Density functional theory study of electronic properties of Bi$_2$Se$_3$ and Bi$_2$Te$_3$

Abdullahi Lawal a,b,*, Amiruddin Shaari a

Abstract

Bi$_2$Se$_3$ and Bi$_2$Te$_3$ topological insulators are layered narrow gap semiconductors materials with hexagonal unit cell similar to graphene. The conducting states on their surface or edge are exciting features for future optoelectronic application. In this paper, we present here ab initio study of electronic properties of Bi$_2$Se$_3$ and Bi$_2$Te$_3$ compound without and with spin-orbit interaction using first-principles approach. Structural, band structure, total density of state (DOS), partial density of state (PDOS) were determined by Quantum-Espresso simulation package which uses plane wave basis and pseudopotential for the core electrons, while treating exchange-correlation potential with generalized gradient approximation (GGA). From our computations, the obtained results were found to be consistent with the available experimental results.

Keywords: Topological insulator, quantum-espresso, DFT

INTRODUCTION

Topological insulators are new class of narrow band gap semiconducting materials characterized by the presence of strong spin orbit (SO) interactions, which invert the orbital character of conduction and valence bands [1-4]. In topological insulators, there exist surface states at all energies with a linear dispersion with respect to the surface momentum k, and the spin polarization varies with k [1]. The main potential applications of TIs based devices: quantum computing, spintronics, enhanced thermoelectric effects, optical recording, high performance field effect transistor, laser photonics and high speed optoelectronics etc [2, 5-7]. Recently, Bi$_2$Te$_3$ and Bi$_2$Se$_3$ Tis have been studied for their special electronic properties, namely, the formation of a single Dirac cone inside the bulk band gap by the surface state leading to tunable surface band gap which is a key requirement of many optoelectronic devices [5, 8]. In order to better understand the optoelectronic properties of topological insulators such as strong light absorption, photocurrent sensitivity to the polarization of light it is essential to determine its electronic properties. Topological insulators, mainly Bi$_2$Te$_3$ and Bi$_2$Se$_3$ compound are narrow band gap semiconductor material which because of their electronic and optical properties plays an important role in broadband optoelectronic devices; these semiconductors have one of the highest figures of merit at room temperature [9]. Theoretical investigation by various ab-initio methods and experimental studies has shown that Bi$_2$Te$_3$ and Bi$_2$Se$_3$ is a narrow-gap semiconductor and the gap structure strongly depends on spin-orbit coupling [10].

The rhombohedral crystal structure of Bi$_2$Se$_3$ and Bi$_2$Te$_3$ contain five atoms per unit cell with three Se (Te) atoms differentiated by two atoms as Te1 (Se1) and the other as Te2 (Se2) which belong to (R-3m) space group while the Bi atoms are equivalent. Alternatively three rhombohedral unit cells of Bi$_2$Se$_3$ and Bi$_2$Te$_3$ structure form hexagonal unit cell containing 15 atoms with layered structure regards as quintuple layered inform of a slab of five atomic layers shown in Fig.1b [9, 11]. Quintuple layers held together along vertical axis by a very weak van der Waals bonding between neighbouring QLs [1, 12].

Most of the electronic structure calculations for Bi$_2$Se$_3$ and Bi$_2$Te$_3$ are performed with experimental data without full relaxation. In this paper, we explore the calculation of band structure, density of state (DOS) and partial density of state of state (PDOS) of Bi$_2$Te$_3$ and Bi$_2$Se$_3$ with full relaxation. Based on these optimized reference structure, we find that the band gap is in excellent agreement with the experimental results.

