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Abstract The Laplacian energy of a graph refers to the total absolute differences between its 

eigenvalues and the graph’s mean degree. These eigenvalues are derived from the Laplacian matrix, 

L  which is defined as a square matrix with entries 
ii iL d=   (the vertex degree of 

iv ), 1ijL = −  if two 

distinct vertices are adjacent and otherwise 0.ijL =  The zero divisor graph of a commutative ring R is 

the graph in which all nonzero zero divisors of the ring form the vertices where two distinct vertices are 
adjacent if and only if they are commute and equal to zero. This paper constructs the zero divisor 

graphs of 
3Z  where 5,7,11,13 =  and 17 by using Python software. Subsequently, the general 

formula for the Laplacian spectrum and Laplacian energy are derived from the constructed graph, with 
an example provided to illustrate the main theorems. 
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Introduction 
 

Graph energy, introduced by Gutman in 1978, is a concept that links graph theory and chemistry. It is 
calculated as the sum of the positive eigenvalues of the adjacency matrix [1]. For a long time, graph 
energy has been a topic of study, and Gutman and Zhou [2] introduced the idea of Laplacian energy 
(LLE). Since then, a lot of research has been done on LLE. Its uses have been investigated and 
expanded by numerous researchers, especially in the context of graph theory such as Hameed et al. [3] 
studied the LLE of Laplacian integrals graph and they found the lower and upper bounds for the LLE. 

Yalçın [4] determined the LLE of 𝑟-Uniform Hypergraphs, with the derived bounds being influenced by 
key hypergraph properties such as degree and pair-degree. Dsouza et al. [5] introduced the LLE of 
partial complement of a graph and investigated properties associated with their partial complement 
Laplacian eigenvalues. Furthermore, Mutlu Varlıoğlu and Büyükköse [6] explored on LLE of the power 
graphs of finite cyclic groups and Bhat et al. [7] derived general formulas for the signless Laplacian 
energy and Laplacian energy of orbit graphs for the dihedral and quaternion groups. 

 

Moreover, previous scholars have studied rings and graphs extensively [8-12]. This paper considers the 
zero divisor graph (ZEDG) as the main graph. Beck [13] initially introduced the idea of ZEDG of a 
commutative ring where he focuses on colorization of commutative rings in 1988 and the ZEDG is 
defined as the graph which the vertices are all elements of the ring. In 1999, Anderson and Livingston 
[14] subsequently presented an updated version of the ZEDG of commutative rings. The definition given 
forward by Anderson and Livingston will be used in this paper. 

 

Numerous researchers have shown interest in the research of graph of rings. For instance, Rather et al. 
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[15] looked into the distance signless Laplacian eigenvalues of ZEDG of commutative rings, whereas 
Mönius [16] examined the eigenvalues and adjacency matrices of ZEDG of finite commutative rings. In 
2023, Mondal et al. [17] computed various topological indices for the ZEDG of commutative rings and in 
the same year also Semil et al. [10] established a general formula to compute the first Zagreb index of 

the ZEDG associated with the commutative ring kp
Z . Furthermore, a general formula for determining 

the number of zero divisors of the finite ring was discovered by Zaid et al. [18]. Kumar and Prakash [19] 
studied the Roman domination number of zero divisor graphs, providing bounds and generalizations for 
various ring structures and Pirzada and Altaf [20] analyzed cliques in extended zero divisor graphs, 
identifying rings for cliques up to order six. 

 

In this paper, the ZEDG of 
3Z  for 5,7,11,13 =  and 17  are constructed by using Python software. 

After that, based on the ZEDG, the general formulas for the Laplacian spectrum (LSpect) and LLE for 

3Z  are determined.  

 

Preliminaries 
 

This section presents several fundamental ideas and definitions related to graph theory, ring theory and 
energy that are used to find the main results.  

 

Definition 1 [21] Zero Divisors of a Ring 

When two nonzero elements a  and b  in a ring multiply together to produce zero, they are referred as 

zero divisors. The zero divisors of ring R  are collectively expressed as ( )Z R . 

 
The following definition states the ZEDG of commutative rings, which will be the main focus of this paper. 
The construction of this graph is needed, in order to determine the Laplacian matrix. 

