitude.
This made the model more approachable to dynamic storm conditions [15]. Harper ef al. and Knaff et al.
created region-specific calibration formulas in the Northwest Pacific (NWP) using AP, RMW and latitude
for pre and post-landfall circumstances [7]. More recently, Fang et al. developed advanced statistical
and machine learning models, comparing them to classical methods and representing that including
RMW, pressure trends and latitude significantly improves the accuracy of wind-pressure profile
parameter B and Bs estimates in the NWP region [16].

Despite this extensive study in other ocean basins, there is presently no statistical model for estimating
the wind-pressure profile parameter B for the Arabian Sea. In this study, we aim to address this gap by
developing an MLR model for estimating the wind-pressure profile parameter B.

Materials and Methods

This study used tropical cyclone data for the Arabian Sea from the International Best Track Archive for
Climate Stewardship (https://www.ncei.noaa.gov/products/international-best-track-archive), Version 4,
which covered the period 1980 to 2023. The dataset contains essential cyclone variables include such
as date, time, latitude, longitude, maximum sustained wind speed (WIND), minimum central pressure
(Pc) and radius of maximum wind (RMW). These records were obtained directly from the NOAA Climate
Data Repository. To assure data quality and consistency, the following Quality control criteria [8] were
applied: (1) Geographical boundaries were limited to 50-75°E longitude and 5-25°N latitude to capture
the Arabian Sea region; (2) only cyclones with WIND = 35 m/s were retained to focus on storms of at
least tropical storm intensity; (3) central pressure values were constrained to the range of 870-1000 hpa;
and (4) RMW values exceeding 150 km were excluded to remove weak or abnormally large systems. A
total of 310 profile were retained from these criteria. The dataset was randomly split into a training set
(80%) and test set (20%) to validate model performance.

Descriptive Analysis is used to understand the distribution and central tendencies of key parameters
[18] .The analysis involved to calculating the central tendency (mean, median and mode), dispersion
(standard deviation, minimum and maximum), and distribution shape (skewness). Mean (u) and
Standard Deviation (o) evaluate the average behavior and variability of each parameter. Its mathematical
expression is as given in equation (6) & (7).

w=lyn i > @)

o= YL, (xi-w? > (7)

Histograms with fitted normal distribution curves were employed to visually assess distribution patterns
and detect asymmetry. This analysis describes the intensity and structural aspects of tropical cyclones
in the Arabian Sea.
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To explore the linear relation between two variables with values ranging from -1 (strong negative
correlation) to +1 (strong positive correlation) Pearson correlation coefficients were calculated [19]. The
correlation coefficient r is computed as:

r =

Zi:l(xi_f)(Yi_y) 9 (8)
PG T, 09 2

To estimate multicollinearity between the independent variables, the Variance Inflation Factor (VIF) was
calculated for each predictor using the formula below [20].

VIF = — > (9)

Where R? is the coefficient of determination for the i*" independent variable regressed against the
remaining values. VIF values below 5 are generally considered acceptable, while values exceeding 10
are often cited as indicative of serious Multicollinearity. However, following the argument presented by
O’Brien (2007), such rules of thumb should not be rigidly applied. O’Brien highlights that even VIF values
of 10, 20 or higher may be acceptable if the regression coefficients remain statistically significant,
confidence intervals are narrow and the model has high descriptive power. In this study, although
maximum sustained wind and P suggested VIF values surpassing 10, both variables were retained due
to their strong theoretical importance, high statistical significance (p < 0.001), and the excellent
performance of the regression models [20]. Thus, while Multicollinearity is recognized, it does not
compromise the validity or interpretability of the regression results.

Multiple linear regression is known as statistical method was used to model the relation between one
independent variable (response) and two or more independent variables (predictors) [21]. The general
MLR equation is:

Bi = BO+ Bl Xi1 + BZ Xio + B3 Xi3 T+ o + B] xij +Ei > (10)
Where: B; is dependent variable, x; represents independent variables, B; is regression coefficients and
€; is the random error term.

MLR assumes a linear relationship between the dependent variable and each predictor and estimates
regression coefficients that quantify the contribution of each independent variable. This method is widely
used for prediction, trend analysis and understanding the influence of multiple factors on a target
outcome

Model performance was estimated using the statistical metric such as Coefficient of Determination (R?)
which measures goodness of fit of a model. If R? value is near to 1, it indicates a better fit of the model
to the data, Adjusted (R?) accounts for extra predictors, Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE) [17].

