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Abstract The modes in the electrocardiogram (ECG) signal can be divided into stable modes 
and unstable modes. The unstable modes are of great significance for signal analysis and 
classification. When the traditional dynamic mode decomposition (DMD) method is directly applied 
to these signals, it is difficult to effectively extract these key modes due to the rank mismatch 
problem of the data matrix. In order to better capture and analyze unstable modes, this study 
introduced the Hankel matrix to expand ECG data and used it as the input of DMD to propose the 
Hankel dynamic mode decomposition (HDMD) method. Although HDMD has been applied in other 
physiological signal processing, this study is the first to successfully apply it to multi-lead ECG 
signal analysis. By optimizing the delay parameters of the Hankel matrix and retaining the modes 
that account for 90% of the singular value decomposition energy, we significantly improve the 
effectiveness of feature extraction. Each type of abnormal ECG signal data is classified on the 
PTB Diagnostic ECG database. The experimental results of the proposed model are compared 
with the direct use of DMD for modal extraction. The highest classification accuracy of multi-modal 
ECG signal data extracted by HDMD is more than 10% higher than that using DMD. At the same 
time, the mean squared error (MSE) of the reconstruction using HDMD is 0.282 lower than that of 
DMD, indicating a significant improvement in reconstruction accuracy. Further illustrating the 
proposed method, the HDMD method can better capture and analyze the unstable modes in the 
ECG signal, thereby significantly improving the accuracy and robustness of signal classification. 
Future work will focus on further optimizing the parameter selection of the HDMD model and 
exploring its application potential in real-time heart disease monitoring and early warning systems. 
Keywords: Hankel matrix, Hankel dynamic mode decomposition (HDMD), classifier, ECG signals. 

 
Introduction 

 
The ECG signal stands as a record of cardiac activity, embodying a nonlinear signal, extensively utilized 
for the assessment of cardiac ailments [1]. Normal ECG signals reflect the electrical activity of the heart 
in a stable state. It consists of a series of typical waveforms, including P waves, QRS complex waves 
and T waves, as shown in Figure 1 (a). These waveforms correspond to the processes of atrial 
depolarization, ventricular depolari-zation and repolarization. In a standard 12-lead ECG, the shape and 
amplitude of the waveforms in each lead show a specific distribution pattern, as shown in Figure 1 (b). 
The PR interval, QRS interval and QT interval are stable in equal time intervals, showing the 
electrophysiological characteristics of a healthy heart. This regularity and stability of normal ECG signals 
provide a baseline reference for clinical diagnosis. 
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（a）Basic components of an ECG                     （b）Normal standard 12-lead ECG 

 
Figure 1. ECG components and normal 12-lead ECG 

 
 
Abnormal ECG signals indicate pathological changes in cardiac function, often accompanied by 
abnormal waveforms, rhythms, or intervals. Table 1 summarizes in detail the key ECG features of seven 
heart diseases [2], including Myocardial Infarction, Cardiomyopathy, Bundle Branch Block, and 
Dysrhythmia, etc. In particular, Figure 2 specifically shows the abnormal parts of the ECG for four 
common diseases, including Myocardial Infarction (MI), Right Bundle Branch Block (RBBB), atrial 
fibrillation, and Left Ventricular Hypertrophy (LVH). These abnormal waveforms reflect the impact of 
various diseases on cardiac electrical activity and are an important basis for identifying and diagnosing 
these heart diseases. If different heart diseases can be effectively classified based on ECG signal data 
[3], it will help doctors detect and deal with abnormal conditions on time and keep patients' hearts healthy. 
In addition, the appearance of abnormal signals is usually associated with unstable modes, which can 
reveal underlying pathological processes and become an important basis for disease diagnosis and 
treatment. 
 

Table 1. Summary of ECG characteristics of various heart diseases 
 

No. Cardiac Diseases ECG Characteristics 
1 Myocardial Infarction ST-segment elevation or depression, pathological Q waves (deepened, widened), inverted T 

waves. 
2 Cardiomyopathy/Heart 

Failure 
Low voltage QRS complex, abnormal T waves (flattened or inverted), prolonged QRS duration, 

possible bundle branch block or atrial fibrillation. 

3 Bundle Branch Block Right Bundle Branch Block (RBBB): Wide QRS complex with an "M" pattern in V1, deep S wave 
in V6. 

Left Bundle Branch Block (LBBB): Wide QRS complex, QS wave (or small r wave) in V1, broad 
and notched R wave in V6 

4 Dysrhythmia Absent P waves (atrial fibrillation), wide QRS complex (premature ventricular contractions), 
bradycardia, or tachycardia. 

5 Myocardial Hypertrophy Right Ventricular Hypertrophy (RVH): Tall R wave in V1, deep S wave in V6. 
Left Ventricular Hypertrophy (LVH): High QRS voltage, deep S wave in V1, tall R wave in V5/V6. 

6 Valvular Heart Disease Widened and notched P waves (mitral stenosis), characteristic QRS changes indicating left 
ventricular hypertrophy (aortic stenosis). 

7 Myocarditis Flattened or inverted T waves, non-specific ST segment changes (elevation or depression), 
prolonged PR interval, possible arrhythmias. 