 

Definition 2 [14] Zero Divisor Graph (ZEDG) of Commutative Rings 

The ZEDG of a commutative ring R , ( ( ))Z R , is the graph where the vertices are all elements of zero 

divisors of R  and two distinct vertices a  and b  are adjacent if and only if 0.ab ba= =  

 
Definition 3 [22] Vertex Degree 

The edges’ number incident to the vertex t  is referred to its degree, denoted as d( )t . 

 
To compute the LSpect of the ZEDG of the commutative rings, the Laplacian matrix must first be 
determined. Then, its eigenvalues are obtained from the characteristic polynomial. The following 
definition defines the Laplacian matrix of a graph. 

 
Definition 4 [23] Laplacian Matrix 

The Laplacian matrix, L  of a graph G  with vertex set 
1 2{ , ,..., }nt t t  is defined as =ii iL d  (the degree of 

vertex 
it ), = −1ijL  if 

it  and jt  are adjacent where =, {1,2,..., }i j n  which n  is the total number of vertices 

in the graph , and = 0ijL  otherwise.  

 

The following is an example demonstrates the Laplacian matrix of a simple graph. 

 

Example 1 A graph   that consists of a set of vertices of { , , , , , }G H I J K L  is shown in Figure 1 and its 

Laplacian matrix, ( )L  is determined. 

 

 
Figure 1 A simple graph consist of six vertices and eight edges 
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Based on the graph   in Figure 1, the vertices  , , , , ,G H I J K L  are used to label the columns and rows 

of the Laplacian matrix ( )L  . By Definition 4, for any adjacent vertices 
it  and jt , the element at the 

intersection of column j  and row i  (as well as at the symmetric position, column i  and row j ) in ( )L   

is −1 . Diagonal entries correspond to the degree of the vertex 
it , while entries are 0 if 

it  and jt  are not 

adjacent. Then, d( ) 3,d( ) 3,d( ) 2,d( ) 3,d( ) 3G H I J K= = = = =  and d( ) 2L = . Therefore, the Laplacian 

matrix is as follows: 

 

               G   H  I  J  K  L

3 1 0 1 1 0

1 3 1 1 0 0

0 1 2 0 0 1
( )

1 1 0 3 1 0

1 0 0 1 3 1

0 0 1 0 1 2

G

H

I
L

J

K

L

− − − 
 
− − − 
 − −

 =  
− − − 
 − − −
 

− −  

 

 

Definition 5 [24] Block Matrix 

A block matrix is a matrix divided into smaller submatrices, known as blocks. It can be represented as  

 
=  
 

A B
T

C D
, 

where A , B , C  and D  are individual submatrices forming the larger matrix. A block matrix is created 

by dividing a matrix horizontally and vertically, resulting in four distinct sections, each considered a block. 

 

Definition 6 [22] Characteristic Polynomial 

Let B  be an n n  matrix. The characteristic polynomial of B  is given by det( )B I− , which is a 

polynomial of degree n  in the complex variable  . The characteristic equation of B  is defined as

det( ) 0B I− = . 

 

Definition 7 [23] Laplacian Eigenvalues 

The graph’s Laplacian eigenvalues are the eigenvalues of the Laplacian matrix, L . The eigenvalues are 

always non-negative, with the smallest eigenvalue being 0 . The set of the eigenvalues is also known 

as the matrix's spectrum. 

 

Example 2 illustrates the characteristic polynomial of the Laplacian matrix that has been found in 
Example 1. Its eigenvalues are also determined in the example. 

 

Example 2 Refer to the Laplacian matrix presented in Example 1. The characteristic polynomial is 
calculated using the Laplacian matrix, as stated below. 

