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ABSTRACT 
 
In this paper, we present the construction of homeomorphism from unit sphere; S

2
 to unit cube; C

3
. On route, we 

produced an explicit mapping between the two topological spaces where proving by construction is mainly adopted in 
this work.  

 
|  Homeomorphism  |  Homeomorphic  |  Continuously deformed  |  

 

 
1. Introduction  

 

Sphere and cube are two different geometrical objects. Even though a sphere and a cube have a different 

shape, topologically there is no difference between them [1]. In that case, we can say that the surface of a sphere 

is a topologically equivalent to the surface of a cube. Two structures are topologically equivalent if and only if 

one shape can be continuously deformed to the other shape such as bending, stretching or squeezing without 

being severed, tearing or gluing [2]. In other words, there exists homeomorphism that is an open continuous 

bijection mapping between sphere and cube.  

 

We consider two surfaces in space: a sphere and a cube. We can see that the sphere can be continuously 

deformed into the cube without tearing or collapsing them [3]. Many literature [3], [4], [5], [6], [7] mentioned 

that it is not hard to convince that a sphere can be deformed into a cube. However not all of them come up with 

an explicit mapping for a homeomorphism between them. Even though J.M. Lee in [3] posted the mapping from 

a sphere to a cube, he left out most of the essentials proofs to be homeomorphics.    
 

Therefore, in this paper we construct the homeomorphism between unit sphere, S2 and unit cube, C3. This 

paper is organized into five sections. In the next section, we define C
3
 and prove that it is a topological space. The 

proof for S
2 
was left out because Tahir in [8] had proved that it is a topological space. In section 3, we construct 

and define the mapping explicitly from S
2
 to C

3 
and built up several related lemmas. Section 4, we prove the 

homeomorphism between them by showing openness, bijective and continuity of the mapping. Finally, we draw 

some conclusions in the last section of this paper.          
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2.  C3
  
as a topological space 

 
Before we prove that C

3
 is a topological space, we defined the cube C

3 
as follows. We denote C

3 
as a surface 

of the unit cube [ ] ( )3 3
1,1 \ 1,1− −  bounded by six square faces centered at the origin in three-dimension (Figure 1). 

 
 

 

 

 

 

                                                   

 

 
 

Figure 1 :   C3  

 

Next, we show that C
3 is a topological space as follows. We define the open set V on C3 as V =θ∩C3 where θ 

is an open set in R
3
. Suppose 3C

τ  is a collection of all open sets of C
3
. 

 

First, we need to show that ∅ ∈ 3C
τ  and C

3∈ 3C
τ . We know that ∅  is a subset of any set [9] and it is open 

[10]. Therefore ∅ is an open set for C3. Thus, ∅ ∈ 3
C
τ . We also know that R3 is open and C3 is a subset of R3. 

Thus R
3∩  C

3 
= C

3
 is an open set for C

3
. Therefore, C

3∈ 3C
τ .  

 

Next, we show that 3i C
i I

V τ
∈

∈U  where Vi = θi∩  C
3
, θi is an open set in R

3
. Notice that  

i

i I

V
∈
U    =  1 2 3 4 1... ...i iV V V V V V−∪ ∪ ∪ ∪ ∪ ∪ ∪  

            =  (θ1∩  C
3
)∪ (θ2∩C

3 
)∪ (θ3∩C

3
)∪ (θ4∩C

3
)∪… 

                 ∪ (θi-1∩C3)∪ (θi∩C3) ∪… 

            =  [(θ1∪ θ2∪ θ3∪ θ4∪…∪ θi-1∪ θi∪…)] ∩C
3
 

            =  3

i

i I

Cθ
∈

 
∩ 

 
U . 

Since i

i I

θ
∈
U is open in R

3
, thus i

i I

V
∈
U = 

3

i

i I

Cθ
∈

 
∩ 

 
U  is open in C

3
. Therefore, 3i C

i I

V τ
∈

∈U . 