 
 

DMD emerges as a mathematical technique for extracting dynamic modes from time series data [4]. It 
decomposes time series data into a series of spatial modes and corresponding temporal modes, thereby 
capturing dynamic features and structural information within the data. Employing extracted dynamic 
modes for ECG data classification enhances algorithmic operational efficiency. DMD obviates the need 
for physical modeling of systems, instead directly extracting dynamic information from data, thus being 
suitable for various complex systems [5]. With a relatively straightforward computational process, 
typically involving basic operations such as matrix computations and eigenvalue decomposition, DMD 
boasts high computational efficiency [6]. Each mode corresponds to a dynamic feature within the data, 
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facilitating convenient data interpretation and analysis. DMD not only finds utility in the decomposition 
and analysis of time series data but also extends its application to domains such as image processing, 
fluid mechanics, and dynamic systems [7]-[8]. Despite its numerous advantages, DMD does possess 
limitations, including a higher requirement for data linearity and relatively weaker handling capabilities 
for noise and non-linear effects [9]. Hence, the application of DMD necessitates prudent selection and 
adjustments based on the specific characteristics of the problem at hand. 
 

 
（a）Myicardial Infarction                         （b）Right Bundle Branch Block 

 
（c）Atrial Fibrillation                                （d）Left Ventricular Hypetrophy 

 
Figure 2. ECG characteristics of typical heart diseases. 

 
 
However, in ECG signal analysis, the stability of the modes is a key issue. The modes in the ECG signal 
can be divided into stable modes and unstable modes [10]. This study focuses more on unstable modes 
because the changes in these modes can indicate underlying cardiac pathologies and provide key 
physiological information for diagnosis and treatment. Unstable modes, especially in abnormal conditions 
such as heart attacks or other acute cardiac events, often exhibit more complex dynamic characteristics. 
Traditional DMD methods often encounter the problem of data matrix rank mismatch when processing 
these signals, that is, the number of rows is much smaller than the number of columns, which causes 
DMD to be ineffective in extracting mode features. 
 
The objective of this study is to improve DMD. Instead of extracting dynamic modes directly from the 
data, the Hankel matrix of ECG signal data is first constructed [11] and the DMD method is applied to 
extract the modes of the Hankel matrix. The delay parameters of the Hankel matrix are optimized and 
the modes that account for 90% of the singular value decomposition energy are retained. Hankel 
matrices preserve the temporal sequence structure of the original data, typically exhibiting superior 
numerical stability as they are constructed through sliding windows of the original data [12]. This 
approach aims to reduce computational complexity, enhance stability, and broaden applicability. 
 
The research on ECG signal data classification primarily encompasses methods for feature extraction 
and optimization of various classification algorithms. The domain of feature extraction, it involves 
extracting both temporal and spectral features, which can be augmented through signal translation, 
scaling, and other techniques to enhance generalization capabilities. Among these techniques, the 
utilization of Hankel matrices for data transformation stands out as an effective method for data 
augmentation. Sun et al. proposed an enhanced method based on Hankel matrices for identifying states 
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based on the vibrations sampled at each rotation of the main axis, with matrix similarity employed for 
mechanical operation state monitoring [12]. Frolov et al. employed a method based on specialized 
Hankel matrices to replicate certain properties of self-attention networks, significantly accelerating 
training time and demonstrating competitiveness in recommendation quality [13]. Orinaitė et al. utilized 
rank measurement of Hankel matrices for feature extraction of ECG signals, combined with CNN for data 
classification [14]. Sharma et al. applied eigenvalue decomposition based on Hankel matrices to mitigate 
baseline drift and powerline interference in ECG signals, showcasing their effectiveness in time series 
preprocessing [15]. 
 
The Hankel matrix-based DMD modal extraction method has been employed in various fields for modal 
extraction. Curtis et al. leveraged the fundamental insights of the Takens embedding theorem to devise 
an adaptive learning scheme, proposing Deep Learning Hankel DMD for better approximation of high-
dimensional and chaotic dynamics [16]. Kato et al. utilized this model for data-driven spectral analysis of 
access-restricted quantum spin networks [17]. Yang et al. introduced Hankel matrices to rearrange 
measurement data, harnessing the extended functionality of Hankel blocks to estimate modal 
frequencies and damping ratios with shorter data windows, thereby effectively reducing computational 
time. Simulated data from the IEEE 4-generator system and the IEEE 16-generator system along with 
real data were employed for training and testing [18]. Wang et al. employed the Hankel DMD method 
using synchronized phasor data to identify parameters of subsynchronous resonance (SSR) [19]. Nayak 
et al. proposed a data-driven reduced-order model (ROM) based on Hankel-DMD for rapid analysis and 
extrapolation of temporal electromagnetic responses in resonant cavities [20]. It is evident that the 
Hankel DMD model has found applications in numerous industries, yet currently, there exists no literature 
utilizing this model for ECG signal data classification systems. The core of HDMD lies in how to choose 
the appropriate delay parameters. The delay parameter selection of the Hankel matrix is to adjust the 
shape of the matrix to make it closer to “a square”  or more "wide and fat" [21]. The optimization of 
the matrix shape can better preserve and capture the spatiotemporal patterns in the signal; minimize 
information loss in signal processing, especially when processing complex or nonlinear signals; and 
improve the numerical stability of subsequent calculation processes, especially in algorithms such as 
DMD. Although the Hankel DMD model has been applied to many industries, there is currently no 
relevant literature on the use of this model in ECG signal data classification systems. 
 
Existing techniques still exhibit certain limitations: 

 
(1)The extraction of features from ECG signals has not yet reached standardization, leading to 
inconsistencies in the methods used for feature extraction across different studies or applications, 
thereby diminishing the comparability and universality of these methods.  
Presently, feature extraction methods are often coupled with subsequent classification or recognition 
tasks, a coupling that may result in limitations in the feature extraction method's ability to fully exploit the 
information within the signal. 
 