 

 













     

= −

− − − −

− − − −

− − −
=

− − − −

− − − −

− − −

= − + − + −6 5 4 3 2

( , ) det( )

3 1 0 1 1 0

1 3 1 1 0 0

0 1 2 0 0 1
        

1 1 0 3 1 0

1 0 0 1 3 1

0 0 1 0 1 2

        16 98 284 384 192

f L L I

 

 
From the characteristic equation − =det( ) 0L I , the eigenvalues are obtained as 

     = = = − = =1 2 3 4 5 60, 1.27, 2, 4, 4.73 . Therefore, the LSpect is {0,1.27,2,4,4,4.73} . 
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Definition 8 [2] Laplacian Energy 

The LLE of a graph,   is the sum of the absolute differences between its eigenvalues and the graph's 

average degree. For a graph with n  vertices, the Laplacian matrix’s eigenvalues are 1 2, ,..., n   , and r  

represents the graph's average degree. The LLE of a graph is calculated as: 

 

1
( )

n

ii
LLE r

=
 = − , 

where 
2m

r
n

=  and m  represents the number of edges of the graph. 

 

Next, the concept of block matrix is defined in Lemma 1 and it is used to prove the main theorem. 

 

Lemma 1 [25] Let U , V , W  and X  be matrices, with U  being an invertible. The block matrix T  is 

defined as  

U V
T

W X

 
=  
 

. 

The determinant of  T  can be expressed as 
1det( ) det( ) det( )T U X WU V−=  − , 

where the term 1X WU V−−  is called the Schur complement of U  in T . 

 

 

The Python Syntax for Constructing the Zero Divisor 
Graph   

 

In this section, the Python syntax to construct the ZEDG of commutative ring 
3Z  for 

5,7,11,13 =  and 17  is presented as follows. 
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The Python outputs are shown in Figure 2 until Figure 6 for 
3Z  where 5,7,11,13,17 = . 

 
 

Figure 2 Python output for 
15Z  

 

Figure 3 Python output for 
21Z  

 

  
 

Figure 4 Python output for 
33Z  

 

Figure 5 Python output for 
39Z  
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Figure 6 Python output for 
51Z  

 

 

 

Main Results 
 

In this section, the general formula of LSpect and LLE of the ZEDG for 
3Z  where 5,7,11,13 =  and 

17  are presented. The examples are also given at the last part of the section to illustrate the theorems. 

 

Theorem 1 shows the general formula of LSpect of the ZEDG for 
3Z  where it is proved by using the 

concept of block matrix and determinant of a square matrix which both concepts are presented in Lemma 
1 and Lemma 2, respectively. 

 

Lemma 2 Let n n  matrix be defined as 

f g g

g f g
M

g g f

 
 
 =
 
 
 









 where n  is the total number of 

eigenvalues. The determinant of M  is 1det( ) ( ( 1))( )nM f g n f g −= + − − . 

 

Proof Let I  and J  be n n  matrix. Matrix M  can be expressed as ( )M fI g J I= + − , where I  is the 

identity matrix and J  is the matrix of all ones. The eigenvalue of matrix J  are n (with multiplicity 1) and 

0 (with multiplicity 1n − ). Subtracting the eigenvalues of I  which is 1 from J  resulting in 1n −  and 1−

(with multiplicity 1n − ). Thus, for the eigenvalue 1n − , substituting it into ( )I J IM f g 
−

= +  gives 

1 ( 1)f g n = + −  and for eigenvalue 1− , will be 
2 .f g = −  Since the  matrix’s determinant is the product 

of its eigenvalues, hence, 
1 1

1 2det( ) ( ( 1))( ) .n nM f g n f g  − −=  = + − −   

 

Theorem 1 Let   be the ZEDG for commutative ring 
3Z . The LSpect of ( )3 Z  is 

 2(0),(2) ,( 1),( 1)  − − +  where   is a prime and greater than three. 

 

Proof Let the zero divisors of ( )3 Z  be divided into two sets: = −{3,6,...,3( 1)}R , the 1 −  multiples 

of 3 , and  = { ,2 }S , the two multiples of  . In ( )3 Z , each vertex in S  is adjacent to all vertices in 

R , and each vertex in R  is adjacent to both vertices in S , forming a complete bipartite graph 2, 1K  − . 

The Laplacian matrix of ( )3 Z  is  
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( 1) 0 1 1 1

0 ( 1) 1 1 1

1 1 2 0 0

1 1 0 2 0

1 1 0 0 2

L





− − − − 
 

− − − − 
 − −

=  
− − 

 
 

− −  













. 