R2 = 1- 2RO > (1)
R =1- 500 > (12)
RusE = (132, - o) > (13)
MAE = % n IR -0 > (14)

Where, F; is the predicted value, 0, is the observed value, 0, is mean of observed values, p is number
of predictors and n is the number of observations. Lower RMSE and MAE values indicate higher
prediction accuracy.
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Results and Discussion

To study the structural characteristics of intense tropical cyclones over the Arabian Sea, the descriptive,
exploratory and correlation analysis was executed on six key variables: latitude (LAT), maximum
sustained wind speed (WIND), central pressure (Pc), pressure drop (AP), radius of maximum wind
(RMW) and Holland B parameter. The summary of descriptive statistics are presented in Table 1.

Table 1. Descriptive Analysis of Key Cyclone Parameters

S.no Variable Mean | St.Dev | Minimum | Median | Maximum Mode N for Mode | Skewness
1 LAT (°N) 16.734 | 3.013 10.370 16.900 23.000 14.4 6 -0.08
2 WIND (m/s) | 48.262 | 10.095 33.439 46.300 69.449 38.583 17 0.28
3 Pc (hpa) 955.45 | 16.11 924.00 957.00 992.00 937 12 -0.14
4 AP (hpa) 49.23 16.79 19.00 46.00 82.00 36, 67 9 0.24
5 RMW (km) 27.530 | 13.818 9.260 27.780 92.600 27.78 53 1.48
6 B Parameter | 1.5223 | 0.2205 0.9447 1.5512 1.9239 1.49407 6 -0.58
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Figure 2. Histogram with Normal Curve of LAT
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Figure 3. Histogram with Normal Curve of WIND

As shown in Figure 2, the frequency distribution of cyclone formation latitude (LAT) with a fitted normal
curve in the Arabian Sea reveals that the majority of cyclones are develop between 14°N and 20°N. The
average latitude is 16.73°N, with a standard deviation of 3.013, indicating a wide spread around the
average. The distribution is approximately symmetric, with a skewness of -0.08, indicating a minor
preference for lower latitudes. The histogram resembles the normal curve. Figure 3 depict that the
frequency distribution of maximum wind speed (WIND) with a fitted normal curve reveal that most cyclone
wind speeds range from 33 m/s to 69 m/s, with a mean of 48.26 m/s and a standard deviation of 10.10.

The distribution is moderately right-skewed (skewness = 0.28), indicating a higher frequency of moderate
wind speeds and a few cyclones with extreme intensities. The mode, 38.58 m/s, was seen 17 times,
reflecting the most common intensity range. The curve fits reasonably well, confirming a somewhat
normal pattern with moderate variability.
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Figure 4 displays the frequency distribution of central pressure (P¢) based on a fitted normal distribution.
The chart indicates that cyclone core pressures varied from 924 hpa to 992 hpa, with a mean of 955.45
hpa and a standard deviation of 16.11. The distribution is nearly symmetrical, supported by a skewness
of — 0.14, implying a balanced occurrence of low and high central pressures. The most frequently
observed pressure was 937 hpa, appearing 12 times. The symmetry confirms Pc’s normally distributed
nature in this dataset. Referring to Figure 5, the frequency distribution of pressure drop (AP) indicates
that most cyclones experienced a pressure drop between 19 hpa and 82 hpa, with a mean of 49.23 hpa
and a standard deviation of 16.79. The distribution is slightly right-skewed (skewness = 0.24), suggesting
that while moderate pressure drops are common, some cyclones had very high drops. Two modes (36
hpa and 67 hpa) appeared most frequently. This indicates that while moderate pressure drops dominate,
a few cyclones exhibit much larger pressure differences, reflecting higher intensity systems.
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Figure 6. Histogram with Normal Curve of RMW Figure 7. Histogram with Normal Curve of B

Figure 6 depicts that frequency distribution of RMW, which has a right-skewed profile, with the majority
of values between 10 km and 40 km and a few extreme cases reaching up to 92.6 km. The average
RMW is 27.53 km with a standard deviation of 13.82 and the high skewness (1.48) indicates significant
variability in cyclone structure. The normal curve does not fit perfectly, highlighting the presence of
outliers and asymmetry in cyclone wind radius distribution. Figure 7 shows the profile parameter B, which
controls the sharpness of the pressure gradient, has a mean of 1.5223 and a standard deviation of
0.2205 with values ranging from 0.9447 to 1.9239. The negative skewness of - 0.58 indicates a left-
skewed distribution, with more frequent higher B values and fewer low-B outliers. The mode 1.4941
occurred 6 times. The fitted normal distribution has a minor asymmetry indicating natural variations in
the sharpness of the pressure gradient in Arabian Sea cyclones.