Fig. 1 Structure of bulk Bi$_2$Se$_3$ (a) Rhombohedral unit cell. (b) Hexagonal unit cells (c) Bulk primitive Brillouin zone of Bi$_2$Se$_3$ and Bi$_2$Te$_3$
COMPUTATIONAL METHODS

The band structure and density of states were calculated by pseudopotential and plane-wave basis set method within the density functional theory (DFT), treating exchange-correlation functional with generalized gradient approximation (GGA) in the form of Perdew–Burke–Ernzenhof (PBE) functional [3]. All pseudopotentials used in the calculations were norm-conserving scalar relativistic and full relativistic pseudopotentials. The spin orbit coupling is included in the calculation as Bi, Se and Te atoms are heavy elements the effects were treated using fully relativistic norm-conserving pseudopotentials. All calculations were performed within the Quantum-Espresso package [4]. Plane-wave kinetic energy cut-offs were set at 55 and 82 Ry with charge density of 475 Ry for Bi2Se3 and Bi2Te3, respectively. The Brillouin zone was sampled with a 10×10×10 Monkhorst-Pack grid of k-points [4]. The geometry relaxation calculations were performed as a results of the Born Openheimer approximation, this stage involves the determination of the cell parameters and the atomic coordinates that minimize the energy function within the adopted numerical approximations using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [4, 13, 14].

RESULTS AND DISCUSSION

The rhombohedral unit cell of Bulk Bi2Se3 and Bi2Te3 have space group of D53d(R-3m) as shown in fig.1 (b). The band structures calculation of Bi2Se3 and Bi2Te3 within GGA with and without taking into account the spin-orbit coupling along high-symmetry Γ→Z→Γ→Γ→L are plotted with Fermi level set at 0 eV on energy scale in band gap plots as shown in Fig.2 and Fig.3 in order to observe the effects of SOC on the topological properties of Bi2Se3 and Bi2Te3. Spin-orbit coupling calculations were performed with full relativistic pseudopotentials [9]. From the calculations of band structures and the total density of states, we get the value of the energy gap of Bi2Se3 to be around 0.33 eV, conversely for Bi2Te3 the band gap calculated were 0.13 eV. These values are close to the experimental one of 0.32 eV and 0.11eV [15, 16]. On the other hand, the shape of the band found in this work is almost similar to that of previous work [3, 9, 17-20].

The results of total and partial densities of states (DOS and PDOS) of Bi2Te3 and Bi2Se3 help to further elaborate the nature of band gap as shown in Fig.4 and Fig.5. The partial density of states gives information about the origin of bands, in the case of Bi2Te3, the s-orbital of Bi, and the s-orbital of both Te-1 and Te-2 atoms contribute the most states to the core bands while p-orbitals of Te-1 and Te-2
Table 1 Obtained results for Bi$_2$Te$_3$ and Bi$_2$Se$_3$ compounds

<table>
<thead>
<tr>
<th>Physical properties</th>
<th>Bi$_2$Te$_3$</th>
<th>Bi$_2$Se$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present Work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eg (eV)-WithSOC</td>
<td>0.13</td>
<td>0.33</td>
</tr>
<tr>
<td>WithoutSOC</td>
<td>0.31</td>
<td>0.06</td>
</tr>
<tr>
<td>Other Work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eg (eV)-WithSOC</td>
<td>0.32(18),0.10(4),0.1, 0.54(10),0.13(4)</td>
<td>0.32(18),0.3(22),0.9(23),0.32(16)</td>
</tr>
<tr>
<td>WithoutSOC</td>
<td>0.28(18),0.17(19)</td>
<td>0.3(11),0.04(19)</td>
</tr>
<tr>
<td>Experimental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eg (eV)</td>
<td>0.11(15),0.16(24),0.149(14)</td>
<td>0.32(16),0.6(14,25)</td>
</tr>
</tbody>
</table>

Fig. 5 Partial density of state for Bi$_2$Te$_3$

CONCLUSION

In the paper, we presented results of electronic properties of Bi$_2$Te$_3$ and Bi$_2$Se$_3$. The electronic band structure and density of state (DOS) was calculated using ab initio pseudopotential method within DFT framework implemented in the code Quantum Espresso. Our calculation clearly shows that the results with SOC are in good agreement with experimental and theoretical data in previous work. Hence, spin-orbit coupling needs to be included in calculation in order to give more accurate results.

ACKNOWLEDGEMENT

The authors acknowledges Ministry of Science, Technology and Innovation Malaysia (MOSTI)/Universiti Teknologi Malaysia (UTM), TETFund through Federal College of Education, Zaria, Nigeria and Center for information and Communication Technology (CICT) in university teknologi Malaysia for financial support, facilities and services of high performance computing on this research work through the research project with vote number 4S112 and 06H65.

REFERENCES