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Abstract Noise and artefacts in mammogram images can obscure important indicators of 
microcalcifications, complicating accurate diagnosis. While traditional spatial filters can reduce 
noise and are effective to some extent, they often fail to enhance features crucial for classification. 
This study uses persistent homology (PH) to evaluate and improve the classification performance 
of various spatial filters on mammogram images. The evaluation process involves converting 
filtered images into persistence diagrams (PDs) to capture topological features. These diagrams 
are then vectorised into PH features for classification using a neural network classifier. This study 
also examines further filtering of PDs from filtered images to enhance classification performance. 
Using the Digital Database for Screening Mammography (DDSM) and Mammographic Image 
Analysis Society (MIAS) datasets, we evaluate Median, Wiener, Gaussian, and Bilateral filters 
alone and integrate them with PH-based filtering. Results show significant classification 
improvements, with Wiener filters achieving 96.33% accuracy on the DDSM dataset (up from 
57.38%) and Gaussian filters reaching 85.33% on the MIAS dataset (up from 73.33%). These 
findings demonstrate the potential of PH-based filters to enhance diagnostic accuracy in breast 
cancer detection by refining topological features and effectively reducing noise. 
Keywords: Spatial filter, breast cancer, classification, mammogram, persistent homology. 

 

 
Introduction 
 
Breast cancer remains a major health concern for women globally. In 2020, more than 2.3 million women 
were diagnosed with breast cancer, resulting in 685,000 deaths [1]. The incidence of breast cancer is 
projected to exceed over 3 million new cases annually by the year 2040, with 1 million anticipated 
fatalities [2]. Preventive measures, including imaging screening, play a crucial role in early detection, 
significantly improving patient survival rates [3]. Among the various screening techniques, 
mammography has been proven to identify early-stage cancers[4]. 
 
Microcalcifications (MCCs) are suspicious signs that often require further investigation, appearing in 
about one-third of malignant lesions detected during mammography [5], [6]. Benign MCCs are typically 
larger, rounder in shape, fewer, and more uniform. In contrast, clusters of small-sized and irregular-
shaped MCCs may indicate early signs of cancer (malignant cases) [7]. Accurate classification of MCCs 
as benign or malignant is essential for early diagnosis and effective treatment planning. However, the 
noise and artefacts in mammogram images affecting the identification of MCCs pose a significant 
challenge [8]. 
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Advancements in image processing have improved the accuracy of microcalcification detection [9], [10]. 
Enhancing any process could improve the entire system's performance [11]. Pre-processing, particularly 
image denoising, is crucial [12]. Traditional spatial filters like Median, Weiner, Gaussian, and Bilateral 
filters are commonly used for noise reduction in mammograms [13], [14], [15]. Every method has its own 
set of benefits and drawbacks. The Median Filter handles outliers without amplifying noise, yet it may 
also blur image details and thin lines, even at low noise densities [15], [16]. The Wiener filter is helpful 
in adapting to varying noise levels but tends to blur sharp edges and incompletely filter the noise [17]. 
The Gaussian filter smooths images effectively, but it can also obscure high-frequency details [18]. The 
Bilateral filter preserves edges while reducing noise and can effectively maintain the structural details of 
an image [19]. Nevertheless, it may struggle with high noise levels and is computationally intensive, 
making it less practical for large datasets [20]. Although traditional filters have effectively reduced 
common types of noise in mammographic images, such as Gaussian noise, salt and pepper noise, and 
speckle noise, most studies evaluate these filters using image quality metrics such as Peak Signal Noise 
Ratio (PSNR) and Structural Similarity Index (SSIM) [21], [22]. However, there is a lack of studies 
examining how these filters influence the classification performance of mammographic images, 
particularly for detecting microcalcifications. This study addresses this gap by investigating how 
traditional filters, both individually and combined with a persistent homology approach, affect the 
classification performance of a neural network. 
 
Persistent Homology (PH) is a core tool in topological data analysis (TDA), known for extracting multi-
scale topological features from data [23], [24]. PH has been applied across various domains, especially 
in medical image processing, where PH has been leveraged for tasks such as tumour segmentation in 
colorectal cancer [25] and biomedical image segmentation [26]. Furthermore, PH features such as 
connected components, loops, and voids, which are captured across different scales and represented 
in persistence diagrams, have been effectively utilised in classification tasks, including identifying 
hepatocellular ballooning in liver biopsies [27], diagnosing prostate cancer [28], classifying breast 
tumours [29], hepatic tumour classification [30], and analysing eye fundus images [31].  
 
Despite these advancements, the application of PH in image denoising, particularly in mammographic 
analysis, remains underexplored. Our previous work [32] introduced PH-based filtering approach for 
noise reduction in mammogram images. Unlike traditional spatial filters, this method operates on 
persistent diagrams (PDs) derived from PH, aiming to preserve the intrinsic features of 
microcalcifications and thereby enhance the discriminatory information for classification tasks. 
 
Persistence Diagrams (PDs), a key topological descriptor from PH, capture the birth and death of 
features like connected components and loops as pixel intensity varies. PDs effectively summarise these 
features' significance by plotting their lifespan on a half-plane above the diagonal [33]. Points far from 
the diagonal indicate prominent features, while those close to the diagonal are interpreted as noise [29]. 
The distinct ability of PH to differentiate between significant and noise features drives our investigation, 
utilising PH to evaluate filtering techniques and exploring its potential to improve classification 
performance. 
 