According to the descriptive study, the majority of Arabian Sea cyclones originate between 14 and 20
degrees N, with modest wind speeds and near-normal core pressure distributions. Pressure drop and
wind speed are marginally right-skewed, however RMW is significantly skewed and showing structural
variability. The Holland B parameter is left-skewed indicating frequent strong pressure gradients. Overall,
the data show both common tendencies and significant variation in cyclone structure throughout the
area.
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The Pearson correlation test evaluates linear relationships among the cyclone parameters of latitude,
wind speed, pressure drop (AP), radius of maximum wind (RMW), central pressure (Pc) and the Holland
B parameter. The outcomes are presented in Table 2 below.

Table 2. Pearson Correlation Test for Tropical Cyclone Parameter

S.no Variables Correlation Coefficient (r)
1 AP and WIND 0.952
2 Pc and WIND -0.959
3 Pc and AP -0.977
4 B parameter and WIND 0.557
5 B parameter and AP 0.283
6 B parameter and LAT 0.312
7 B parameter and RMW -0.220
8 Pc and RMW 0.335
9 RMW and WIND -0.376
10 RMW and AP -0.370

As shown in Table 2, the most significant positive correlation is between wind speed and pressure drop
(r = 0.952), confirming that greater pressure gradients are connected with higher wind intensities.
Similarly, central pressure shows strong negative correlations with both wind speed and pressure drop,
reinforcing its inverse role in cyclone intensity. The Holland B parameter shows a moderate positive
relationship with wind speed and latitude, suggesting that more intense and equator ward cyclones tend
to exhibit steeper pressure gradients. However, its correlation with RMW and P. is weak, indicating that
wind-pressure profile parameter B is more strongly influenced by dynamic factors such as intensity than
by storm size or absolute pressure alone. These findings support the regression model outcome, where
wind speed, pressure drop and latitude were significant predictors of the B parameter, while RMW was
not, due to its weak correlation with intensity related variables.

To model the wind-pressure profile parameter B based on observed cyclone characteristics, four ordinary
least squares (OLS) regression models were developed and assessed. These models employed various
combinations of predictors, including maximum wind speed (WIND), central pressure (Pc) pressure drop
(AP), radius of maximum wind (RMW) and latitude (LAT). Here we use 80% of data to build the MLR.
Table 4 Represent the performance of each model.

A multi-linear regression analysis was conducted to model the wind-pressure profile parameter B using
wind speed (WIND), latitude (LAT) and radius of maximum sustained winds (RMW) as predictors. The
regression equation comes out to be the following.

Ba =0.3568 + 0.019716 WIND - 0.00170 LAT + 0.001351 RWM > (15)

This explains that 78.00% of the variance in the Holland profile parameter B (adjusted R? = 77.91%,
predicted R? from 10-fold cross-validation = 77.73%). All predictors were statistically significant (p <
0.001), but LAT variable was statistically insignificant (p = 0.238).Despite moderate Multicollinearity
between WIND and AP (VIF<2), the model's overall fit was moderate (standard error = 0.1395). Its
performance was statistically comparable to Model Bg and Model By But more complex and less
interpretable due to the non-significant predictor.

A multi-linear regression model was developed to estimate the wind-pressure profile parameter B by
using maximum wind speed (WIND) and latitude (LAT). The regression equation is:

Bg=0.4817 + 0.018349 WIND - 0.00274 LAT > (16)
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The model demonstrates excellent performance, explaining adjusted R? = 77.31%, cross-validated R? =
77.26 in the wind-pressure profile parameter B. The WIND predictors are highly significant (p < 0.001),
including latitude borderline statistical significance for LAT (p = 0.058). This makes Bg less reliable due
to one marginal predictor. No Multicollinearity is present for WIND and LAT (VIF = 1.08). The standard
error of the regression (S = 0.1414) and cross-validation error (10-fold S = 0.1414) are both low
confirming strong predictive accuracy. The residual diagnostics indicate some large residuals. No serious
violations of regression assumptions are observed. Model By is better than Model Bg, suggesting that
including RMW significantly improves the estimation of the wind-pressure profile parameter B for
cyclones in the region.