Lastly, we show that  3

n

i C
i I

V τ
=

∈I . Notice that 

n

i

i I

V
=
I    =   V1∩V2 ∩V3∩V4∩… ∩Vn-1∩Vn 

            =   (θ1∩C
3
) ∩  (θ2∩C

3 
) ∩  (θ3∩C

3
) ∩  (θ4∩C

3
) ∩… 

                  ∩  (θn-1∩C
3
) ∩  (θn∩C

3
) 

            =  [(θ1∩ θ2∩ θ3∩ θ4∩…∩ θn-1∩ θn)] ∩C3 

            =  3

1

n

i

i

Cθ
=

 
∩ 

 
I . 
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Since 
1

n

i

i

θ
=

 
 
 
I is open in R

3
, thus

n

i

i I

V
=
I = 3

1

n

i

i

Cθ
=

 
∩ 

 
I  is open in C

3
. Therefore, 3

n

i C
i I

V τ
=

∈I . Hence, 3C
τ  is indeed 

a topology on C3 and thus (C3, 3
C
τ ) is a topological space. 

 

In the next section, the construction of mapping between unit sphere, S
2 
to unit cube, C

3
 will be given. 

 

 
3. Mapping from S2 to C

3
       

 
In this section, we define the mapping from S

2
 to C

3
 as follows:  

 

Ø :  S
2  →  C3  (Figure 2) such that  

                                          Ø(x, y, z)   =   
( , , )

max{ , , }

x y z

x y z
   ,                                                                              (1) 

where ( ){ }2 3 2 2 2, , : 1S x y z R x y z= ∈ + + = and [ ] ( )3 33
1,1 \ 1,1C = − −   .                                                          (2)      

 

 

                                                     S
2                                                                    C3 

 

 

 

     

        

            

 

 

 

 

 

 

Figure 2  :  The mapping from S2 to C3  

 

Next, we partition the unit sphere as S
2
 = 

6

1

i

i

D
=
U   into six regions as below : 

D1  : { (x, y, z) ∈S
2  
:  

1

3
 ≤  z  ≤  1      ,  −

1

3
  ≤  x , y ≤ 

1

3
 ,  z ≥ x,y } , 

D2  : {(x, y, z) ∈  S
2   
:  –1  ≤  z  ≤ −

1

3
 ,  −

1

3
 ≤  x , y  ≤ 

1

3
 ,  |z| ≥ x,y} , 

D3  : {(x, y, z) ∈  S
2
 :  

1

3
≤  x ≤  1        ,  −

1

3
< y, z <

1

3
     ,   x>y,z } , 

D4  : {(x, y, z) ∈  S
2  
:  –1 ≤ x ≤ −

1

3
    ,  −

1

3
< y, z <

1

3
     ,  |x|>y,z } , 

 Ø 
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D5  : {(x, y, z) ∈  S
2
 :  

1

3
≤  y  ≤ 1        ,  −

1

3
≤ x ≤

1

3
  ,  −

1

3
 < z <

1

3
 ,  y≥ x, y>z}  , 

 D6  : {(x, y, z)∈  S
2  
: –1 ≤ y ≤ −

1

3
, −

1

3
≤ x ≤

1

3
, −

1

3
< z <

1

3
,  |y|≥ x, |y|>z}. 

 

On the other hand, we partition the unit cube as C3  = 
6

1

i

i

F
=
U  (Figure 1) where  

F1  :  { (x, y, z) ∈  C
3  
:   z  =   1  ,  1 , 1x y− ≤ ≤  }  , 

F2  :  { (x, y, z) ∈  C
3  
:   z  = –1  ,  1 , 1x y− ≤ ≤  }  , 

F3  :  { (x, y, z) ∈  C
3  
:   x  =   1  ,  1 , 1y z− < <  }  , 

F4  :  { (x, y, z) ∈  C
3  
:   x  = –1  ,  1 , 1y z− < <  }  , 

F5  :  { (x, y, z) ∈  C
3  
:   y  =   1  ,  1 1x− ≤ ≤  , 1 1z− < <  }  , 

F6  :  { (x, y, z) ∈  C
3  
:   y  = –1  ,  1 1x− ≤ ≤  , 1 1z− < <  } . 

 

So, the mapping can be redefined as :    

Ø :  
6

1

i

i

D
=
U = S2   →  

6

1

i

i

F
=
U = C3        . 

 

Then, we build the following lemmas in order to prove that S
2
 is homeomorphic to C

3
.  

 

Lemma 3.1 If  x, y ∈  [–a,a] and z∈  [a,1] for 0 ≤ a ≤
1

3
, then max{|x|, |y|, |z|}= z .     

Proof :  

Consider S = { (x, y, z)  :  x, y∈  [–a,a] and z∈  [a,1]  for  0 ≤  a  ≤ 
1

3
 } . 

Therefore   max{|x|} =  max{|y|} = a  and  min{|z|} = a  . 