In PH, the topological features from PDs can be converted into a format compatible with machine-
learning models. Two common methods for this conversion are Persistent Entropy (PE) and Persistent 
Image (PI). PE measures the complexity of topological features by assessing the distribution of the 
lifespans, providing a robust metric for datasets with varying topological structures [34]. For instance, 
Leykam et al. [35] used PE  to detect dark solitons, demonstrating its effectiveness in analysing complex 
topological structures. Similarly, Rammal et al. [36] utilised PE as input in a machine-learning model to 
diagnose prostate cancer, while Yen and Cheong [34] applied it to the stock market analysis in Singapore 
and Taiwan. On the other hand, Persistent Image (PI) transforms points in PDs into fixed-size images 
[37], leveraging image-based capabilities for effective data analysis. The effectiveness of PI in medical 
imaging is evidenced by Teramoto et al. [38] in classifying hepatocellular ballooning in liver biopsies, 
Asaad et al. [39] in breast tumour classification using mammogram scans, and Oyama et al. [37] in 
hepatic tumour classification using MRI images. 
 
This study expands on our previous work by leveraging PH to evaluate the impact of spatial filters on the 
classification performance of a neural network using PH features. The primary goals are: i)  to assess 
how different spatial filters affect the classification of microcalcifications and ii) to integrate PH-based 
filtering with spatial filters to enhance classification performance. This research aims to contribute to 
more accurate and reliable breast cancer detection and diagnosis by addressing the challenges of noise 
and artefact removal in mammogram images. 
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Methodology 
 
This study uses the PH approach to evaluate how various spatial filters applied to mammogram images 
affect the classification performance of a neural network. The evaluation process involves several key 
steps: transforming all filtered images into PD to capture their topological features, vectorising these PD 
using PH features; and classifying the vectorised features with a Neural Network Classifier. We propose 
further filtering the PDs to enhance classification accuracy. The proposed framework is illustrated in 
Figure 1, encompasses the entire process from image acquisition to classification, integrating spatial 
filtering and PH analysis to improve microcalcifications' classification for early breast cancer diagnosis. 
The main stages of this framework are described below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Illustration of proposed framework 

 
 
Dataset 
Two publicly available datasets containing regions of interest (ROI) with microcalcifications were used. 
The first dataset is from the MIAS dataset, containing 26 image patches mammography films with the 
abnormality's location given by the specialists [40]. The patches include three types of background 
tissue: fatty, fatty glandular, and dense glandular. The ROI size of each image is 200 x 200 pixels. The 
second dataset is from the digital screening mammography (DDSM) database, consisting of 244 image 
patches randomly selected with the size of 300 x 300 pixels [41]. The image labels for both datasets are 
described in Table 1. Although both datasets contain many mammograms, not all of them exhibit 
microcalcifications. Therefore, the number of microcalcification patches is significantly lower than the 
total number of images in the datasets. 
 
Table 1. Image labels for mammographic microcalcifications in both datasets 
 

 Benign Malignant Total 
MIAS 13 13 26 
DDSM 122 122 244 
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Spatial Filters 
Spatial filtering techniques are widely employed to address noise-related problems and enhance an image's 
quality [42]. These techniques adjust pixel values based on their neighbouring pixels. This study compares 
the following spatial filtering methods: 
 
Median Filter 
The median filter is a non-linear spatial filtering technique commonly used in the pre-processing 
of mammography images [43]. It replaces each pixel value with the median of the surrounding 
pixels within a sliding window over the image  [44]. Mathematically, for a pixel  , the median filtered 
value is 

     { }( , ) ( , )M x y median I x i y j= + +                                (1) 
where ( , )i j are the coordinates of the pixels within the window centred at ( , )x y . The window 
size is a critical factor in the operation of the median filter. It determines the range of neighbouring 
pixels that are taken into account. Larger windows offer more effective noise reduction but can 
also blur image details. On the other hand, smaller windows preserve details better but may not 
be as effective at reducing noise [45].  
 
Gaussian Filter 
The Gaussian filter is a technique that smooths and reduces noise by convolving the image with a Gaussian 
kernel. It assigns higher weights to central pixels and lower weights to those further away [46]. The filtered 
image '( , )G x y is obtained using [47] 

                                                '( , ) ( , ) ( , )k k

i k j k
G x y I x i y j G i j

=− =−
= + + ∗∑ ∑                                           (2) 

where 
2 2

22( , )
i j

G i j e σ
+

−
= , σ is the standard deviation of the Gaussian distribution and k determines the kernel 

size, with the summation covering all pixels in the window centred at ( , )x y . An important parameter of the 
Gaussian function is σ (sigma), which controls the level of smoothness where a larger sigma value results 
in more significant smoothing. 
 
Wiener Filter 
The Wiener filter is used to reduce noise in images while preserving important details by minimising the 
mean square error between the estimated and the original image. In the spatial domain, the filter operates 
over a local neighbourhood or kernel, which determines how much of the surrounding pixel information is 
used to compute the output for each pixel. The mathematical formulation of the Wiener filter in the spatial 
domain is [48]   

    
where ( , )f x y is the original image, *( , )H u v is the complex conjugate of the Fourier transform of the 
degradation filter, 2 ( , )H u v is the momentum square of the degradation filter,  ( , )G u v is the degraded image 
in the frequency domain, ( , )nP u v and ( , )sP u v are the power spectra of the noise and the signal, respectively. 
The output image 𝑓𝑓(𝑥𝑥,𝑦𝑦) is obtained by multiplying the observed image by the Wiener filter in the frequency 
domain, followed by an inverse Fourier transform to return to the spatial domain. An essential parameter of 
the Wiener filter is the kernel size, which affects the filter's performance and the balance between noise 
reduction and detail preservation. 
 
Bilateral Filter 
The Bilateral Filter stands out for its ability to smooth images while preserving edge details [49]. It replaces 
each pixel's intensity value by averaging only those pixels with similar intensities within a specified 
neighbourhood [50]. This Bilateral filter ensures that edges, typically identified by sudden intensity changes, 
remain unaltered during the smoothing process. The formulation is as follows: 

 

          𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝐻𝐻∗(𝑢𝑢,𝑣𝑣)

𝐻𝐻2(𝑢𝑢,𝑣𝑣)+�𝑃𝑃𝑛𝑛(𝑢𝑢,𝑣𝑣)
𝑃𝑃𝑠𝑠(𝑢𝑢,𝑣𝑣)�

𝐺𝐺(𝑢𝑢, 𝑣𝑣)                      (3) 

          
2 2

2 2

( ) ( )1( ) ( ) exp exp
2 2

D

f
q Sp r s

p q I p I q
I p I q

W σ σ∈

   − −
   = × − × −
   
   

∑          
             (4) 
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where ( )fI p is the filtered intensity value at pixel p, ( )I q is the intensity value at pixel q within the 
neighbourhood S with diameter D, pW is the normalisation factor, rσ is sigma space which controls the 
spatial proximity influences the filtering process and sσ is sigma color space determines the influence of 
colour intensity among neighbouring pixels. 
 