Multi-linear regression is used to model the wind-pressure profile parameter B based on WIND and
radius of maximum wind (RMW). The model equation is:

By=0.3292 + 0.019650 WIND + 0.001410 RWM > (17)

The model explains approximately 77.89% adjusted R? in wind-pressure profile parameter B, with a
cross-validated R? of 77.75%, indicating strong and stable predictive performance. Both WIND and RMW
are statistically significant (p < 0.05), and the close match between training and cross-validation metrics
(10-fold R? = 77.73%) indicates high model stability and minimal over fitting. Multicollinearity present
between WIND and RMW (VIF < 2) does not affect model validity. Residual analysis confirms that no
influential outliers are detected. Model By is a consistent predictor of the B parameter and support its use
in modeling cyclone structure in the Arabian Sea.

Models which included central pressure (Pc), pressure drop (AP) and latitude (LAT) in various
combinations, consistently underperformed with adjusted R? values around 62.88%—-62.94% and
significantly higher standard errors (~0.1807—0.1808). Moreover, most included predictors such as RWM
and LAT were statistically insignificant (p > 0.75) in these models. These models suffer from both weak
fit and poor generalization performance (10-fold R? around 62.50-62.85%). Therefore, in subsequent
analysis we will restrict our focus to the models Bq, Bg, and By only.

Comparative Analysis of Models

To assess the best predictive approach for estimating the wind-pressure profile parameter B for Arabian
Sea cyclones, three multi-linear regression models were developed and evaluated based on statistical
performance and theoretical relevance. Table 3 represents the performance of each models .Model Bq
incorporating maximum sustained wind speed (WIND) and radius of maximum wind (RMW), explained
that the adjusted R = 77.89% of the variance in B with a predicted R? of 77.75%. Although WIND and
RMW were statistically significant. Model Bg improved upon this by replacing RMW with latitude (LAT),
achieving an adjusted R? of 77.37% and a predicted R? of 77.18%. All predictors were significant and
latitude added substantial value although multicollinearity exists between WIND and LAT. Model By
which included WIND, RMW and LAT. It explained that 78.00% of the variance (adjusted R?) with a
predicted R? of 77.73 %, with the standard error (0.1395) is achieved. WIND and RMW predictors were
highly significant and although moderate multicollinearity existed between WIND and RMW, it did not
affect the model’s predictive reliability. Based on these results, Model Bq is recommended as the most
robust and accurate method for estimating the wind-pressure profile parameter B, balancing theoretical
consistency with excellent predictive power. In contrast, Model By appears to be the weakest, largely
due to its reliance on the LAT variable, which has limited explanatory power and is not statistically
significant in the context of wind-pressure profile parameter B estimation.

Table 3 Performance metrics of multi-linear Regression models

Model Predictors R? Adj. R? Pred. R? S 10- 10-fold Significant Insignificant
(%) (%) (%) fold S R? (%) Predictors Predictors
Ba WIND,LAT and RWM | 78.00 | 77.91 77.73 0.1395 | 0.1399 | 77.75 WIND(p=0.000), | LAT(p=0.238)
RWM (p=0.000)
Bg WIND,LAT 77.00 | 77.31 7718 0.1414 | 0.1414 | 77.26 WIND (p=0.000) | LAT(p=0.058)
By WIND, RWM 78.00 | 77.89 77.75 0.1395 | 0.1400 | 77.73 WIND p=0.000), | —
RWM (p=0.000)
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We applied MLR models Bq, Bg and By to the remaining 20% (96 data points) of the dataset to validate
their predictive accuracy and performance. Each model utilized a distinct combination of predictor
variables to estimate the wind-pressure profile parameter B. The wind-pressure parameter B values
predicted by MLR models are compared with the values calculated by the Holland model. Show in Figure
8.

05 Wind-pressure profile parameter B MLR models vs. Holland model

1.8
1.6
1.4
1.2

1 11 21 31 41 51 61 71 81 91
Ba BB By Holland B

Figure 8 Comparison of wind-pressure profile parameter estimated from MRL Models Bq, Bg and By
with Holland parameter B

The comparative result of MLR models and Holland model are discuss in Table 4. Results show that,
Model By shows overall best performance as compared to other models, achieving an R? of 0.7564. It
also demonstrated the lowest error metrics MSE (0.0759) and RMSE (0.2756), signifying excellent
predictive accuracy and minimal deviation from wind-pressure profile parameter B values by Holland
model. Model Bg exhibited moderate predictive power with an R? of 0.6747. It had relatively higher
residual error and RMSE (0.2925) indicating greater deviations from Holland modal values. Model Bq
Show improved performance with an R? of 0.6038 and a reduced RMSE of 0.2778 indicating a better fit
and lower prediction error compared to Model Bg while comparing to Holland model values.