Observed that,  

max{|x|, |y|, |z|} ≥  max{|x|} = a  and  max{|x|, |y|, |z|} ≥ max{|y|} = a  . 

But then, 
max{|x|, |y|, |z|} ≥  max{|z|} ≥  min {|z|} = a  = max{|x|} = max{|y|} . 

Then, if  (xo, yo, zo) ∈S, max{|xo|, |yo|, |zo|} = zo  since  zo > 0 ,  so |zo|  ≥  min{|z|},∀ z ∈  [a,1].  

 

Lemma 3.2  If    

D1  :  { (x, y, z) ∈  S
2
 
  
:   

1

3
 ≤  z  ≤  1  ,   −

1

3
 ≤  x , y ≤ 

1

3
,  z ≥ x,y   }   ,   

F1  :   { (x, y, z) ∈  C
3    

:   z  = 1 ,  –1 ≤  x , y ≤ 1 }   and  there exists a mapping    

Ø   :  D1  →  F1   ∋   Ø(x, y, z)  = 
( , , )

max{ , , }

x y z

x y z
, then Ø is onto. 
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Proof :  

 

We will prove that Ø(D1) = F1 by showing that Ø(D1) ⊆  F1  and F1 ⊆  Ø(D1), where Ø(x, y, z) = (x’, y’, z’) ∈F1   

for (x, y, z) ∈D1 . 

 

(i) Ø(D1) ⊆  F1    

       We choose a ∈Ø(D1), therefore a =
( , , )

max{ , , }

x y z

x y z
  for some (x, y, z) ∈D1 . 

       By Lemma 3.1, we have max{|x|, |y|, |z|} = z  .  

       Therefore     a  =  
( , , )x y z

z
 = , ,1

x y

z z

 
 
 

, 0z ≠ .  Then, we need to show      

       1 , 1
x y

z z
− ≤ ≤ .   

       But,               

1 1
3 3

11
3

x

z

−

≤ ≤          ⇒     
1

1
3

x

z
− ≤ ≤  .  

       Similarly,     

1 1
3 3

11
3

y

z

−

≤ ≤       ⇒     
1

1
3

y

z
− ≤ ≤  . 

       Thus a ∈  F1.  

 

 

(ii) F1 ⊆  Ø(D1) 

       We choose b ∈  F1 . Therefore  b = (x’, y’, 1) ∋  x’∈  [–1,1] and y’∈  [–1,1] .  

       We need to show that b ∈
 
Ø(D1) .  

       But then  (x’, y’, 1) = 
( ' , ' , )x z y z z

z
           for  

1
1

3
z≤ ≤ , 0z ≠  and  

1 1
' , '

3 3
x z y z− ≤ ≤  

                                    =  
( ' , ' , )

max{ ' , ' , }

x z y z z

x z y z z
 

                                    =   
( , , )

max{ , , }

x y z

x y z
      where   'x x z= ,  'y y z=    

                                    =   Ø(x, y, z)                 for 
1

1
3

z≤ ≤  and 
1 1

,
3 3

x y− ≤ ≤                                                    

           

                                    =   Ø(D1) . 

       Thus, b ∈  Ø(D1) . 

 

Since Ø(D1) ⊆  F1  and  F1 ⊆  Ø(D1), clearly Ø(D1) = F1 . 

 
By, using similar arguments as shown in Lemma 3.1 and Lemma 3.2, we can have the following 

Lemmas for the other five partitions respectively. 
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Lemma 3.3  If  x, y ∈  [–a,a] and z∈  [–1,–a] for 0 ≤ a ≤
1

3
, then max{|x|,|y|,|z|}=|z|.       

 
Lemma 3.4  If    

D2  :  { (x, y, z) ∈  S2   :   –1 ≤  z  ≤  –
1

3
 ,   –

1

3
≤  x , y  ≤ 

1

3
,  |z| ≥ x,y   }   ,   

F2  :   { (x, y, z) ∈  C
3   
:    z  =  –1  , –1 ≤  x , y  ≤ 1  }  and  there exists a mapping    

Ø   :  D2  →  F2   ∋   Ø(x, y, z)  = 
( , , )

max{ , , }

x y z

x y z
, then Ø  is onto. 

 

Lemma 3.5  If  y, z∈ (–a,a) and x∈ [a,1] for 0 ≤ a ≤
3

1
, then max{|x|,|y|,|z|}= x.   