(2)Directly employing DMD for mode extraction from ECG signals lacks thorough exploration of nonlinear 
temporal features and requires prior determination of the number of modes to be extracted, posing 
potential challenges to the stability of these modes. 
 
(3)The imbalance in categories within ECG signal data results in poorer recognition performance for 
minority categories by classifiers. While deep learning models demonstrate remarkable performance in 
ECG signal classification, their internal workings and decision-making processes are challenging to 
elucidate, thereby diminishing the model's credibility and interpretability. 
 
This study employs the HDMD method to enhance ECG signal data using Hankel matrices, utilizes DMD 
for mode extraction from Hankel matrices, further classifies the mode data, and enables data 
reconstruction. Compared to directly applying DMD to extract modes from the original signal, this 
approach better captures both temporal and spatial features of the data, thus benefiting classification 
efforts. 
 
The main contributions of this manuscript can be summarized as follows: 
 
(1)HDMD was first successfully applied to multi-lead ECG signal analysis, significantly improving the 
ability to capture unstable modes and the accuracy of signal classification. 
 
(2)When performing singular value decomposition of Hankel matrices, the selection of the number of 
singular values, employing a proportion above 90% of singular values, consequently determines the 
number of extracted modes. 
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(3)Utilizing the inverse Hankelization operator for reconstructing the original data, revealing a smaller 
reconstruction error compared to direct employment of DMD. 
 
(4)Conducting classification experiments on publicly available 12-lead ECG datasets with the proposed 
model and DMD. The experimental results indicate superior classification performance of our proposed 
model on this dataset. 
 
Methods 
 
Figure 3 shows the specific algorithm flow. In this study, we proposed an ECG signal classification 
algorithm that combines the DMD technology with the Hankel matrix. First, the original ECG signal is 
preprocessed to remove noise and standardize the data. Next, the Hankel matrix is constructed to 
capture the timing characteristics of the signal, and the appropriate delay parameters are selected to 
optimize the representation ability of the matrix. Subsequently, the HDMD technology is applied to extract 
patterns with spatiotemporal dynamic characteristics. In order to verify the effectiveness of the proposed 
method, the extracted features are input into the support vector machine (SVM) classifier for 
classification, and the performance of the traditional DMD method and the HDMD method in SVM 
classification are compared. The accuracy and efficiency of the two in the ECG signal classification task 
are evaluated to demonstrate the superiority of HDMD in processing ECG signals and emphasize the 
potential advantages of HDMD in practical applications.  
 

 
 

Figure 3. General overview diagram of the method 
 
 

ECG Dataset 
The dataset is sourced from the PTB Diagnostic ECG database  [22], renowned as one of the cardinal 
repositories for medical inquiry into electrocardiographic data. It encompasses a spectrum of 
pathological conditions including normal sinus rhythms, myocardial infarctions, left ventricular 
hypertrophies, myocardial ischemias, and beyond. This compendium comprises ECG recordings from 
290 subjects, each delineated by one to five records. Notably absent are subjects numbered 124, 132, 
134, and 161. Each recording encapsulates 15 concurrently measured signals: the conventional 12 leads 
(i, ii, iii, avr, avl, avf, v1, v2, v3, v4, v5, v6) alongside 3 Frank leads (vx, vy, vz). Each signal is digitized 
at a velocity of 1000 samples per second, with a resolution of 16 bits within the range of ± 16.384 mV. 
Clinical summaries for 22 subjects are void, hence not enlisted for analysis. The diagnostic categories 
for the remaining 268 subjects are elucidated in Table 2. 
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Table 2. The diagnostic classes of the ECG dataset 
 

class Diagnostic class Number of subjects 
0 Healthy Controls 52 
1 Myocardial Infarction 148 
2 Cardiomyopathy/Heart Failure 18 
3 Bundle Branch Block 15 
4 Dysrhythmia 14 
5 Myocardial Hypertrophy 7 
6 Valvular Heart Disease 6 
7 Myocarditis 4 
8 Miscellaneous 4 

 
 

The four entries in the Miscellaneous category encompass Palpitation, Stable angina, and Unstable 
angina. There are primarily eight categories, along with a set of healthy control counterparts labeled as 
0, totaling 52 patients. Disparities exist in the volume of data across each diseased category, with 
myocardial infarction boasting the highest count at 148 entries. This article will conduct a classification 
study by juxtaposing ECG signal data from each Diagnostic class with the Healthy Controls group, 
thereby contrasting the classification efficacy extracted by the DMD method. 
 
Data Preprocessing 
In the process of signal or data analysis, particularly when dealing with biomedical signals, time series 
data, or any form of continuous signals, the efficacy of preprocessing steps is pivotal for an accurate 
understanding and analysis of such data [23]-[24]. This preprocessing primarily encompasses two crucial 
components: the selection of sampling intervals and the removal of denoising and baseline drift from the 
signal. These two steps play a paramount role in enhancing the accuracy and reliability of data analysis. 
 
The selection of sampling intervals entails determining which time periods of the data should be 
considered in the analysis, a process typically reliant on the characteristics of the signal and the 
objectives of the analysis. In ECG signal data, the concept of spectral peaks holds significant importance 
[25], as for some strongly periodic signals, their spectra often contain prominent peaks. These peaks 
correspond to the major cycles within the signal and also align with the principal dynamic modes in DMD. 
Analogous to the beat segmentation of R-waves discussed in [10], the sampling intervals are determined 
based on the peaks following the R-wave. 
 

