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Abstract Deep learning has shown significant potential in medical image classification; 
however, its effectiveness is often limited by the need for large, labeled datasets. In the 
context of lung cancer detection via X-ray images, the scarcity of annotated data poses a 
major challenge. This study introduces a Transfer Learning approach integrated with Deep 
Boltzmann Machines (TL-DBM) to address this limitation. Publicly available datasets such as 
MNIST and CIFAR-10 were leveraged to pre-train the DBM model, extracting transferable 
parameters for further training on chest X-ray images. The statistical correlation between 
source and target images and mean-field inference iterations during training assessed and 
adjusted to improve performance. Our experiments reveal that using CIFAR-10 source 
data—specifically airplane and dog categories—and applying a 10-step mean-field process 
yields the highest classification accuracy of 89.4%, compared to 65.4% without transfer 
learning. These findings suggest that TL-DBM offers an effective strategy for lung cancer 
image classification in data-constrained settings. 
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Introduction 
 
Lung cancer is the second-deadliest disease in the world based on GLOBOCAN data (Sung et al., 
2021; Jensen et al., 2002). Cancer patients are often treated late due to delayed diagnosis (Deng, 
2012; Jensen et al., 2002). To perform a diagnosis, doctors perform screening using a CT scan or 
traditional Chest X-ray (CXR). The CT-Scan and CXR images must then be read by a competent 
doctor to get a precise diagnosis. However, the limitations of the number of experienced doctors led 
to a slow diagnosis because there is too much data to read compared to the number of doctors. 
There is a need for a method that can help speed up the classification process of these images. 
 
Today artificial intelligence is highly developed and used in many fields. In classical supervised 
machine learning, using a shallow layer, the more labeled data, the better the result (Najafabadi et 
al., 2015; Willemink et al., 2020). Whereas in deep learning, by utilizing many layers of nonlinear 
processing, we can use a few labeled data models can achieve good performance with few labeled 
data when supported by approaches such as transfer learning (Pan & Yang, 2010; Raghu et al., 
2019; Willemink et al., 2020). This is particularly relevant in medical imaging, where annotated 
datasets are often scarce. Deep Boltzmann Machine (DBM) is a deep learning method developed 
from the Restricted Boltzmann Machine (Hinton et al., 2006). (Bengio et al., 2007) method. DBMs 
are particularly well-suited for transfer learning because they learn deep hierarchical generative 
representations that can be transferred from large source datasets to smaller domain-specific 
datasets (Bengio, 2009; Salakhutdinov & Larochelle, 2010; Srivastava & Salakhutdinov, 2012). DBM 
requires pre-training procedures to make DBM training more efficient. DBM can be used for training 
unlabeled data and can be used for fine-tuned using little labeled data (Hinton et al., 2006; 
Salakhutdinov & Larochelle, 2010). 
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However, the amount of data required for training on deep learning models is huge often very large 
(Eertink et al., 2022; Najafabadi et al., 2015). Meanwhile, the amount of CXR data for lung cancer 
cases is so limited that it becomes a challenge to use deep learning. Transfer Learning is a learning 
method to gain knowledge from other data training to complete the target data training task (Torrey 
& Shavlik, 2010). Recent studies have highlighted that transfer learning significantly improves 
performance in medical imaging tasks with limited data, including radiology and chest X-rays (Ait 
Nasser et al., 2023; Raghu et al., 2019; Ranzato et al., 2010). These works strengthen the motivation 
for adapting transfer learning within DBMs to address lung cancer classification using small datasets. 
Transfer learning can speed up the training process,. Transfer learning while also allows for deep 
learning to be used with few target data, since it previously used pretraining result parameter data 
from source data (Litjens et al., 2017; Torrey & Shavlik, 2010). 
 