Table 2 presents the parameter configurations for the spatial filters employed in this study. These 
parameters reflect the best-performing configurations within our experimental framework, determined using 
cross-validation to achieve the highest accuracy for each filter applied to the MIAS and DDSM datasets. 
 

Table 2. Parameter settings for spatial filters 
 

 Median  Gaussian Wiener  Bilateral 

MIAS WS = [3,3] Sigma = 1.0 KS= [3,3] D=10, S=15, s=15 

DDSM WS = [3,3] Sigma = 0.5 KS = [3,3] D=15, S=20, s=30 
 
 
Based on Table 2, the term 'WS' in the Median filter refers to the 'Window Size' used to determine the area 
around each pixel contributing to the median calculation. This area is typically a square grid of pixels, like a 
3x3 matrix. Gaussian filters use the 'Sigma' value to represent the standard deviation of the blur effect. 
Higher values of 'Sigma' indicate more blur in the image [21]. On the other hand, 'KS' or 'Kernel Size' in 
Wiener filters defines the dimensions of the sliding window that moves across the image to apply the filtering 
process. The Bilateral filter uses 'D' to refer to the diameter of the pixel neighbourhood considered for 
filtering, 'S' and 's' to denote the 'Sigma Color Space' and 'Sigma Space', respectively. 
 
Persistent Homology 
Persistent homology (PH) provides a profound understanding of the image's structure corresponding to 
the k-th homology group ( kH ),  such as connected components 0( )H , loops 1( )H , voids 2( )H , and 
higher dimensional features. The first step in computing persistent homology is constructing complexes 
from the image. The cubical complexes are ideal for representing a two-dimensional grayscale image, 
which are intricate geometric shapes consisting of a finite union of n-cubes, such as vertices (0-cubes), 
edges (1-cubes), and squares (2-cubes) [51]. In this image, each pixel is considered as a 2-cube square. 
These squares are grouped to form a cubical complex, as shown in Figure 2. 
 

 
(a)  

(b) 

 
(c)  

(d) 
 

 

 
Figure 2. Illustration of cubical complex formation in grayscale images using persistent homology tools. (a) sample test image, (b) pixel 
values of the image, (c) the barcode of topological features and (d) the persistent diagram 
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The grayscale test image in Figure 2(a) contains three objects, A, B, and C, placed against a uniform 
background. These objects are differentiated by their pixel values, as Figure 2(b) illustrates. Object A 
has a value of 195, B is 235, and C is at the maximum of 255, against the background value of 89. These 
pixels constitute a cubical complex, which is then analysed topologically. The barcode diagram in Figure 
2(c) illustrates topological features' birth and death points, with the blue line showing the connected 
component of the image, indicating areas of contiguous pixel values. As the filtration value increases, 
this line demonstrates the development and eventual merging of distinct regions within the image. 
Meanwhile, the objects in the image are captured by the three loops in orange dashed lines, which track 
the existence of these features through their creation and filling (in homological terms, their birth and 
death in 1H  ). Moreover, the persistent diagram (PD) in Figure 2(d) is yet another representation of the 
barcode by plotting these features on a plane, with the x-axis indicating the birth points and the y-axis 
indicating the death points, providing a clear visualisation of their persistence within the cubical complex 
framework.  
 
The differences between death and birth points on the diagram represent the feature's lifespan, providing 
a measure of feature persistency [52]. Points far from the diagonal (long lifespan) indicate their 
significance or robustness features in the data, whereas points that lie close to the diagonal (short 
lifespan) are often considered potential noise [35]. The persistent diagram in Figure 2(d) concretely 
quantifies these features, with the lifespan of each feature being critically assessed by the distance 
between its birth and death points. Such distinction is pivotal for our study's focus on 1-dimensional holes 
( 1H ) due to their relevance in identifying microcalcifications shown as white spots in mammographic 
images.  
 
Transitioning from the conceptual to the practical, Figure 3 illustrates examples of PDs for both benign 
and malignant microcalcifications in the DDSM dataset. The PDs demonstrate that images with similar 
structures exhibit similar patterns [53]. Specifically, the benign PDs (Figure 3a) show topological features 
associated with long-lived lifespans, while malignant PDs (Figure 3b) have shorter lifespans, resembling 
noise. This differentiation highlights the significance of PH in discerning meaningful patterns from noise, 
establishing it as a crucial marker in our analysis. 
 

 
Figure 3. The 𝑯𝑯𝟏𝟏 PDs of benign and malignant microcalcifications in the DDSM dataset 
 
 

    

a) Benign microcalcifications 
    

b) Malignant microcalcifications 
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PH-Based Filtering 
The PH-based filtering approach provides an innovative method for image denoising by operating on 
PDs rather than directly on the image. In our previous study, we proposed a multi-level filtering technique 
using PDs, to effectively filter and classify mammographic microcalcification images, as detailed in  [32]. 
This method demonstrated significant potential in enhancing the classification accuracy of machine 
learning techniques.  
 
In this study, we expand our previous work by integrating spatial filters with the PH-based filter to 
enhance the classification performance further. The proposed approach applies spatial filters to 
preprocess the images and then derives PDs from the filtered images. The PDs are subsequently filtered 
based on the maximum lifespan of topological features. The filtering process consists of the following 
steps: 
 

Step 1: For each filtered image, obtain the PD for 1-dimensional loops ( 1H ): 
 

1
{( , ) | 1,2,3,..., }H i iPD b d i n= =  

where ib and id represent the birth and death values for topological 
feature i. 
 