Among the tested models, the WIND + RMW predictor combination provided the most reliable and
parsimonious fit. Both predictors were statistically significant (p < 0.001), with the model achieving high
explanatory power (R? = 78%) and the lowest RMSE in validation (0.2756). Although including LAT
marginally increased validation RZ its insignificance and higher error values make it less robust
compared to the WIND-RMW model.

Table 4. Comparison of wind-pressure profile parameter estimated from MRL Model Bq, Bg and By.
With Holland B

S.no Model Predictors R? Residual Residual? MSE RMSE
1 Ba WIND, RMW and LAT 0.2778

0.6038 0.0772 0.0772 0.2778

2 Bg WIND and LAT 0.6747 0.2925 0.0856 0.0856 0.2925

3 By WIND and RMW 0.7564 0.2756 0.0759 0.0759 0.2756
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A real case validation of MLR models presented here is conducted using the data of Cyclone Tauktae.
It will ensure that the MLR models developed in this study are not only mathematically accurate but also
physically meaningful. Cyclone Tauktae is the most intense recent category 4 cyclones in the Arabian
Sea. The central pressure, maximum sustained wind, Radius of Maximum wind, latitude and longitude
data for cyclone Tauktae are taken from the IBTrACS .The wind-pressure profile parameter B, which
controls the shape of the cyclone’s radial pressure and wind distribution are estimated by using multi-
linear regression models Bq, Bg and By and compared with Holland model. These estimated wind-
pressure profile parameter B values are then applied to the empirical Holland wind-pressure model
(Equation 1 and Equation 2) to generate wind and pressure profiles for Cyclone Tauktae. The wind-
pressure profile are tested by Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Correlation
Coefficient (R?), and Nash—Sutcliffe Efficiency (NSE), to compare the accuracy of each MLR models
wind-pressure profile with Holland model wind-pressure profile show in Table 5.

Table 5. Wind-pressure Profile Error Metrics of MLR Models Compared to Holland B Model

Tauktae Cyclone Pressure Profile
S.no Model RMSE R? MAE NSE
1 Ba 0.3631 0.9999 0.3234 0.9996
2 Bg 0.4295 0.9999 0.3821 0.9994
3 By 0.3630 0.9999 0.3233 0.9996
Tauktae Cyclone Wind Profile
1 Ba 0.3687 0.9999 0.3503 0.9980
2 Bs 0.4378 0.9998 0.4161 0.9972
3 By 0.3685 0.9999 0.3501 0.9980
Model By demonstrated the highest accuracy in both wind-pressure profile estimations.

For the pressure profile it achieved the lowest RMSE (0.3630), lowest MAE (0.3233) and perfect
correlation and efficiency scores R? (1.9999) and NSE (0.9996), indicating an almost exact match with
the Holland profile. Model Bq, a simplified version using WIND, LAT and RMW, also performed very well,
though slightly less accurate than By. In contrast, Models Bg, showed higher error values and less reliable
performance. Shown in Figurer 9(a). Similarly, Model By also produced the most accurate wind profile.it
achieved the lowest RMSE (0.3685) and MAE (0.3501), along with a perfect R? (0.9999), indicating near
perfect alignment with the Holland model. Model Bq followed closely with an RMSE of 0.3687 and MAE
of 0.3503, still offering a good approximation of the observed wind pattern. However, Models B« and
Bg, showing higher deviations and lower reliability in their wind profile predictions. Shown in Figure (b)
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Figure 9. Comparison of wind-pressure profile of cyclone Tauktae between MLR models and the
Holland model (a) Pressure Profile (b) Wind Profile
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This case study provides strong evidence that the MLR-Base models designed specifically for Arabian
Sea cyclones are practically effective. In particular, Model By is validated as the most reliable and
physically consistent model for estimating the wind-pressure profile parameter B parameter and its
results are equally accurate and reliable as Holland Model. The Holland wind-pressure profile of Cyclone
Tauktae confirms its usefulness for future applications in cyclone modeling, forecasting and hazard
assessment in the Arabian Sea region. The Ba model also showed strong performance, supporting its
utility as a simplified but reliable model. But models Bg wind-pressure profile showed relatively larger
deviations with the comparison of Holland Model.