In this study, we propose a transfer learning deep Boltzmann machine (TL-DBM) method. This 
method utilizes DBM pretraining results with a large number of source image datasets, and the 
parameters of the DBM pretraining results are used for training CXR data with a limited amount of 
data. Pretraining DBM is a layer-by-layer greedy consisting of a stack of Restricted Boltzmann 
Machines (RBMs) with few modifications. To estimate data-dependent expectations, mean-field 
interference is used in pretraining procedures. Furthermore, to determine the source data label that 
provides maximum results with the target data, we evaluate the correlation between the source 
image and the target image. 

 
Materials and Methods 
 
The Deep Boltzmann Machine used in this paper has three hidden layers (L=3), consisting of 500 
units in the first layer (h¹), 500 units in the second layer (ℎ!), and 2000 units in the third layer (h³). 
These numbers were selected based on prior DBM literature (Salakhutdinov & Larochelle, 2010; 
Srivastava & Salakhutdinov, 2012) and our preliminary experiments, to balance model capacity with 
the risk of overfitting when working with a small dataset (Bengio, 2009). with the energy of state 𝒗, 
𝒉 defined 
 

𝐸(𝒗, 𝒉; 𝜃) = −𝒗"𝑾#𝒉# − 𝒉#"𝑾!𝒉! − 𝒉!"𝒘$𝒉$ (1) 
 
 
Where ℎ = ℎ#, ℎ!, ℎ$ are the hidden units, and 𝜃 = {𝑊#,𝑊!,𝑊$} are the model parameters. The 
probability of the model is 
 

𝑃(𝑣; 𝜃) =
𝑃∗(𝑣; 𝜃)
𝑍(𝜃) =

1
𝑍(𝜃)5exp(−𝐸(𝒗, 𝒉#, 𝒉!, 𝒉$; 𝜃))
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(2) 

log𝑃(𝑣; 𝜃) ≥ 𝑣"𝑊#𝜇# − 𝜇#"𝑊!𝜇!'(!"𝑊$𝜇$ − log𝑍(𝜃) +ℋ(𝑄) (3) 
 

 
ℋ(𝑄) is the entropy function with 𝜇 = 𝜇#, 𝜇!, 𝜇$ are the mean field parameters with 
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The proposed TL-DBM framework consists of three stacked RBM layers used for greedy pretraining 
on the source dataset, followed by a Deep Boltzmann Machine (DBM) that integrates the pretrained 
parameters and is fine-tuned with the target dataset. In this architecture, the DBM serves as the final 
classification stage after transfer of knowledge from the source data. The proposed method differs 
from conventional transfer learning approaches (e.g., pretrained CNN followed by fine-tuning) in 
three main aspects. First, we employ Transfer Learning on a Deep Boltzmann Machine (TL-DBM), 
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where the DBM acts as the main feature extractor after a pretraining stage on the source dataset 
(MNIST or CIFAR-10). The pretrained parameters are then transferred and fine-tuned with the target 
dataset (JSRT). Second, instead of arbitrarily selecting source data, we compute the statistical 
correlation between source and target images to identify the most relevant source classes for 
transfer. Third, during fine-tuning, we vary the number of mean-field iterations in order to examine 
the trade-off between classification accuracy and computational cost. These design choices 
differentiate TL-DBM from conventional CNN-based transfer learning pipelines and are summarized 
in Figure 1: Figure 1 shows the outline proposed method and the algorithm is described below 
 

(1) Pre-processing images made the format and size uniform. 
(2) Evaluate the greedy pretraining DBM to get weights using the source data 
(3) Evaluate the correlation between the source and target image to choose the best suitable 

labelled the source images 
(4) Process the DBM algorithm with mean field interferences using Eq (4), (5), and (6) using 

the previous parameters but using target data (Hinton et al., 2006; Salakhutdinov & 
Larochelle, 2010). 