        
 

(5) 

Step 2: Calculate the lifespan of each point in the PD. The lifespan is calculated as 
the difference between the death and birth values: 
 
                                        ( ) i ilifespan i d b= −  
 

 
 
   

(6) 
 

Step 3: Find the maximum lifespan.  
 
                      max( ) max{ ( ) 1,2,3,..., }lifespan lifespan i n= =  
 

 
  

 (7) 
 

Step 4: Perform incremental noise filtering on PD. Filtering (P) is performed based on 
a certain percentage of the maximum lifespan. Points that have a lifespan 
exceeding a certain threshold value are retained. 
 
                          % { | ( ) max( )}kP i lifespan i k lifespan= > ×  
where k represents the filtering percentage. 
 

 
 
 

(8) 
 
 

Step 5: Obtain the corresponding points in the PD. For each filtering level, we need to 
obtain the points in the persistent diagram whose lifespan matches the filtered 
range: 
                      
                         

1% %{( , ) | ( , ) }k i i i i H kPD b d b d PD i P= ∈ ∧ ∈  

 
 
 
 

  (9) 
 

 The complete algorithm for PH-based filtering is summarised in Algorithm 1. 
 

Algorithm 1 PH-based Filtering using PD 
Input: n ← number of images in a dataset 

for i =1,2, 3, …., n do 
      I ← load the ith image from the dataset. 
     PDH1 ← Obtain the persistent diagram of 1H  (loops) 
     lifespan ← Calculate the lifespan (death – birth)  
     max_lifespan ← Obtain the max(lifespan) 
      
     for each point in PD1 do 
     for threshold = ' 'δ to 1 where '0 1'δ< < do 
           if point(lifespan) > threshold * max_lifespan 
                 Add point to filter_[threshold *100]% 

Output: filter_[threshold *100]%(points) 
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Based on this algorithm, the threshold value corresponds to the percentage of denoising. We used a 
20% filter for the MIAS dataset and 30% for the DDSM dataset for comparison purposes, as proposed 
by [32].  
 
PH Features 
After filtering, the 1H data is transformed into a vector using PH features to form a feature set for the 
machine learning model to assess the classification performance. Persistent entropy and persistent 
image are used for vectorisation, providing topological features. 
 
A) Persistent Entropy (PE) 

 
PE measures the disorder in the distribution of lifespan (persistence). Let PD's lifespan, | |death birth= −l
points. The entropy of PD is defined as [51] 

                                                                                        
1

( ) log
( ) ( )

n
j j

j j j

PD
S S

ε
=

 
=   

 
∑

l l
l l

                                                        (10) 

where j is the index of lifespans, n is the total number of lifespans (or features) and l( )jS  is the sum of 

the lifespan in the PD. Every PD will produce one entropy value. A zero PE value indicates the presence of 
a single or dominant feature, while N number of features consists of PE of log( )N . In scenarios where 
noise-induced features exhibit similar persistence levels, higher entropy values occur [35].  
 
B) Persistent Image (PI) 
 
PI is a technique proposed by Adams et al. [54] to convert PDs into fixed-dimension vectors that are suitable 
for machine learning. To construct PI, a PD's persistence points (birth and death coordinates) are rotated

°45 . The rotated PD denoted as R is then discretised into the persistent surface ( ρ ) in ( , )x y coordinated 
defined as 

                                                ( , )
( , )

( , ) ( , ). ( , )b d
b d R

R x y g x y f b dρ
∈

= ∑                                             (11) 

 
where ( , )g b d is a Gaussian smoothing function defined as  
    

        
2 2 2[( ) ( ) ]/ 2

( , ) 2

1( , )
2

x b y d
b dg x y e σ

πσ
− − + −=                                              (12)      

 
and ( , ) 0f b d ≥  are non-negative weighting functions. The PI is derived by integrating the persistence 
surface function ρ ( , )R x y over each pixel. Our experiments use a pixel size of 1, yielding one vectorised 
PI value per PD. The weighting function, ( , )f b d is based on the persistence values [54], and the 
Gaussian function's smoothing parameter,σ  is set to 1 by default. 
 
Classification Using Neural Network 
A neural network (NN) is a network system that is widely used in machine learning. The basic building block 
of a NN is the neuron, which can have adjustable weights to facilitate learning. The complexity of the 
network depends on the number of layers [55]. The primary network structure consists of three layers that 
group the neurons. These layers consist of input, hidden, and output layers. The NN architecture of this 
study is shown in Figure 4. The network utilises features derived from PH, which are PI and PE, as input 
layers. These features are unique in their ability to capture nuanced topological structures and the 
complexities inherent in data. A bias term ensures that the network maintains flexibility and adaptability. As 
the data travels through the network, it passes through a hidden layer of neurons. Throughout the network, 
the sigmoid activation function introduces non-linearity, enabling the model to capture intricate patterns. 
The processed data then moves to the output layer, with two neurons representing benign and malignant 
classifications. This network's design emphasises the potential of combining traditional neural network 
structures with persistent homology features. 
 
 
 
 



 

e-ISSN 2289-599X | DOI: https://doi.org/10.11113/mjfas.v20n6.3714 1296 

Abdul Malek et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 20 (2024) 1288-1307 
 

 
 

Figure 4. The Neural Network Architecture 
 
 
           Performance Evaluation 

The effectiveness of each filtering technique is measured based on the classification performance metrics. 
A fundamental tool in classification evaluation is the confusion matrix, which presents a tabular number of 
predicted classes against the actual classes [56]. This matrix consists of four elements described in Figure 
5. 
 