 
 

Figure 4. ECG Signal with R peaks 
 
 
Figure 4 delineates the precise locations of the R peaks among the first 5000 sampling points on a lead, 
revealing a total of six discernible R peaks. Correspondingly, Table 3 delineates the inter-peak distances 
between adjacent R peaks within the initial 5000 sampling points across twelve leads for a patient. (Here, 
the sampling frequency is 1000Hz, with distances measured in sampling points.) 
 



 

e-ISSN 2289-599X | DOI: https://doi.org/10.11113/mjfas.v21n1.3928 1632 

Liang et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 21 (2025) 1626-1641 

Table 3 shows that there are up to 745 sampling points between adjacent R peaks. Consequently, this 
paper opts for 750 sampling points. The first R peak occurs around 640-time points, while the second 
occurs approximately at 1385. Utilizing the second beat data, analysis will encompass sampling points 
between 1236 and 1985, comprising 150 data points before and 600 data points after the R peak. 
 

Table 3. Number of sampling points between adjacent R peaks 
 

No. R1-R2 R2-R3 R3-R4 R4-R5 R5-R6 
1 744 728 727 745 741 
2 744 728 727 745 741 
3 744 728 727 745 742 
4 745 730 726 744 742 
5 744 727 727 745 741 
6 744 728 727 745 741 
7 746 729 725 744 744 
8 744 727 728 745 741 
9 744 727 728 745 741 

10 743 728 728 745 740 
11 743 729 727 745 741 
12 744 729 727 744 742 

 
 
Preprocessing of ECG signals stands as a pivotal stride, considering all potential sources of noise, such 
as motion artifacts and power line interference, which could impede the subsequent model's 
performance. Therefore, in this paper, the following two-step preprocessing is applied to the ECG 
signals: 
 
(1) Notch filtering 
Mitigating power supply interference precedes subsequent low-pass filtration to eliminate high-frequency 
noise. Notch filtering primarily targets the elimination of specific frequency interference signals, 
employing the Infinite Impulse Response (IIR) filter herein [26]:  

𝑥𝑥𝑛𝑛 = 𝑦𝑦𝑛𝑛 − 𝑎𝑎1𝑥𝑥𝑛𝑛−1 − 𝑎𝑎2𝑥𝑥𝑛𝑛−2.   (1) 
Where, 𝑦𝑦𝑛𝑛 represents the input ECG signal, while 𝑥𝑥𝑛𝑛 represents the filtered ECG signal. The coefficients 
𝑎𝑎1 and 𝑎𝑎2 are determined based on the center frequency and bandwidth of the notch filter.  
 
(2) Median filtering 
By substituting the value of the current data point with the median of the data within the filtering window, 
it effectively attenuates noise in the signal while preserving its clarity [27]. Given a signal 𝑥𝑥𝑛𝑛 to be filtered, 
with a window length set to , the filtered signal is denoted as 𝑥𝑥�𝑛𝑛. 
For the i-th data point, a window containing the i-th data point, with a length of , is chosen. The 𝐿𝐿 data 
points within the window are sorted in ascending order, and then the median value is selected as the 
filtering result for the i-th data point: 

𝑥𝑥�𝑖𝑖 = 𝑀𝑀�𝑥𝑥𝑖𝑖−𝐿𝐿−12
 ,𝑥𝑥𝑖𝑖−𝐿𝐿−12 +1 ,⋯ , 𝑥𝑥𝑖𝑖+𝐿𝐿−12

�   (2) 

Where, 𝑀𝑀 represents the operation of taking the median, 𝑖𝑖 ∈ �𝐿𝐿−1
2

,𝑁𝑁 − 𝐿𝐿−1
2
�, and N represents the length 

of the data. When the window size is set to 1, the median filter degenerates into a situation where no 
filtering is performed, 𝑥𝑥�𝑛𝑛 = 𝑥𝑥𝑛𝑛. 
 
Construct Hankel Matrix of ECG Signals 
We shall denote the ECG data collected from N leads at timestamp 𝑡𝑡as 𝑥𝑥𝑡𝑡 ∈ 𝑅𝑅𝑁𝑁 (𝑡𝑡 = 1,2,⋯ ,𝑇𝑇) . 
The entire dataset is represented as: 
 

𝑋𝑋𝑇𝑇 =

⎝

⎜
⎛

𝑥𝑥1,1  ⋯   𝑥𝑥1,𝑇𝑇
⋮     ⋱     ⋮ 
𝑥𝑥𝑛𝑛,1  ⋯  𝑥𝑥𝑛𝑛,𝑇𝑇
⋮      ⋱      ⋮
𝑥𝑥𝑁𝑁,1  ⋯  𝑥𝑥𝑁𝑁,𝑇𝑇⎠

⎟
⎞

= [𝑥𝑥1,⋯ , 𝑥𝑥𝑡𝑡 ,⋯ , 𝑥𝑥𝑇𝑇]   (3) 
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Each row is denoted as xn, representing the data collected at  T time points on the n-th lead and XT ∈
RN×T. Here T equals 750, while N equals 12. Assuming the ECG system functions as a localized linear 
dynamic system, hence xt+1 = Axt, where A ∈ RN×N represents the dynamics system [18]. 
 