 

Lemma 3.6  If    

D3  :  { (x, y, z) ∈  S
2
  :   

1

3
≤ x ≤  1   ,   −

1

3
< y, z <

1

3
,  x>y,z }  , 

F3  :   { (x, y, z) ∈  C3  :  x  =  1  ,  –1 < y, z < 1 }    and  there exists a mapping   

Ø   :  D3  →  F3   ∋   Ø(x, y, z)  = 
( , , )

max{ , , }

x y z

x y z
, then Ø  is onto.     

 

Lemma 3.7 If y, z∈ (–a,a) and x∈ [–1,–a] for 0 ≤a≤
1

3
, then max{|x|,|y|,|z|}= |x|.   

 

Lemma 3.8  If    

D4  :  { (x, y, z) ∈  S2  :  –1 ≤ x ≤ −
1

3
,   −

1

3
< y, z <

1

3
,  |x|>y,z }  , 

F4  :   { (x, y, z) ∈  C
3  
:   x  = –1  ,  –1 < y, z < 1  }   and there exists a mapping   

Ø   :  D4  →  F4   ∋   Ø(x, y, z)  = 
( , , )

max{ , , }

x y z

x y z
, then Ø  is onto. 

 

Lemma 3.9 If x∈ [–a,a], z∈ (–a,a) and y∈ [a,1]  for  0 ≤ a ≤
1

3
, then max{|x|,|y|,|z|}= y.  

 

Lemma 3.10  Let    

D5  :  { (x, y, z) ∈
 
S
2
 :   

1

3
≤  y  ≤ 1   ,  −

1

3
 ≤  x  ≤ 

1

3
,   −

1

3
 < z < 

1

3
,  y≥x, y>z }  , 

F5  :   { (x, y, z) ∈  C3  :  y  = 1 ,  –1≤ x ≤ 1 ,  –1 < z < 1   }    and  there exists a mapping  

Ø   :  D5  →  F5   ∋   Ø(x, y, z)  = 
( , , )

max{ , , }

x y z

x y z
, then Ø  is onto. 

 

Lemma 3.11 If x∈ [–a,a], z∈ (–a,a) and y∈ [–1,–a] for 0 ≤ a ≤
1

3
,then max{|x|,|y|,|z|}=|y|.    
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Lemma 3.12  If    

D6  :  { (x, y, z) ∈  S
2  
:    –1 ≤ y  ≤ −

1

3
, −

1

3
 ≤ x ≤ 

1

3
,  −

1

3
 < z < 

1

3
,  y≥x, |y|>z }  , 

F6  :   { (x, y, z) ∈  C
3   
:  y  = –1  ,  –1≤  x  ≤ 1 , –1 < z < 1 }    and  there exists a mapping  

Ø   :  D6  →  F6   ∋   Ø(x, y, z)  = 
( , , )

max{ , , }

x y z

x y z
, then Ø  is onto. 

In this section, we have shown that Ø is a function from 
6

1

i

i

D
=
U = S

2 
 to 

6

1

i

i

F
=
U = C

3  
and we are now ready to 

show the homeomorphism between them in the following section.  

 

 
4. Homeomorphism between S2

  
and C3 

 
In this section, we will prove the equivalent structure of the sphere and cube (i.e. homeomorphism). In other 

words, S
2 ≅ C

3
. Before that, we present some general definitions and theorems which will be used along with the 

construction of this homeomorphism.  

 

 

Theorem 4.1 [11]   If  F = (f1, f2, …, fm) is a mapping from R
n
 to R

m
 , then 

 

F*(Uj(p))  =  ( ) ( )( )
1

m
i

i

i j

f
p U F p

x=

∂

∂∑ ,       for  1 ≤  j ≤ n   . 

Jacobian matrix of F at p is  

( )i

j

f
p

x

  ∂
    ∂  

 ,      for 1 ≤  i ≤ m , 1 ≤  j ≤ n  . 

 

Theorem 4.2 [9]   A map f : X →Y  from topological space X to a topological space Y  is continuous if and only if 

the inverse image  f
-1
(U) of each open subset V of Y is open in X. 

 

 

Definition 4.3 [9]   A map  f : X →Y  between topological space is open if the image  f(U) of each open subset U 

of X is open in Y and closed if the image f(E) of each closed subset E of  X is closed in Y. 

 

 

Definition 4.4 [12]  A function  f : X →Y  between topological space is called a homeomorphism if  f : X →Y is 

one-to-one and onto and both f and f
-1
  are continuous. The notation  X ≅ Y  means that X is homeomorphic to Y.  