  
For the greedy pretraining Boltzmann machine, we used 3 RBMs to train source data. We evaluated 
MNIST (Bengio, 2009; Deng, 2012) and cifar10 (Ait Nasser et al., 2023; Krizhevsky et al., n.d.) 
dataset for the source data. MNIST dataset has 60000 28x28 pixels grayscale number handwriting 
images with 10 categories for training dataset and 10000 images for test dataset. Cifar10 has 32x32 
pixels 50000 of various colour images of 10 categories for training and 10000 images for test dataset. 
The 10 categories are airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck. The target 
data we used Japanese Society of Radiological Technology (JSRT) (Hussain et al., 2020; Shiraishi 
et al., 2000). JSRT consists of 154 conventional chest radiographs with 154 lung nodule and 93 
images without nodule. We divided JSRT dataset into 70% data training and 30% data test randomly. 
To ensure robustness, this random split was repeated five times with different seeds, and the 
reported accuracy is the average across all trials. This approach aligns with recommendations for 
small sample sizes, where single hold-out splits suffer from large uncertainty, and repeated 
validation is preferred (Eertink et al., 2022). 
 
To evaluate correlation between source (𝑋) and target images (𝑌), we used following equation  
 

∑ ∑ (𝑋/0 − 𝑋H)(𝑌/0 − 𝑌H)0/

I(∑ ∑ (𝑌𝑋/0 − 𝑌H𝑋H)!)(∑ ∑ (𝑌/0 − 𝑋H𝑌H)!)0/0/
	 

 

(7) 

 
In DBM process, we updated the mean-field interferences. We did several experiments about the 
number of mean-field iterations. Fine tuning was also done for the target data parameters. 
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Figure 1. Outline for the proposed method TL-DBM framework. Unlike conventional transfer learning 
(e.g., CNN fine-tuning), our method uses DBM as the main feature extractor after RBM pretraining, 
incorporates correlation-based source dataset selection, and explores mean-field iteration tuning to 
balance accuracy and efficiency 
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Results and Discussion 
 
For pre-processing, we made all data uniform. For the MNIST experiment, we made JSRT images 
to 28x28 pixels. For the Cifar10 experiment, JSRT images are resized to 32x32 pixels. Both for 
MNIST and cifar10, datasets were calculated in batch of 100. Because cifar10 has 3 layers red, 
green, blue layers, we made JSRT pixel value in three layers identically for red, green, and blue 
layers. We divided JSRT dataset into 70% data training and 30% data test randomly. Figure 2 shows 
the example of the dataset. 
 

 
Figure 2. Example of datasets 

 
 
Figure 3 Shows the results for the correlation between MNIST and JSRT dataset. On average, 
correlation between non-nodule with MNIST dataset is 0.0951 and 0.0665 for the cancer dataset. 
The maximum correlation both non-nodule and cancer images are with digit “0”. We could not use 
the same label for the training, so we tried to evaluate performance of the proposed method by using 
two cases (digit “0” as non-nodule, digit “8” as cancer) and (digit “5” as non-nodule and digit “0” as 
cancer data).  

 
Figure 3 shows that correlations between MNIST digits and JSRT images are generally weak (≤
0.1). This indicates that structural similarity between handwritten digits and lung radiographs is 
limited, which explains why transfer from MNIST produced only modest improvements in 
performance (see Table 1). 
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Figure 3. Correlation between MNIST and JSRT dataset 

 
 
Figure 4 Shows the results for the correlation between cifar10 and JSRT dataset. On average, 
correlation between cifar10 and JSRT is better than MNIST and JSRT dataset, which is 10.1851 for 
non-nodule and 10.165 for the cancer dataset. The maximum correlation for non-nodule is 0.325 
with category-1 (airplane) and for cancer is 0.245 with category-6 (dog). One plausible explanation 
is that airplane images often contain large homogeneous regions with sharp edge contrasts, while 
dog images exhibit fine-grained textures and high-frequency patterns. These characteristics more 
closely resemble the structural and textural properties of lung X-rays—such as alveolar patterns, 
vascular markings, and boundary delineations—compared to categories like ship or truck (Ranzato 
et al., 2010; Ait Nasser et al., 2023). 
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Figure 4. Correlation between cifar-10 and JSRT dataset 
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Table 1. Performance for different couple source-target dataset 

