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Near the earth, the sun emits 0.2–0.3 mol photons 
m-2 h-1 in the range 300–400 nm with a typical flux of 20–
30 W m-2. Hence, the sunlight could act as an economic 
and inexhaustible light source for photocatalytic 
degradation reactions [11]. While UV light has 
demonstrated promising results for the degradation of 
persistent organic pollutants, it is also of interest to 
investigate the performance of the commercial TiO2 
samples under solar irradiation conditions.  

Hence, in the present study, the effect of calcination 
temperatures on the activity of four types of commercial 
TiO2 (Evonik P25, Evonik P90, Hombikat UV100 and 
Hombikat N100) was examined under solar simulator 
irradiation. The selected model pollutant used for this study 
is 2,4-dichlorophenoxyacetic acid (2,4-D). While 2,4-D is 
widely used as a herbicide, it has been categorized as a 
drinking water contaminant as it is toxic, hardly 
biodegradable and difficult to remove from the 
environment [12]. 

2. EXPERIMENTS 

2.1 Materials 

 Commercial P25 TiO2 and P90 TiO2 were obtained 
from Evonik Industries. Commercial Hombikat UV100 
TiO2 and Hombikat N100 TiO2 were obtained from 
Sachtleben Chemie. All TiO2 samples were used as 
received without any pre-treatments. The 2,4-
dichlorophenoxyacetic acid (C8H6Cl2O3, ≥ 98%) was 
purchased from Sigma. 

2.2 Preparation and Characterization of Calcined 
Photocatalysts 

In order to investigate the effect of the calcination 
temperatures, 1.0 g of each commercial TiO2 was subjected 
to calcination using a muffle furnace in air at 573 or 773 K 
for 4 hours at a heating rate of 10 °C/min. After the thermal 
treatment, the calcined samples were allowed to cool to 
room temperature. Then, the samples were ground with 
mortar and pestle and stored under ambient conditions. 
Diffraction patterns of the samples were collected by an X-
ray diffractometer (XRD; Bruker D8 Advance 
diffractometer) and the crystallite size of the samples were 
determined from the full width half maximum (FWHM) of 
anatase (101) reflection at 2 = 25.3° by a Scherrer 
equation. 

2.2 Photocatalytic activity tests  

The model pollutant used for photocatalytic 
testings was 2,4-D herbicide. The uncalcined and calcined 
commercial TiO2 samples (50 mg) were first dispersed in 
50 mL of the pollutant solution (0.5 mM). The mixture was 
then stirred in the dark for 1 hour to achieve adsorption-
desorption equilibrium. While under constant stirring, the 
mixture was then exposed for 3 hours to a solar simulator 
(Peccell Technologies) equipped with a 150 W xenon short 

arc lamp. All reactions were made open to air in order to 
provide sufficient oxygen for the oxidative degradation of 
the pollutants. Upon the completion of lamp exposure, 
about 3 mL of suspension was removed and filtered using a 
0.2 m nylon membrane filter. The concentration of 2,4-D 
before and after solar simulator irradiation and the 
concentration of 2,4-DCP intermediate formed was 
determined by a high performance liquid chromatography 
(HPLC, Shimadzu  Prominence LC-20A) equipped with a 
150 × 4.6 mm Hypersil GOLD PFP column and the eluent 
was a mixture of acetonitrile/H2O 60:40 (v/v), whereby the 
concentration of 2,4-D and 2,4-DCP were monitored at 283 
nm. The percentage of 2,4-D degradation was determined 
by equation (1): 

 

Degradation of 2,4-D (%) =
[2,4-D]I - [2,4-D]F	- [2,4-DCP]F 

[2,4-D]I

×100 

----- (1) 

where [2,4-D]I is the initial concentration of 2,4-D 
pollutant, [2,4-D]F is the final concentration of 2,4-D 
pollutant after lamp exposure and [2,4-DCP]F is the final 
concentration of the formed 2,4-DCP intermediate. On the 
other hand, the removal of the 2,4-D pollutant was 
determined by equation (2): 

Removal of 2,4-D (%) =
[2,4-D]I - [2,4-D]F

[2,4-D]I

×100 

 ----- (2) 

3. RESULTS AND DISCUSSION 

The uncalcined and calcined samples were 
characterized by XRD and the crystallite sizes were 
determined by the Scherrer equation. As shown in Figure 1, 
the crystallite size of all commercial TiO2 samples 
increased with the increase of the calcination temperature. 
The UV100 showed the most remarkable change with 
average crystallite size of ca. 9-16 nm, while N100 was the 
least unaffected with average crystallite size of ca. 17-18 
nm. The crystallite sizes of the P25 and the P90 were also 
increased, which were in the range of ca. 18-21 and ca. 10-
15 nm, respectively. 