DMD aims to compute the principal characteristic decomposition of the optimal fitting matrix A for all 
electrocardiogram (ECG) signal data X. However, in ECG signal data, where N = 12 , significantly 
smaller than T, there arises a severe rank mismatch issue. Hankelization, on the other hand, emerges 
as a valuable technique for data augmentation, enabling recursive enhancement of data by replicating 
portions of it [28]. Consequently, we construct a Hankel matrix H to augment the dimensions of the data. 
Given the embedding delay length M, we can construct H from X through Hankelization operations. 
Firstly, for each row of XT, representing the ECG signal data xn  on the n-th lead of the patient, we 
construct the corresponding Hankel matrix: 
 

𝐻𝐻1𝑛𝑛 = �

𝑥𝑥𝑛𝑛,1 𝑥𝑥𝑛𝑛,2
𝑥𝑥𝑛𝑛,2 𝑥𝑥𝑛𝑛,3

⋯ 𝑥𝑥𝑛𝑛,𝑇𝑇−𝑀𝑀+1
⋯ 𝑥𝑥𝑛𝑛,𝑇𝑇−𝑀𝑀+2

⋮ ⋮
𝑥𝑥𝑛𝑛,𝑀𝑀 𝑥𝑥𝑛𝑛,𝑀𝑀+1

⋱ ⋮
⋯      𝑥𝑥𝑛𝑛,𝑇𝑇     

�

𝑀𝑀×(𝑇𝑇−𝑀𝑀+1)

𝑇𝑇

   (4) 

and 

𝐻𝐻2𝑛𝑛 = �

𝑥𝑥𝑛𝑛,2    𝑥𝑥𝑛𝑛,3
𝑥𝑥𝑛𝑛,3     𝑥𝑥𝑛𝑛,4

⋯   𝑥𝑥𝑛𝑛,𝑇𝑇−𝑀𝑀+2
⋯   𝑥𝑥𝑛𝑛,𝑇𝑇−𝑀𝑀+3

⋮ ⋮
𝑥𝑥𝑛𝑛,𝑀𝑀+1 𝑥𝑥𝑛𝑛,𝑀𝑀+2

⋱ ⋮
⋯      𝑥𝑥𝑛𝑛,𝑇𝑇+1     

�

𝑀𝑀×(𝑇𝑇−𝑀𝑀+1)

𝑇𝑇

  (5) 

 
Similarly, we can obtain H2

n = AHH1
n. Then rearrange the Hankel matrices on each lead to obtain a new 

matrix: 
 

𝐻𝐻1 = [𝐻𝐻11,𝐻𝐻12,⋯ ,𝐻𝐻1𝑁𝑁]𝑇𝑇 ∈ 𝑅𝑅𝑀𝑀𝑁𝑁×(𝑇𝑇−𝑀𝑀+1)   (6) 
and 

𝐻𝐻2 = [𝐻𝐻21,𝐻𝐻22,⋯ ,𝐻𝐻2𝑁𝑁]𝑇𝑇 ∈ 𝑅𝑅𝑀𝑀𝑁𝑁×(𝑇𝑇−𝑀𝑀+1)    (7) 
 
By utilizing H1 and H2 as inputs to DMD, the problem of DMD modal extraction transforms into the quest 
for the eigenvalues and eigenvectors of AH in the equation below [28]: 
 

𝐻𝐻2 = 𝐴𝐴𝐻𝐻𝐻𝐻1     (8) 
 

Hankel Dynamic Mode Decomposition (HDMD) 
It is evident that the parameter M, as elucidated by [20], delineates the dimensions of the Hankel matrix, 
consequently shaping the organization of time-series data into said matrix, thus impacting the 
subsequent quality and efficacy of the DMD model. Nevertheless, the determination of the delay 
parameter often occurs post DMD modal extraction from the Hankel matrix, prompting a simultaneous 
consideration of various delay parameter effects during singular value extraction to ascertain said 
parameters. The specific procedural diagram is depicted in Figure 5: 
 

 
 

Figure 5. HDMD model framework 
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According to Equation (8), the optimal approximation operator AH can be represented as: 
 

𝐴𝐴𝐻𝐻 = 𝐻𝐻2𝐻𝐻1
†     (9) 

 
The symbol † denotes the Moore-Penrose pseudoinverse of the matrix. The dynamic modal eigenvectors 
reflect spatial correlations, with each eigenvector determined by its corresponding eigenvalue. However, 
direct analysis of AH proves to be challenging. Instead, DMD employs singular value decomposition to 
project the matrix AHonto a low-rank space, extracting the primary eigenvalues and eigenvectors of 
AHfrom a rank-reduced matrix, denoted by A�H. The specific steps are as follows: 
 
Step1: Conduct singular value decomposition (SVD) on H1 [29]: 
 

𝐻𝐻1 = 𝑈𝑈𝑈𝑈𝑉𝑉∗     (10) 
 
Receive matrices U , Σ , and V , where Σ  denotes a diagonal matrix composed of singular values, 
denoted as Σ = diag �σj�; V

∗is the lower triangular matrix, being the conjugate transpose of V; Uis the 
upper triangular matrix, U∗UT = V∗VT = I, and I represents the identity matrix. 
 
Step2: Calculate the pseudo-inverse of H1 using formulas (7) and (8) to obtain the matrix AH: 
 

𝐴𝐴𝐻𝐻 = 𝐻𝐻2𝑉𝑉𝑈𝑈−1𝑈𝑈∗      (11) 
 
where Σ

−1
 represents the inverse of Σ. 

 
Step 3: The mapping of AH onto a lower-dimensional subspace, denoted as A�H, is defined as follows: 
 

�̃�𝐴𝐻𝐻 = 𝑈𝑈𝑟𝑟∗𝐴𝐴𝐻𝐻𝑈𝑈𝑟𝑟 = 𝑈𝑈𝑟𝑟∗𝐴𝐴𝐻𝐻𝑉𝑉𝑟𝑟𝑈𝑈𝑟𝑟−1   (12) 
 
The parameter r denotes the rank of matrix AH , thereby governing the eventual number of modes 
extracted. The selection of r is determined by the singular values of Σ, which is obtained through the 
singular value decomposition of the Hankel matrix. This process is influenced by the lag parameter M. 
Hence, the determination of M and r relies on whether the singular value ratio (SVR) meets the specified 
threshold. 
 