 
 Performance 

JSRT without transfer learning 65.4% 
MNIST case 1 (digit 0, digit 8) 73.2% 
MNIST case 2 (digit 6, digit 0) 75.5% 

cifar10 (airplane, dog) 87.2% 
 
 
 
Table 2. Performance for variation step of mean field 

 
 Performance 

Non-Mean Field 75.4% 
1-step Mean Field 78.6% 
5-step Mean Field 87.2% 

10=step Mean Field 89.4% 
 
 
Table 1. shows the results of the performance for different couple source-target dataset. Overall, 
transfer learning gives better performance than DBM with a small number of x-ray dataset.These 
results indicate that high correlation between source and target data provides better performance. 
The results confirms that transfer learning improves performance compared to DBM without transfer 
(65.4%). The higher accuracy obtained from CIFAR-10 (87.2%) compared to MNIST (73-75%) is 
consistent with the stronger correlations shown in Figure 4. This suggests that structural and textural 
similarity between the source and target images plays a critical role in enabling transferability. 
Categories such as airplane and dog exhibit edge contrasts and texture patterns more consistent 
with lung X-rays, which may explain their superior contribution to classification accuracy (Ranzato 
et al., 2010; Ait Nasser et al., 2023). Table 2. shows the results of the performance for variation step 
number of mean field for cifar10 (airplane, dog) case. This result shows a greater number of mean-
field iterations giving improve the performance. However, a large number of iterations lead to slower 
calculation times. The results shows that increasing the number of mean-field iterations improves 
performance, with accuracy peaking at 89.4% using 10 steps. This demonstrates that deeper 
inference provides more accurate representations for classification. However, it also increases 
computational cost. In this study we did not record exact computation times, but we acknowledge 
this limitation and will include detailed profiling of training efficiency in future work. 
 
These findings demonstrate that TL-DBM is effective for lung cancer classification even with small 
datasets, achieving accuracy up to 89.4%. The main strength of DBMs lies in their generative 
modeling capabilities, which allow them to transfer hierarchical representations across domains 
(Salakhutdinov & Larochelle, 2010; Srivastava & Salakhutdinov, 2012). This makes them suitable 
for medical imaging contexts where labeled data are scarce. However, DBMs require more intensive 
computation, careful parameter tuning, and longer training times compared to CNN-based transfer 
learning (Bengio, 2009; Ranzato et al., 2010). Moreover, CNNs and, more recently, transformer 
models dominate current medical imaging practice (Litjens et al., 2017; Shen et al., 2017), while 
DBMs are less widely adopted. Nevertheless, our results show that TL-DBM remains a viable 
approach under limited-data conditions and should be further evaluated in comparison with CNN 
and transformer-based methods using larger datasets. 
 
 

Conclusions 
 
This study demonstrates the effectiveness of classifying lung cancer using a deep learning 
framework that combines Transfer Learning with Deep Boltzmann Machines (TL-DBM), particularly 
in scenarios with limited chest X-ray data. By standardizing image formats and sizes through 
preprocessing, we enabled the DBM to be pretrained on large-scale datasets such as MNIST and 
CIFAR-10. The pretrained parameters were then transferred to train on the smaller, domain-specific 
dataset. 
 
We introduced a correlation-based method to select source data categories that align closely with 
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the target medical images. Additionally, we examined the role of mean-field iterations in improving 
classification performance during the DBM fine-tuning process. Among the tested configurations, 
using the CIFAR-10 dataset—specifically the airplane and dog categories—as source data, along 
with a 10-step mean-field update, achieved the highest accuracy of 89.4%. 
 
These findings suggest that TL-DBM offers a viable solution for applying deep learning in medical 
imaging tasks where labeled data is scarce. The model’s adaptability also opens pathways for future 
research using richer datasets such as ImageNet, which could further enhance generalization across 
various clinical imaging tasks. 
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