 
 

Figure 5. The confusion matrix 
 
 

The confusion matrix provides insights into how well the classification model's predictions match the actual 
outcomes. This matrix is used to calculate other performance metrics such as accuracy, precision, recall, 
f-measure, and specificity, which are defined as follows [57]. 

 
• Accuracy (Acc). The percentage of images correctly classified to the total number of images. It gives an 

overall measure of how often the classifier is correct. 
 

                                                                                     100%TP TNAcc
TP TN FP FN

+
= ×

+ + +
                                                     (13) 

 
• Precision (Pr). The percentage of correctly predicted benign images to the total images predicted as 

benign. It describes the accuracy of the positive predictions, where high precision implies that the false 
positive rate is low. 
 

                                              Pr 100%TP
TP FP

= ×
+

                                                              (14) 
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• Recall (Rc). It is also called sensitivity. It measures the percentage of correctly predicted benign images 

to the total actual benign images. It tells us about the classifier's ability to detect positive cases. High 
recall means that the classifier correctly identified most of the positive cases. 
 

                                                                                                 100%TPRc
TP FN

= ×
+

                                                             (15) 

 
• F-measure (Fm). It provides a single score that balances the trade-off between precision and recall. 

The score can be used to determine the correctness of the test dataset.  
•  

            
Pr2 100%
Pr

RcFm
Rc

 ×
= × × + 

                                                     (16) 

 
• Specificity (Sp). The percentage of correctly predicted malignant images compared to the actual 

malignant images. High specificity means that the classifier correctly identified most of the malignant 
cases. 

 
                                                        (17) 

 
In addition, the overall effectiveness of filtering techniques can also be measured using the area under the 
curve (AUC) obtained by the receiver operating characteristic curve (ROC). The ROC curve plots the true 
positive rate (TPR), called recall, versus the false positive rate (FPR). The FPR mismeasures the number 
of benign cases identified as malignant compared to the total number of benign instances. This analysis 
will provide valuable insights into how each filtering method impacts the performance of various classifiers 
in distinguishing benign from malignant microcalcifications. 
 
Implementation Details 
In this study, the spatial filters were implemented in Python using well-established libraries for image 
processing, such as the Bilateral filter using the OpenCV library, while the Gaussian and Median filters 
employed the 'ndimage' module from the SciPy library, which offers a comprehensive collection of 
multidimensional image processing routines. Additionally, the 'signal' module in SciPy facilitates the Wiener 
filter application, which is equipped to perform advanced signal processing operations.  
 
For the PH computation, the cubical complex filtration and PD are generated using Cubical Ripser Software 
[58], while the vectorised topological features consisting of PI and PE features can be obtained using the 
Scikit-TDA library written in Python. Finally, the Rapid Miner Studio is used for the classification model with 
a fivefold cross-validation. Each experimental test uses 11th Gen Intel(R) Core(TM) i7-11800H, CPU 2.30 
GHz, 16 GB memory, and NVIDIA Geforce RTX 3050Ti for the graphics card.  
 
Results and Discussion 
 
In this study, we employed the PH approach to evaluate how various spatial filtering techniques, 
including Median, Gaussian, Wiener, and Bilateral filters, affect the classification performance of a neural 
network. The evaluation includes transforming filtered images into Persistence Diagrams (PD), 
vectorising these PD using PH features, and classifying the vectorised features with a Neural Network 
Classifier. The impact of further filtering the PD on classification performance is explored. As an 
illustration, we show samples of malignant images from the DDSM dataset to demonstrate the filtered 
image produced through spatial filtering techniques alongside the corresponding PD in Figure 6. The 
Median filter effectively reduces noise while preserving edges, enhancing the visibility of 
microcalcifications. The Gaussian filter smoothens images, reducing noise and blurring some fine details. 
The Wiener filter balances reducing noise and preserving features, keeping important structures while 
moderately reducing noise. The Bilateral filter demonstrates significant noise reduction, as shown by the 
decrease in the number of dots in the PDs, indicating fewer irrelevant topological features. Despite 
blurring fine details, it still preserves significant topological features. 
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a)  b)  c)  d)  e)  
Original Image Median Filter Gaussian 
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Wiener Filter Bilateral Filter 

a) Original Image b) Median Filter c) Gaussian Filter d) Wiener Filter e) Bilateral Filter 
 

Figure 6. Comparison of spatial filters applied to the malignant image and the corresponding PD 
 
 
In Figure 6, the points along the diagonal of the PDs generally represent noise, as these features have 
short lifespans and are less likely to correspond to meaningful structures like microcalcifications. In 
contrast, the points further from the diagonal represent more significant topological features, such as 
microcalcifications, which persist across multiple filtration scales. While spatial filters effectively reduce 
some types of noise, they may also unintentionally blur or diminish microcalcifications, particularly if the 
filtering parameters (e.g., kernel size, sigma values) are not carefully tuned. 
 
To address this limitation, we propose the implementation of PH-based filtering. This method involves 
filtering the PDs to remove diagonal noise features prior to vectorising the topological features. Figure 7 
provides an example of integrating PH-based filtering with spatial filters, demonstrating the 
improvements over the PDs shown in Figure 6. This combination allows for a more robust extraction of 
meaningful topological features while eliminating noise-related artefacts that spatial filters alone cannot 
fully address. 

 

    
a) Median Filter b) Gaussian Filter c) Wiener Filter d) Bilateral Filter 

 
Figure 7. Example of integrated PH-based filtering with spatial filters 
 
 

By eliminating these noise elements, the quality of the topological information used for classification is 
significantly enhanced, leading to more accurate and robust detection of microcalcifications. This 
additional PH-based filtering step refines the extracted features, ensuring that only the most prominent 
topological structures are retained for the classification process. In the following section, we will first 
present the feature extraction results, followed by the classification performance of the neural networks 
for each filtering technique in DDSM and MIAS datasets. 
 