𝑅𝑅𝑖𝑖 =
∑ 𝜎𝜎𝑗𝑗
𝑟𝑟𝑖𝑖
𝑗𝑗

∑ 𝜎𝜎𝑗𝑗𝑀𝑀𝑀𝑀
𝑗𝑗

 (𝑖𝑖 = 1,2,⋯ ,𝑚𝑚𝑎𝑎𝑥𝑥)   (13) 

 
The i-th delay parameter has been selected, where ri denotes the number of singular values reached 
when the threshold δ(δ=90%) is attained. Ri represents the ratio of the first ri singular values, with max 
denoting the maximum delay parameter set. 
 
Step4: Computation of the Eigenvalue Decomposition: 
 

�̃�𝐴𝐻𝐻𝑊𝑊 = 𝑊𝑊𝑊𝑊    (14) 
 
where matrix Λ represents a diagonal matrix with its diagonal elements being the eigenvalues λk of 
matrix AH . Matrix W  consists of the eigenvectors of A�H , where each column corresponds to the 
eigenvector of  λk. 
 
Step5: The eigen decomposition of matrix AH is constructed by W and Λ, where the DMD eigenvalues 
Λ are provided, and the modal matrix ΦH is composed of the eigenvectors of matrix AH [30]: 
 

𝛷𝛷𝐻𝐻 = 𝐻𝐻2𝑉𝑉𝑈𝑈−1𝑊𝑊    (15) 
 
These modes represent the eigenvectors of the high-dimensional operator AH, where each mode ϕk 
corresponds to an eigenvalue λk of Λ. 
 



 

e-ISSN 2289-599X | DOI: https://doi.org/10.11113/mjfas.v21n1.3928 1635 

Liang et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 21 (2025) 1626-1641 

Step6: ECG signal data from other temporal-spatial domains can be approximated into a simplified 
dynamic model  H�: 
 

𝐻𝐻� = ∑ 𝜙𝜙𝑘𝑘𝑒𝑒𝜔𝜔𝑘𝑘𝑡𝑡𝑏𝑏𝑘𝑘𝑟𝑟
𝑘𝑘=1     (16) 

 
where ωi = ln�λk�/Δt, the modal amplitude bk = ΦH

†
h1 stands for the initial amplitude of each modal 

order. H1 represents the first column of the Hankel matrix, denoting the spatial domain at the initial 
moment (t = 0). r indicates the number of extracted modes, thus forming the reconstruction matrix H� for 
Hankel matrix H1. 
 
Step7: Employ the inverse Hankelization operator to transition H�  to X� , thereby obtaining the 
reconstruction of  X under the framework of HDMD. 
 
Evaluation Metrics 
To ascertain the superior accuracy and efficacy of HDMD over conventional DMD modal extraction, SVM 
is employed to classify the extracted modal data and reconstructed data. Following preprocessing such 
as filtering, DMD and HDMD modal extraction are performed, and data reconstruction is conducted, 
contrasting the Reconstruction Mean Squared Error (MSE) [31]: 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ �𝑋𝑋𝑛𝑛 − 𝑋𝑋�𝑛𝑛�𝑁𝑁
𝑛𝑛=1       (17) 

 
where ‖∙‖ is Euclidean norm. 
 
Utilizing Python-WFDB to acquire ECG signal data, gathered in temporal sequences, entails setting the 
sampling frequency to 1/1000 seconds for enhanced accuracy. Consequently, the acquired dataset size 
amounts to (268, 750, 12). Within this study, the ECG dataset encompasses solely 268 viable samples, 
comprising 8 categories of anomalies. One category, denoted as the Healthy Controls group, 
encompasses 52 patient samples. Each anomaly category is juxtaposed with the Healthy Controls group 
for classification. 
 
In the evaluation of classification results, metrics including Accuracy (A), Precision (P), Recall (R), and 
F1 score (F1) are contrasted for each group. The respective formulae for these metrics are delineated 
in Table 4 where FP signifies instances where normal samples are erroneously classified as anomalies, 
leading to false positives. Conversely, FN denotes instances where anomaly samples are inaccurately 
classified as normal, resulting in false negatives. Similarly, TP and TN represent accurate identification 
of anomaly and normal instances, respectively. 
 

Table 4. Confusion matrix for binary classification 
 

No. Actual\Predicte Positive Negative 
1 Positive TP FN 
2 Negative FP TN 

 
 
Different metrics can be evaluated as follows: 
 

A = TP+TN
TP+TN+FP+FN

    (18) 
 

P = TP
TP+FP

     (19) 
 

R = TP
TP+𝐹𝐹𝑁𝑁

     (20) 
 

𝐹𝐹1 = 2 × 𝑃𝑃×𝑅𝑅
𝑃𝑃+𝑅𝑅

    (21) 
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Experiment Results 
 
Experimental Setup 
The study employs data from 268 patients' ECG signals to train and validate the proposed model. All 
experiments were conducted using Python, utilizing the WFDB library for reading, writing, and processing 
ECG signal data, employing the sklearn machine learning library to instantiate various classification 
models, and leveraging BioSPPy for R-wave peak detection. All experiments were executed on a 
Windows 11 Pro 64-bit operating system, equipped with an Ultra 7 155U multicore processor clocked at 
3.10 GHz. 
 