 

Consequently, to find the spectrum, the Laplacian matrix L is further structured into a block matrix as 

mentioned in Lemma 1,  

2 2, 1

1,2 1

( 1)

2

I J
L

J I



 


−

− −

− − 
=  

− 
 

 

where J is a matrix of all ones with order 2 ( 1) −  and ( 1) 2 −  . To compute the determinant, let  

 

2 2, 1

1,2 1

( 1 )

(2 )

I J
L I

J I



 

 




−

− −

− − − 
− =  

− − 
 

 

By Lemma 1, 
2 1 1

2
det( ) det(( 1 ) ) det (2 )

1
L I I I J    

 
− −

 
− = − −  − − 

− − 
 , where  

 

( )( )2det 1 0

                        1,

I 

 

− − =

= −
 

For 
1 1

2
det (2 ) 0

1
I J 

 
− −

 
− − = 

− − 
, can be written as 

 

2 2 2
2

1 1 1

2 2 2
2

01 1 1

2 2 2
2

1 1 1


     


     


     

− − − −
− − − − − −

− − − −
=− − − − − −

− − − −
− − − − − −









. 

 

By Lemma 2, 1n = −  since the order of the matrix is ( 1) ( 1) −  − . Hence, 

   

2
2 ( 2) 0

1
 

 

 
− − − = 

− − 
 

(1) 

 

 
2

2 2
2 0

1 1




   

−

 
− − + = 

− − − − 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

(2) 
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Therefore, the LSpect of ( )3 Z  has eigenvalues of 0 (with multiplicity 1 ), 2  (with multiplicity 2 − ), 

1 −  and 1 + . Thus, the LSpect of ( )3 Z  is   2(0),(2) ,( 1),( 1) .  − − +  

 

Consequently, the theorem for general formula of LLE of the ZEDG for 
3Z  is computed from Theorem 

1. 

      
 

Theorem 2 Let   be the ZEDG for commutative ring 
3Z . The LLE of  ( )3 Z  is 

24( 3 4)

1

 



− +

+
 where 

  are primes and greater than three. 

 

Proof By Definition 8 and Theorem 1, for 2, 1K  −
,  2( 1)m = −  and 2 ( 1)n = + − , hence,  

( )( )
( ) ( )

( )
( )

( )
( )

( )
( ) ( ) ( ) ( ) ( ) ( )

2

3

2 2

2 2 2 2 2 2 2 2 2 2 2 2
0 2 1 1

1 1 1 1

1 1 4 4 1 1 4 44 4 4 4
                   2 2

1 1 1 1

4 4 4 3 2
                   

1 1

LLE





   
 

   

      


   

    

 

−

− − − −
 = − + − + − − + + −

+ + + +

   − + − − + + − −− − 
= + − − + +        + + + +     

 − − + −
= + + 

+ + 

Z

( )

( ) ( )

( )

2

2

2

5 2 6
2

1 1

2 6 22 2 4
                   

1 1

4 12 16
                   

1

4 3 4
                   .

1




 

  

 

 



 



 + − 
+ −   

+ +  

 − −− +
= +   + + 

− +
=

+

− +
=

+

   

 

Example 3 Let   be the ZEDG of 3(5)Z  that is 
15Z . Then, from Figure 2 and Definition 4, the Laplacian 

matrix of ZEDG for commutative ring of order 15 is 

 

( )

2 1 0 0 1 0

1 4 1 1 0 1

0 1 2 0 1 0

0 1 0 2 1 0

1 0 1 1 4 1

0 1 0 0 1 2

L

− − 
 
− − − −
 
 − −

 =  
− − 

 − − − −
 

− −  

 

 

By Definition 6, the characteristic polynomial is found as follows. 