 

 

Theorem  4.5     S
2 
 is homeomorphic to C

3  
 

 
Proof : 

Firstly, we define Ø :  S
2   
→  C

3   ∋   Ø(x, y, z) = ( , , )

max{ , , }

x y z

x y z
  with  

( ){ }2 3 2 2 2, , : 1S x y z R x y z= ∈ + + =  and  [ ] ( )3 33
1,1 \ 1,1C = − −  . 
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Assume ( )1 1 1, ,x y z  = ( )2 2 2, ,x y z . Therefore 1 1 1

1 1 1

( , , )

max{ , , }

x y z

x y z
 = 2 2 2

2 2 2

( , , )

max{ , , }

x y z

x y z
 which implies  

Ø ( )1 1 1, ,x y z = Ø ( )2 2 2, ,x y z . Thus, Ø is a function from a topological space S
2
 to a topological space C

3
.  In the 

following proving, we will consider the function as  Ø :  
6

1

i

i

D
=
U = S

2  
 →  

6

1

i

i

F
=
U = C

3   
. 

Next, we will show Ø is bijective. Pick a∈C
3
. Therefore ∃  (x, y, z) ∈S

2   ∋   a  = ( , , )

max{ , , }

x y z

x y z
  

=  Ø(x, y, z). Thus Ø is onto. 

 

Now, we will use the same proving technique that had been done by Tahir [8], [13 ] to show that Ø is one to 

one. Let  Ø = Ø*   and  

 

            Ø(x, y, z)  = 
( , , )

max{ , , }

x y z

x y z
 =  

( , , )x y z

p
= , ,

x y z

p p p

 
 
 

 

               = 
* * *
, ,

* * *

x y z

p p p

 
 
 

=
( *, *, *)

*

x y z

p
 = 

( *, *, *)

max{ * , * , *}

x y z

x y z
 =  Ø(x*, y*, z*) 

 

where  p, p* ≠ 0 for (x, y, z), (x*, y*, z*)∈S
2  
with  corresponding  p and p*.  Since Ø(x, y, z) = Ø(x*, y*, z*), so 

Jacobian matrix Ø on (x, y, z) = Jacobian matrix Ø on (x*, y*, z*). Using Theorem 4.1, we get    

 

x x x

x p y p z p

y y y

x p y p z p

z z z

x p y p z p

      ∂ ∂ ∂
      
∂ ∂ ∂      

      ∂ ∂ ∂       ∂ ∂ ∂     
 

     ∂ ∂ ∂ 
      ∂ ∂ ∂      

  =  

* * *

* * * * * *

* * *

* * * * * *

* * *

* * * * * *

x x x

x p y p z p

y y y

x p y p z p

z z z

x p y p z p

      ∂ ∂ ∂
      
∂ ∂ ∂      

      ∂ ∂ ∂       ∂ ∂ ∂     
 

     ∂ ∂ ∂ 
      ∂ ∂ ∂      

 

                                         ⇒        

1
0 0

1
0 0

1
0 0

p

p

p

 
 
 
 
 
 
 
  
 

 =  

1
0 0

*

1
0 0

*

1
0 0

*

p

p

p

 
 
 
 
 
 
 
  
 

                                                        (3) 

 

From (3), we have 

1 1
*

*
p p

p p
= ⇒ =  . 

 

From the components of Jacobian matrix above, we can conclude that   

1 1
*

*
p p

p p
= ⇒ =  . 

This implies      
*x x

p p
=  ⇒   x = x*  ,   

*y y

p p
= ⇒   y = y*   and  

*z z

p p
= ⇒   z = z*  . 
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Thus, Ø is one-to-one. Since Ø is onto and one-to-one, therefore Ø is a bijection. 

 

Next, we will show that Ø is continuous by using Theorem 4.2. According to this theorem, we need to show 

that Ø
-1
(β) is open in S

2 
for every open set β in C

3
. Pick (a, b, c) ∈  Ø

-1
(β) where β is an open set in C

3
. Consider 

Ø
-1
(β) = { Ø

-1
(x’, y’, z’) : (x’, y’, z’) ∈  β } .  

Since Ø
-1
(β) is a bijection, there exists unique (x’, y’, z’) ∈  β such that Ø

-1
(x’, y’, z’) = (a, b, c). Since β is open, 

then N(x’, y’, z’)⊂ β exists.  