Delay Parameter Selection 
The sampling frequency is 1/1000 seconds, and ECG data is processed through notch filtering and 
median filtering. Set the maximum delay parameter to max, then iterate the delay parameter M from 1 to 
max. Depending on the size of the ECG signal data (12,750), the corresponding Hankel matrix is of size 
(12M, 751− M). To reduce computational complexity, M is chosen within the range where 12M < (751−
M)/2 , implying max <=  30 . Upon each iteration, the SVD decomposition of the Hankel matrix is 
performed, and the number of singular values contributing to 90% ratio shifts with M.  
 
In Figure 6, the abscissa is the number of delay parameters, and the ordinate is the number of singular 
values when the SVR reaches 90%. As the delay parameter increases, the number of SVR required to 
reach 90% increases, indicating that as the delay parameter increases, the SVR decreases. Then we 
need to select more singular values, which will cause the Hankel matrix to be larger, increase the number 
of selected modes, and increase the computational complexity. Therefore, the delay parameter cannot 
be chosen too large. The optimal delay parameter is 25. At the same time, according to Ri > 90%, the 
number of singular values here is r, that is, the low-dimensional representation of AH is the rank of A�H, 
which is also the final mode number. 
 

 
 

Figure 6. 90% SVR vs. Delay Parameter 
 
 
Figure 7 is about the singular value distribution of a patient's 12-lead ECG signal data preprocessed and 
then directly subjected to singular value decomposition and Hankel matrix. Fig. 7 shows that the filtered 
ECG signal data is directly subjected to singular value decomposition. The distribution of singular values 
is relatively discrete, and the ratio of the first four singular values reaches 90%. Then the extracted modal 
vectors are also 4, which cannot be completely extracted. The original information of the data will 
inevitably have large errors when reconstructing the data on this basis, which will further affect the 
accuracy of classification. When performing singular value decomposition on the Hankel matrix 
constructed from filtered data, the singular value distribution falls smoothly, so that the information of the 
data can be obtained more comprehensively and stably. Moreover, the natural ratio reaches 90% at the 
22nd singular value. In this way, the extracted modal vectors are 22, which can comprehensively obtain 
the changing trend of the data 
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Figure 7. Comparison of Singular Value Distribution Between DMD and HDMD for ECG Data 
 
 
We can also further illustrate that HDMD is more conducive to modal extraction of ECG signal data than 
DMD by comparing their reconstruction errors. Table 5 extracts the 12-lead data of a patient from 9 
categories (detailed categories in Table 1) of ECG signal data, and uses DMD and HDMD for modal 
extraction and data reconstruction. Calculate the mean square error according to Equation (17), and 
intercept the singular values at the same position, that is, the same mode number r. It can be seen that 
among the 9 categories, except for the 7th category Myocarditis, the HDMD reconstruction error is 
smaller than the DMD reconstruction error, indicating that it is necessary to use the Hankel matrix for 
mode extraction in ECG signal processing. 
 

Table 5. Confusion Matrix For binary classification 
 

No. MSE 0 1 2 3 4 5 6 7 8 
1 DMD 0.446 0.044 0.156 0.077 0.138 0.100 0.192 0.160 0.052 
2 HDMD 0.164 0.036 0.148 0.074 0.062 0.056 0.076 0.822 0.050 

 
 
Analysis of Classification Results 
DMD and HDMD combined with SVM will be used to classify the modal data of the extracted ECG signal 
data, and the extracted modal data is complex numbers. In the experiment, the real part and imaginary 
part of each data are analyzed together, and each type of ECG is compared. Signal classification 
Accuracy, Precision, Recall, F1 score. 
 
Each class is classified together with the health control class (Class 0). When using SVM for classification 
in the experiment, 0.8 is used as the training set. Because the number of patients is small, the verification 
set uses all data. Fig. 8 shows the confusion matrix heat map of HDMD and DMD classification, which 
intuitively displays the classification results of the classifier, and the classification situation of each 
category, including the number of correct classifications and incorrect classifications [32]. 
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(a) HDMD 

 
(b) DMD 

 
Figure 8. Confusion Matrix Heatmap of HDMD and DMD Classification 

 
 
Figure 8 shows the classification results of the ECG modal data extracted by the two methods in 8 
categories. The darker the diagonal color of the confusion matrix heat map, the better the classification 
effect. Among them, Figures (a) and (b) correspond to HDMD and DMD modal data respectively, and 
are confusion matrix heat maps classified in 8 types of abnormal ECG signal data. In category 1, since 
148 samples are Myocardial Infarction and 52 samples are healthy controls, they are different from other 
categories in the heat map. For each category, from the colors of the two squares on the diagonal, it can 
be seen that the accuracy of HDMD is basically higher than that of DMD. Specific indicators are listed in 
Table 6. 