The Vectorise PH Features 
The results of vectorising PH features for the original images, spatial filters and integrated PH-based 
filters in DDSM and MIAS datasets are shown in Figures 8 and 9, respectively. Each scatter plot point 
represents the value of PE versus PI for 244 images in DDSM and 26 images in MIAS datasets. Figures 
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8(a) and 9(a) show the scatter plots of the original images without any spatial filtering applied. As seen 
in these plots, there is significant overlap between the benign and malignant classes, indicating that it is 
challenging to distinguish between two classes based solely on topological features without filtering. 
When examining the spatial filter features only, as in Figures 8 and 9 (b), there is still considerable 
overlap between the benign and malignant classes, particularly in the core regions of the scatter plots. 
This highlights the challenges in distinguishing between classes. The Bilateral filter shows a tighter 
clustering of benign and malignant cases, suggesting it performs well in reducing noise while preserving 
important features. However, combining spatial filters with PH-based filtering, as shown in Figures 8 and 
9 (c), results in significantly improved separation of benign and malignant classes. This is demonstrated 
by the reduced overlap and more distinct clustering in the scatter plots, particularly for the Gaussian and 
Wiener filters in the DDSM dataset and the Gaussian filter in the MIAS dataset. These results suggest 
that PH-based filtering effectively removes diagonal noise features and enhances the distinctiveness of 
topological features. In the next section, we present the classification performance, demonstrating how 
the refined topological features improve classification accuracy in distinguishing between benign and 
malignant cases. 
 

 

a) Original Image 
Median Filter Gaussian Filter           Wiener Filter  Bilateral Filter 

    

b) Spatial filters only 
    

c) Integrating PH-based filter with spatial filters 
 
Figure 8. Scatter plot comparison of PH features for spatial filters and integrated PH-based filtering in the DDSM dataset 
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a) Original Image 
     Median Filter      Gaussian Filter                  Wiener Filter  Bilateral Filter 

    

                                                                                  b)     Spatial filters only 
    

c) Integrating PH-based filter with spatial filters 
 
Figure 9. Scatter plot comparison of PH features for spatial filters and integrated PH-based filtering in the MIAS dataset 
 

The Classification Performance  
The confusion matrices depicted in Figures 10 and 11 serve as the basis for evaluating the effectiveness 
of the filters in distinguishing between benign and malignant cases. Figures 10 and 11 (a) show the 
performance of the original images without any spatial filtering. As expected, without filtering, there is a 
considerable number of misclassifications in both benign (B) and malignant (M) cases, indicating that 
without any form of enhancement, it is challenging to distinguish between the two classes accurately. 
Figures 10 and 11(b) depict the performance of spatial filters alone in both datasets. The Median filter 
demonstrates a balanced performance but with a notable number of misclassifications in both benign 
and malignant cases. The Bilateral filter achieves the best performance among the spatial filters alone, 
displaying fewer misclassifications.  
 
When integrated with pH-based filtering, all the spatial filters show significant improvement, as shown in 
Figures 10 and 11(c). It reduces the number of misclassifications across both datasets, with the Gaussian 
and Wiener filters demonstrating the most noticeable improvements. This suggests that PH-based 
filtering enhances the ability of spatial filters to preserve critical topological features while reducing noise, 
leading to better classification performance. 
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a)  Original image 
      Median Filter       Gaussian Filter     Wiener   Filter       Bilateral Filter 

    

b) Spatial filters only 
    

c) Integrating PH-based filter with spatial filters 
  

Figure 10. Confusion matrices for spatial filters and Integrated PH-based filtering in the DDSM dataset 
  
 

  
 
 
 
 
 
 
 

a) Original image 
     Median Filter         Gaussian Filter      Wiener   Filter      Bilateral Filter 

    

b) Spatial filters only 
    

c) Integrating PH-based filter with spatial filters 
 

Figure 11. Confusion matrices for spatial filters and Integrated PH-based filtering in the MIAS dataset 
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The following results detail the classification performances of various spatial filters, both standalone and 
integrated with PH-based filters, in processing mammographic microcalcification images from both 
datasets. The tables and figures comprehensively compare accuracy, precision, recall, F-measure, 
specificity, and AUC for these filters, revealing significant improvements when PH is integrated. For the 
DDSM dataset,  as shown in Table 3, the no-filter configuration, which uses the original images without 
spatial filters, achieved an accuracy of 62.28%, a precision of 63.65%, a recall of 56.37%, an F-measure 
of 59.28%, specificity of 67.93%, and an AUC of 0.614. Among the standalone spatial filters, the Bilateral 
Filter outperforms others with an accuracy of 71.76%, precision of 73.27%, recall of 69.6%, F-measure 
of 71.19, specificity of 73.87%, and AUC of 0.804. In contrast, the Median, Wiener, and Gaussian filters 
exhibit lower performance metrics, with accuracies ranging from 56.16% to 60.26% and AUC values 
from 0.62 to 0.646. These results highlight the limitations of traditional spatial filtering techniques in 
isolating and classifying microcalcifications effectively. The integration of PH-based filtering shows a 
marked improvement across all performance metrics, as presented in Table 4. Specifically, the PH-
integrated Wiener filter achieves the highest accuracy of 96.33% and an AUC of 0.963, indicating 
superior discriminatory capability. Similarly, the Gaussian filter shows a notable improvement with an 
accuracy of 95.1% and an AUC of 0.951. The Median filter also benefits, achieving an accuracy of 
93.87% and an AUC of 0.939, while the Bilateral filter, despite its initial strong performance, shows less 
pronounced improvements post-integration. 
 