 

From (1), From (2), 

 

( ) ( )

 

2

2
2 ( 2) 0

1

(2 2 )
             2 0

1

           2 1 2 2

                  (1 ) 0

                 (1 ) 0

                                  0

                              

 
 




 

   

  

  



 
− − − = 

− − 

−
− + =

− −

− − − = −

− + =

− + =

=

    1 = +

 

2

2

2 2
2 0

1 1

                                 (2 ) 0

                                             2






   





−

−

 
− − + = 

− − − − 

− =

=

 



 

e-ISSN 2289-599X| DOI: https://doi.org/10.11113/mjfas.v21n6.4303  2934 

Mohd Rizal et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 21 (2025) 2926−2936 

6 5 4 3 2

( , ) det( )

2 1 0 0 1 0

1 4 1 1 0 1

0 1 2 0 1 0
        

0 1 0 2 1 0

1 0 1 1 4 1

0 1 0 0 1 2

        16 96 272 368 192

f L L I 













     

= −

− − −

− − − − −

− − −
=

− − −

− − − − −

− − −

= − + − + −

 

 
From the characteristic equation − =det( ) 0L I , the eigenvalues are obtained as 

1 2 3 4 50, 2, 2, 2, 4    = = = = =  and 
6 6 = . Therefore, the LSpect is {0,2,2,2,4,6}  and by Definition 

8, 8m = , 6n = , the LLE is 

 

15

8 8 8 8 8 8
( ( )) 0 2 2 2 4 6

3 3 3 3 3 3

                9.3333.

LLE  = − + − + − + − + − + −

=

Z
 

 

By Theorem 1 and Theorem 2, for 5q = , the LSpect is  3(0),(2) ,(4),(6)  and LLE is 

( )( )24 5 3 5 4
9.3333

1 5

− +
=

+
 which same as manually calculated. 

 
Example 4 Let   be the ZEDG of 3(7)Z  that is 

21Z . Then, from Figure 3 and Definition 6, the Laplacian 

matrix of ZEDG for commutative ring of order 21 is 

 

( )

2 0 1 0 0 1 0 0

0 2 1 0 0 1 0 0

1 1 6 1 1 0 1 1

0 0 1 2 0 1 0 0

0 0 1 0 2 1 0 0

1 1 0 1 1 6 1 1

0 0 1 0 0 1 2 0

0 0 1 0 0 1 0 2

L

− − 
 

− −
 
 − − − − − −
 

− −  =
 − −
 
− − − − − − 
 − −
 
 − − 

 

 

By Definition 6, the characteristic polynomial is found as follows. 

 

8 7 6 5 4 3 2

( , ) det( )

2 0 1 0 0 1 0 0

0 2 1 0 0 1 0 0

1 1 6 1 1 0 1 1

0 0 1 2 0 1 0 0
        

0 0 1 0 2 1 0 0

1 1 0 1 1 6 1 1

0 0 1 0 0 1 2 0

0 0 1 0 0 1 0 2

        24 228 1120 3120 4992 4288 1536

f L L I 

















       

= −

− − −

− − −

− − − − − − −

− − −
=

− − −

− − − − − − −

− − −

− − −

= − + − + − + −

 

 
 

 



 

e-ISSN 2289-599X| DOI: https://doi.org/10.11113/mjfas.v21n6.4303  2935 

Mohd Rizal et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 21 (2025) 2926−2936 

From the characteristic equation − =det( ) 0L I , the eigenvalues are obtained as 

1 2 3 4 5 6 70, 2, 2, 2, 2, 2, 6      = = = = = = =  and 
8 8 = . Therefore, the LSpect is {0,2,2,2,2,2,6,8}  

and by Definition 8, 12m = , 8n = , the LLE is 

 

21( ( )) 0 3 2 3 2 3 2 3 2 3 2 3 6 3 8 3

                16.

LE  = − + − + − + − + − + − + − + −

=

Z
 

 

By Theorem 1 and Theorem 2, for 7q = , the LSpect is  5(0),(2) ,(6),(8)  and LLE is 

( )( )24 7 3 7 4
16

1 7

− +
=

+
 which same as manually calculated. 

 
Conclusion 
 

In this paper, the Python syntax is applied to construct the ZEDG of 
3Z , which provides a computational 

approach to visualize and verify the graph structure. Then, the general formulas of LSpect and LLE of 
zero divisor graph for commutative ring 

3Z  are determined. Subsequently, the examples to illustrate 

the theorems are also stated. In future research, the LSpect and LLE of the zero divisor graph for a 
commutative ring 

Z can be generalized. In addition. Other types of energies can also be applied to the 

study. 
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