Further, MLR By model is used to analyze the wind-pressure profile of cyclone Tauktae. According to
the By model of wind profile, the strongest wind is observed between 6 km and 10 km from the center of
the cyclone to the outer radius with wind speed range between 30.5 m/s to 37.78 m/s. This range is
classified as the Severe Hazard Zone according to Siffir-Simpson Hurricane Scale [22], where the wind
is strong enough to cause major structural damage, uproot trees, destroy power lines and trigger
dangerous storm surges near the coast. For this zone, our forecasts are very close to the real-Tauktae
observations(44 -47) m/s regarding major structural damages , uprooted trees, power outages and storm
surge particularly in the areas like Vera Val, Diu and Mumbai as reported by the India Meteorological
Department (IMD, 2021) . This confirms the validation of our findings using statistical techniques.

From 10 km to 30 km, wind speed is gradually decreasing from about 37.2 m/s to 30.2 m/s. This region
falls under the Moderate Hazard Zone, where damage can include broken rooftops, damaged
infrastructure, collapsed weak buildings and heavy rainfall. The forecasted impact in this zone closely
aligns with observed damages in Junagadh and surrounding districts. These areas are still highly
dangerous, especially for poorly constructed structures. This shows a close coincidence between the
results obtained by our models and the real data.

Between 30 km and 60 km, the wind speed dropped further, ranging from 30.2 m/s down to 24.5 m/s.
This is the Low Hazard Zone, where the cyclone may cause moderate damage such as fallen signboards,
partial roof damage, urban flooding, and disruption of basic services like electricity and transportation
conditions that were consistent with field reports from Rajkot and Bhavnagar. Beyond 60 km from the
cyclone center, wind speeds fell below 24.5 m/s, marking the Very Low Hazard Zone. Here, the cyclone’s
impact becomes weaker, with risks limited to light flooding, waterlogging and minor infrastructure issues
such as broken tree branches or brief power outages consistent with observations in cities like
Ahmedabad [23]. These actual wind field data of the cyclone Tauktae validates the accuracy of the MLR.

Conclusions

In this study four multiple linear regression (MLR) models Bqo, Bg and By and one are developed to
estimate the wind-pressure profile parameter B for tropical cyclones in the Arabian Sea. These models
use cyclone key parameters (independent variables) such as wind speed (WIND), central pressure (Pc),
pressure drop (AP), radius of maximum wind (RMW) and latitude (LAT). Model By with independent
variables, maximum sustained wind, AP and LAT (latitude) is the most statistically accurate model. It
achieved the highest adjusted R? (78%) with the lowest standard error (0.1395), and all predictors were
statistically significant. While Model Bz with independent variable maximum sustained wind and AP also
give strong accuracy. Models Bq and Bg, have moderate R? (77% and 78%) compare to the above models
and showed higher residuals and error values. The models are validated by testing on 20% dataset and
comparing the results with wind-pressure profile parameter B. Model By showed excellent predictive
accuracy, with an R? of 0.7564, RMSE of 0.2756, and MAE of 0.0759 demonstrating a strong fit. While
Models Bq and Bg displayed weaker predictive accuracy (R? = 0.6747 and 0.6038, respectively) than the
above two models. For further validation, these models were tested on the most intense category 4
Arabian Sea Cyclone Tauktae dataset. The wind-pressure profile of cyclone Tauktae estimated by MLR
models were compared with B wind-pressure profile. Among all models By have most closely accurate
pressure and wind profile structures. Model By is recommended as the most reliable statistical MLR
model for estimating the wind-pressure parameter B for the Arabian Sea.

The model By can be used to observe the wind and pressure profile of any cyclone. It provides a clear
and accurate understanding of the cyclone’s structure and dynamics. This model can be used to estimate
the cyclone’s intensity and assess its potential impact on surrounding regions.

Our future work will focus on refining these models by integrating advanced machine learning
techniques, such as neural networks, which can capture nonlinear interactions among predictors more
effectively. Additionally, incorporating more granular observational datasets, such as high-resolution
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ERADS reanalysis and satellite based wind field measurements. This will enhance both model robustness
and generalizability. Ultimately, this work lays the foundation for a reliable, region-specific modeling
framework to support operational cyclone forecasting in the Arabian Sea.
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