The photocatalytic activity of the commercial 
catalysts investigated in this study were tested by using 2,4-
D as the test pollutant. Control experiments showed that no 
degradation of 2,4-D was observed in the absence of 
photocatalyst or light. On the other hand, in the presence of 
both photocatalyst and solar simulator irradiation, HPLC 
results confirmed the degradation of 2,4-D. Before solar 
simulator irradiation, the HPLC spectrum only consist of 
one peak, which was the 2,4-D peak. After exposure to the 
solar simulator for 3 hours, two peaks were observed on the 
HPLC spectrum. The first peak was assigned to the 2,4-D. 
The chromatogram area of the 2,4-D was decreased 
compared to the one before reaction, which indicated that 
2,4-D was converted during the photocatalytic reaction. By 
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photocatalytic reactions over TiO2 [6] as they act as 
efficient trapping sites for photogenerated holes, this in turn 
improves the charge separation of the electron-hole pairs. 
According to previously reported differential scanning 
calorimetry (DSC) study of P25, heating at temperatures 
483-683 K led to the removal of surface hydroxyl groups 
[6]. Hence, calcination treatment of P25 and P90 at 573 and 
773 K likely led to a gradual elimination of hydroxyl 
groups that was probably not restored on contact with 
water, remaining quasi permanent. The decreased activity 
could be due to the changing of surface structure related to 
the decrease of surface bound OH groups and it appears 
that in this case, it could not be compensated with the slight 
increase in the crystallinity of P25 and P90 TiO2 
[4,5,7,9,10,19].  

Further understanding on the photocatalytic 
performance of the samples could be obtained by 
considering the percentage of removal of 2,4-D after 3 h 
solar simulator irradiation. The percentage removal of 2,4-
D was determined by equation (2) stated in the 
experimental section. This calculation only took into 
consideration of the amount of 2,4-D removed, not the 
amount of 2,4-DCP formed. 

Figure 3 shows the percentage removal of 2,4-D for 
all commercial TiO2 samples before and after calcination 
treatments. After solar simulator irradiation for 3 hours, the 
P25 and P90 catalysts removed more than 95% of 2,4-D, 
indicating that conversion from 2,4-D to 2,4-DCP is a very 
fast process, in comparison to the subsequent 
mineralization of 2,4-DCP. The UV100 and N100 catalysts 
also achieved a very high degree of 2,4-D removal of 
around 60% and above, further confirming the facile 
conversion from 2,4-D to 2,4-DCP.  

Fig. 3 The photocatalytic activity of the uncalcined and calcined 
commercial TiO2 for the removal of 2,4-D. 

 
Some of the major catalytic activity trends 

observed in the degradation results (Figure 2) are also 
present in the removal results (Figure 3). Namely, the P25 
and P90 samples are more photocatalytically active than 
the UV100 and N100 samples. Secondly, the more 
crystalline N100 samples display higher catalytic activity 
than the less crystalline UV100 samples. Thirdly, 

calcination heat treatment at 573 and 773 K led to an 
increase of photocatalytic activity of the UV100 and N100 
samples. 

4. CONCLUSION 

In conclusion, the changes generated by the 
calcination treatment on the physicochemical properties of 
the unmodified TiO2 samples led to an increase of 
photocatalytic activity for Hombikat UV100 and Hombikat 
N100 and a decrease of photocatalytic activity for P25 and 
P90 TiO2. Among the investigated commercial TiO2, 
uncalcined P25 and P90 were the most active 
photocatalysts for the degradation of 2,4-D. Based on the 
photocatalytic activity results, no calcination treatment 
should be applied for P25 and P90 in order to preserve their 
high activity, while larger temperature range (573-773 K) 
could be used for UV100 and N100. These results are very 
crucial from the point of view of devising strategies for 
incorporating metal oxide co-catalysts on the surface of 
commercial TiO2, whereby the calcination treatment is 
often a standard procedure for metal oxide formation. 
Hence, the findings presented in this work serve to further 
enhance our understanding on the effect of heat treatments 
on selected commercial TiO2 samples.  
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