 
Table 6. HDMD and DMD modal data classification results 
 

No. Metric 
Accuracy Precision Recall F1 score 

HDMD DMD HDMD DMD HDMD DMD HDMD DMD 
1 Class 1 0.925 0.85 0.894 1 0.808 0.423 0.848 0.595 
2 Class 2 0.943 0.857 0.962 0.889 0.962 0.923 0.962 0.889 
3 Class 3 0.955 0.851 0.945 0.85 1 0.981 0.972 0.911 
4 Class 4 0.939 0.894 0.929 0.881 1 1 0.963 0.937 
5 Class 5 0.949 0.915 0.962 0.912 0.981 1 0.971 0.954 
6 Class 6 0.983 0.966 0.981 0.963 1 1 0.990  0.981 
7 Class 7 0.929 0.929 0.962 0.929 0.962 1 0.962 0.963 
8 Class 8 0.982 0.964 0.981 0.963 1 1 0.990 0.857  
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Table 6 shows that for the classification effect of modal data extracted by HDMD and DMD, only the 7th 
category is the same in terms of accuracy, while other HDMD categories are higher, among which the 
3rd category is more than 10% higher. In the first category, the Precision of DMD is 10.6% higher than 
that of HDMD. The other categories are still higher than HDMD. The recall rate is 1.9% and 3.8% lower 
in categories 5 and 7 respectively. The results of the other categories are similar to those of DMD. Or 
higher. The F1 score is higher for HDMD in every category, with the highest one being Category 1, which 
is 25.3% higher than DMD 
 
Discussion 
 
In this study, we propose a modified HDMD model based on the Hankel matrix for the classification of 
12-lead ECG signals. By introducing the Hankel matrix and utilizing the 90% SVR to determine the delay 
parameters, we effectively solve the rank mismatch problem that occurs when DMD is used directly. Our 
model shows better performance than traditional DMD methods by calculating mean square error (MSE) 
and using SVM for binary classification. 
 
Experimental results show that through comparison with DMD, we find that HDMD is better at capturing 
unstable modes and has significant performance improvements in classification tasks. Specifically, the 
HDMD model performs better than some existing classification methods in the PTB database. This result 
is also supported by the performance comparison of various methods in Table 7, which further proves 
the effectiveness of the HDMD model. 
 

Table 7. Comparative Analysis of Classification Algorithms for 12-Lead ECG Signals on the PTB Database 
 

No. Studies Method Classifier Performance 

1 This study HDMD SVM Acc=95.1, Pre=95.2, Rec=96.4, 
F1=95.7, MSE=0.165 

2 This study DMD SVM Acc=90.3, Pre=92.3, Rec=91.6, 
F1=88.6, MSE=0.152 

3 Liu et al.,2015 [33] Polynomial function and DWT J48 decision tree Acc=94.40 

4 Tripathy et al., 2014 [34] Principal component multivariate 
multiscale sample entropy LS-SVM Acc=90.34, 

5 Al-Yami et al., 2017 [35] 
Histogram-based Features, 
Two-sample Kolmogorov-

Smirnov Test 
CART Acc=94, Sen=96, Spe=92 

6 Sharma et al., 2015 [36] multiscale energy and 
eigenspace (MEES) SVM+KNN Acc=96.00, Sen=93.00, Spe=99.00, 

Loc Acc =99.58 

7 Scidhar et al., 2016 [37] DWT+Nonlinear feature 
extraction KNN Acc=98.80, Sen=99.45, Spe=96.27, 

Loc Acc: 99.97 
8 Lodhi et al., 2018 [38] - CNN Acc=93.5, Sen=94, Spe=86, 
9 Arif et al., 2012 [39] DWT KNN Sen=99.97, Spe=99.9 
10 Sun et al., 2012 [40] ST segment polynomial features LT-MIL Sen=92.5, Spe=89.1 
11 Sharma et al., 2015 [41] multi-scale DWT KNN+ SVM Acc=96, Sen=93, Spe=99 
12 Padhy et al. 2017 [42] SVD+wavelet energy SVM Acc=95.30, Sen=94.6, Spe=96.0 

Ac=Accuracy(%), Pre=Precision(%), Rec=Recall(%), F1=F1 score(%), Sen= Sensitivity(%), Spe=Specificity(%),  
Loc Acc=localization Acc(%) 

 
 
The SVR plays an important role in determining the delay parameters of the Hankel matrix. By analyzing 
the SVR, we can effectively select appropriate delay parameters, thereby improving the model's stability 
and classification performance.  
 
Despite the excellent performance of our model, there are still some limitations. First, although HDMD 
performs well in binary classification tasks, the accuracy of the model still has room for improvement. 
Further optimization of model parameters and algorithms can improve classification accuracy. Second, 
this study mainly focuses on binary classification tasks, and future work needs to explore how to extend 
the HDMD model to multi-classification problems to handle more heart disease types and provide more 
comprehensive diagnostic support. 
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Conclusion 
 
The research results of this article show that multi-modal decomposition and data reconstruction of ECG 
signal data, using the constructed Hankel matrix in DMD to perform singular value decomposition and 
extract modes, can more deeply extract the internal time and space characteristics of data with time 
series. , which helps to further classify ECG data. When using the same SVR, HDMD extracts more 
modes than DMD, and the eigenvalues basically change continuously. However, the eigenvalues of 
DMD directly on the original data of the ECG signal are relatively discrete, and richer data information 
cannot be obtained. At the same time, when the inverse Hankelization operator is used to perform 
inverse transformation on the extracted Hankel matrix to obtain reconstructed data, the reconstruction 
error is much smaller than that of DMD, with a difference of about 0.3 on individual data. Finally, by 
performing SVM classification on the modal data extracted by the two methods, and comparing the 
classification effects of each category, it was found that HDMD performs much better than DMD in all 
aspects, with the highest accuracy rate being more than 10% higher. Despite the remarkable results 
achieved in this study, the small sample size of some categories may have an impact on the 
generalisation ability of some classification tasks. In addition, the high computational complexity of 
HDMD, especially in the singular value decomposition and inverse Hankelisation stages, may limit its 
applicability in real-time applications. Future research could further improve the applicability and 
computational efficiency of the model through data enhancement, algorithm optimisation or hardware 
acceleration, while exploring more efficient multi-classification methods for accurate diagnosis of various 
types of anomalies. 
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