   Table 3. Classification performances of spatial filters only in the DDSM dataset 
 

Filters Accuracy Precision Recall F-measure Specificity AUC 
No Filter 62.28 63.65 56.37 59.28 67.93 0.614 

Median Filter 56.16 56.99 58.97 56.85 53.3 0.646 
Wiener Filter 57.38 57.98 64.67 60.04 50.03 0.644 

Gaussian Filter 60.26 64.97 49.17 54.4 71.33 0.62 
Bilateral Filter 71.76 73.27 69.6 71.19 73.87 0.804 

 
 
 Table 4. Classification performances of Integrated PH-based filter with spatial filters in the DDSM dataset 
 

Filters Accuracy Precision Recall F-measure Specificity AUC 
Median Filter 93.87 91.28 97.53 94.15 90.23 0.939 
Wiener Filter 96.33 94.55 98.33 96.39 94.3 0.96 

Gaussian Filter 95.1 93.72 96.7 95.16 93.5 0.951 
Bilateral Filter 87.7 87.22 88.47 87.74 86.93 0.877 

 
 
 Shifting to the MIAS dataset, the standalone spatial filters (Median, Bilateral and Gaussian) demonstrate 

moderate performances, with all three showing improvements over the original image (no-filter), as 
shown in Table 5. In contrast. the Wiener filter performs the least effectively, with an accuracy of 68.67% 
and an AUC of 0.684, showing a decline compared to the original image. The integration of PH with 
spatial filters significantly improves classification performance across all metrics, as shown in Table 6. 
The Gaussian filter integrated with PH achieved the highest accuracy of 85.33% and an AUC of 0.867. 
These results indicate that PH can enhance the ability of spatial filters to classify microcalcifications, 
even in a smaller sample size dataset like MIAS. 

 
 Table 5. Classification performances of spatial filters only in the MIAS dataset 

 
Filters Accuracy Precision Recall F-measure Specificity AUC 

No Filter 69.33 65 66.67 69.23 70 0.683 
Median Filter 76.67 75 83.33 76.48 70 0.767 
Wiener Filter 68.67 72 76.67 70.33 60 0.684 

Gaussian Filter 73.33 66.67 66.67 72 76.67 0.717 
Bilateral Filter 76.67 76.67 76.67 75.14 76.67 0.767 
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Table 6. Classification performances of Integrated PH-based filter with spatial filters only in the MIAS dataset 
 

Filters Accuracy Precision Recall F-measure Specificity AUC 
Median Filter 82 83.3 80 80 86.67 0.833 

Wiener Filter 74.67 80 73.33 76 76.67 0.75 
Gaussian Filter 85.33 86.67 86.67 85.33 86.67 0.867 
Bilateral Filter 82 85 80 81.14 83.33 0.817 

 
 

Figures 12 and 13 provide a comparative analysis of the classification performance metrics for spatial 
filters alone (blue bars) and integrated PH-based filtering with spatial filters (orange bars), with the red 
dashed line representing the performance of the original image without any filtering. This allows us to 
compare how much spatial filters improve upon the original image's classification performance, and how 
integrating PH-based filtering further enhances these metrics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Comparison of classification performance metrics for spatial filters only and Integrated PH-based filter in the DDSM dataset 
 
 

In Figure 12 (DDSM dataset), the Bilateral filter outperforms the original image across all metrics, both 
as a standalone filter and when integrated with PH-based filtering. When combined with PH-based 
filtering, all filters show significant improvements over the baseline, with the Wiener and Gaussian filters 
showing the most pronounced gains, especially in precision and recall. The Median filter also shows 
considerable improvement, especially in recall, indicating that PH integration helps these filters preserve 
critical topological features while improving classification performance. Notably, filters that initially 
performed poorly like the Median, Wiener, and Gaussian filters, show significant improvements after 
integration. Although the Bilateral filter already had the best standalone performance, also benefits from 
integration, though less pronounced compared to others, suggesting that PH provides more substantial 
benefits to filters that initially perform poorly. 

  
 In Figure 13 (MIAS dataset), both the Median and Bilateral filters outperform the original image in most 

metrics, with the Median filter demonstrating notable improvements in recall and precision. When 
integrated with PH-based filtering, the performance of all filters significantly improves compared to the 
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original image. Specifically, the Gaussian filter shows remarkable improvements in precision, recall, and 
F-measure, suggesting that PH-based filtering effectively enhances its ability to detect 
microcalcifications. The AUC for all filters also improves significantly when integrated with PH-based 
filtering, indicating better overall classification performance. 

 

 
 
Figure 13. Comparison of classification performance metrics for spatial filters only and Integrated PH-based filter in the MIAS dataset 

 
 
Comparing both datasets, we observe consistent patterns of improvement when integrating PH with 
spatial filters. However, the performance of individual filters varies between the DDSM and MIAS 
datasets. The degree of improvement is generally higher in the DDSM dataset. This can be attributed to 
the larger sample size in the DDSM dataset (244 images) compared to the MIAS dataset (26 images), 
which allows for a more robust evaluation of the filters' effectiveness.  
 
In the DDSM dataset, the Wiener filter shows the greatest improvement when combined with PH-based 
filtering, achieving the highest accuracy, precision, recall, and AUC. This superior performance can be 
attributed to the Wiener filter's ability to handle varying noise levels, making it particularly effective for a 
diverse dataset like DDSM. The larger sample size allows the Wiener filter to adapt better to the differing 
noise characteristics present across the dataset, further enhancing its performance when combined with 
PH-based filtering. In contrast, in the MIAS dataset, the Gaussian filter outperforms others. The smaller 
sample size makes the results more sensitive to individual image variations. The Gaussian filter’s 
smoothing capabilities balance noise reduction and preserve critical features such as microcalcifications. 
When integrated with PH-based filtering, the Gaussian filter effectively reduces noise while maintaining 
feature clarity, which explains its superior performance in the MIAS dataset. These variations highlight 
the importance of selecting filters that align with the specific dataset and image characteristics. 
 