Consider  

Ø-1(N(x’, y’, z’)) = { Ø-1(x’*, y’*, z’*) : (x’*, y’*, z’*) ∈  N(x’, y’, z’) }. 

Clearly  (a, b, c) = Ø
-1
(x’, y’, z’) ∈Ø

-1
(N(x’, y’, z’)). Then, pick any p∈Ø

-1
(N(x’, y’, z’). Since Ø

-1 
is a bijection, 

there exists unique (x’*, y’*, z’*) ∈  N(x’, y’, z’) such that Ø
-1
(x’*, y’*, z’*) = p. Since  N(x’, y’, z’)⊂ β, so 

(x’*, y’*, z’*)∈β. Thus,  p = Ø
-1
(x’*, y’*, z’*) ∈  Ø

-1
(β) and this implies Ø

-1
(N(x’, y’, z’)⊂  Ø

-1
(β). 

Notice that  

(a, b, c) ∈  Ø
-1
(N(x’, y’, z’)⊂  Ø

-1
(β).  

Since (a, b, c) ∈  Ø
-1

(β)  is arbitrary, therefore we can conclude that 

(a, b, c) ∈  Ø
-1
(N(x’, y’, z’)⊂  Ø

-1
(β) for every (a, b, c)∈Ø

-1
(β) for some corresponding (x’, y’, z’)∈β. Hence,  

Ø-1(β) is open. Since β is arbitrary, therefore we can conclude that Ø-1(β) is open in S2 for every open set β in C3. 

Thus, by Theorem 4.2, Ø is continuous (Figure 3). 
 

                                                                                                

Figure 3 :  Ø  is continuous  
  

To show Ø
-1 
is continuous is equivalent as showing Ø is an open map. In order to prove that Ø is an open 

map, by using Definition 4.3 we need to show that Ø(A) is open in C
3 
for every open set A in S

2
. Pick  

(a, b, c) ∈  Ø(A) such that A is an open set in S2. Consider 

Ø(A) = { Ø(x, y, z) : (x, y, z) ∈ A } . 

Since Ø is a bijection, there exists unique (x, y, z)∈A such that Ø(x, y, z) = (a, b, c). Since A is open, then N(x, y, 

z)⊂A exists.  

Consider 

Ø(N(x, y, z)) = { Ø(x’, y’, z’) : (x’, y’, z’) ∈  N(x, y, z) }. 

Clearly (a, b, c) = Ø(x, y, z) ∈  Ø(N(x, y, z)). Then, pick any p∈Ø(N(x, y, z)). Since Ø is a bijection, there exists 

unique (x’, y’, z’) ∈  N(x, y, z)  such that Ø(x’, y’, z’) = p. Since N(x, y, z)⊂  A , so (x’, y’, z’) ∈  A. Thus,  

p = Ø(x’, y’, z’) ∈  Ø(A) and this implies Ø(N(x, y, z)) ⊂  Ø(A) .  

Notice that 

(a, b, c) ∈Ø(N(x, y, z)) ⊂  Ø(A). 

Since (a, b, c) ∈Ø(A) is arbitrary, therefore we can conclude that (a, b, c) ∈Ø(N(x, y, z)) ⊂  Ø(A) for every (a, b, 

c) ∈Ø(A) for some corresponding (x, y, z) ∈  A . Hence, Ø(A) is open. Since A is arbitrary, therefore we conclude 

that Ø(A) is open in C
3 
for every open set A in S

2
 . By using Definition 4.3, Ø is open. Therefore, Ø

-1 
is 

continuous. 

Ø-1 
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Finally, since  Ø :  S2  →  C3  ∋  Ø(x, y, z) = ( , , )

max{ , , }

x y z

x y z
  with  ( ){ }2 3 2 2 2

, , : 1S x y z R x y z= ∈ + + = and 

[ ] ( )3 33
1,1 \ 1,1C = − −   is onto, one-to-one, continuous as well as Ø

-1 
is continuous, Ø is a homeomorphism by 

using definition 4.4. Since homeomorphism of S2 and C3 exists, S2 is homeomorphic to C3 and we write S2≅ C3 

(Figure 4).    

                                         
              

                                                   
                               

 

Figure 4 :  Homeomorphism of  S
2
 and C

3 

  

5. Conclusion 

 
 In this paper, we have shown the construction of the homeomorphism between the unit sphere and the unit 

cube where they have an equivalent structure. It also preserves properties that spaces have. Results obtained from 

this research are very important in image processing and particularly Electroencephalography (EEG) signal for 

human brain.    
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