The results of this study align with the current literature, which emphasises the limitations of spatial filters 
alone and the need for advanced filtering techniques in medical image analysis. Traditional spatial filters 
often struggle with mammogram images' intrinsic heterogeneity and complex tissue structure, resulting 
in limited noise reduction and feature enhancement [42]. Integrating PH-based filtering addresses these 
limitations by enhancing the robustness of feature extraction, leading to more accurate and reliable 
classification outcomes. 
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Conclusions 
 
This study demonstrates the effectiveness of the PH approach in evaluating and enhancing the 
classification performance of a neural network when spatial filters are applied to mammographic 
microcalcification images. By using PH, we transformed filtered images into PDs that capture topological 
features across multiple scales. These PDs were then vectorised using PH features and classified with 
a Neural Network Classifier. This evaluation revealed that traditional spatial filters, while reducing general 
noise, often fall short of fully eliminating noise and enhancing critical features necessary for accurate 
classification, resulting in suboptimal outcomes. 
 
Integrating PH-based filter with spatial filters significantly enhances classification performance in 
mammographic microcalcifications images, as evidenced by improvements in accuracy, precision, recall, 
F-measure, specificity, and AUC across both DDSM and MIAS datasets. In the DDSM dataset, the 
Wiener filter's accuracy increased from 57.38% to 96.33%, while in the MIAS dataset, the Gaussian 
filter's accuracy improved from 73.33% to 85.33%. These findings highlight the potential of PH-based 
filtering to refine topological features and effectively reduce noise, thus enhancing diagnostic accuracy.  
 
The study underscores the importance of evaluating spatial filters not just based on image quality metrics 
but also on their classification performance. The enhanced performance metrics validate the efficacy of 
this combined approach in early detection and diagnosis of breast cancer. For future research, several 
areas can be explored to advance the findings of this study. First, a comparative analysis between PH-
based filtering with and without spatial filters could provide deeper insights into the specific contributions 
of each approach. Additionally, expanding the application of this method to larger and more diverse 
datasets will help validate its robustness and generalizability. Integrating this approach with other 
advanced image processing and machine learning models, such as deep learning architectures, could 
further enhance diagnostic accuracy. This line of research has the potential to contribute significantly to 
clinical outcomes by improving the early detection of breast cancer. 
 
Conflicts of Interest 
 
The author(s) declare(s) that there is no conflict of interest regarding the publication of this paper. 
 
Acknowledgement 
 
We gratefully acknowledge Universiti Kebangsaan Malaysia for the internal grant Tabung Agihan 
Pendapatan (TAP-K020061) . The first author would like to express her gratitude to Malaysia's Ministry 
of Higher Education (MOHE) and Universiti Teknologi MARA (UiTM) for the full SLAB scholarship. The 
authors thank the anonymous referees for their suggestions, which helped to improve this paper. 
 
References 
 
[1] Ferlay, J., et al. (2021). Cancer statistics for the year 2020: An overview. International Journal of Cancer, 

148(4), 1–10. https://doi.org/10.1002/ijc.33588 
[2] Arnold, M., et al. (2022). Current and future burden of breast cancer: Global statistics for 2020 and 2040. The 

Breast, 66, 15–23. https://doi.org/10.1016/j.breast.2022.08.010 
[3] Ramadan, S. Z. (2020). Methods used in computer-aided diagnosis for breast cancer detection using 

mammograms: A review. Journal of Healthcare Engineering, 2020, 1–12. 
https://doi.org/10.1155/2020/9162464 

[4] Htay, M. N. N., et al. (2021). Breast cancer screening in Malaysia: A policy review. Asian Pacific Journal of 
Cancer Prevention, 22(6), 1685. https://doi.org/10.31557/APJCP.2021.22.6.1685 

[5] Yurdusev, A. A., Adem, K., & Hekim, M. (2023). Detection and classification of microcalcifications in 
mammogram images using difference filter and Yolov4 deep learning model. Biomedical Signal Processing 
and Control, 80, 1–7. https://doi.org/10.1016/j.bspc.2022.104360 

[6] Azam, S., et al. (2021). Mammographic microcalcifications and risk of breast cancer. British Journal of Cancer, 
125(5), 759–765. https://doi.org/10.1038/s41416-021-01459-x 

[7] Loizidou, K., Skouroumouni, G., Nikolaou, C., & Pitris, C. (2020). An automated breast micro-calcification 
detection and classification technique using temporal subtraction of mammograms. IEEE Access, 8, 52785–
52795. https://doi.org/10.1109/ACCESS.2020.2980616 

[8] Almalki, Y. E., Soomro, T. A., Irfan, M., Alduraibi, S. K., & Ali, A. (2022). Impact of image enhancement module 
for analysis of mammogram images for diagnostics of breast cancer. Sensors, 22(1868), 1–20. 

[9] Gowri, V., Valluvan, K. R., & Vijaya Chamundeeswari, V. (2018). Automated detection and classification of 
microcalcification clusters with enhanced preprocessing and fractal analysis. Asian Pacific Journal of Cancer 



 

e-ISSN 2289-599X | DOI: https://doi.org/10.11113/mjfas.v20n6.3714 1306 

Abdul Malek et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 20 (2024) 1288-1307 
 

Prevention, 19(11), 3093–3098. https://doi.org/10.31557/APJCP.2018.19.11.3093 
[10] Azam, A. S. B., Malek, A. A., Ramlee, A. S., Suhaimi, N. D. S. M., & Mohamed, N. (2020). Segmentation of 

breast microcalcification using hybrid method of Canny algorithm with Otsu thresholding and 2D wavelet 
transform. In 2020 10th IEEE International Conference on Control System, Computing and Engineering 
(ICCSCE) (pp. 91–96). Penang, Malaysia. https://doi.org/10.1109/ICCSCE50387.2020.9204950 

[11] Fadil, R., Jackson, A., El Majd, B. A., El Ghazi, H., & Kaabouch, N. (2020). Classification of microcalcifications 
in mammograms using 2D discrete wavelet transform and random forest. In IEEE International Conference on 
Electro Information Technology (pp. 353–359). https://doi.org/10.1109/EIT48999.2020.9208290 

[12] Padmapriya, R., & Jeyasekar, A. (2022). Blind image quality assessment with image denoising: A survey. 
Journal of Pharmaceutical Negative Results, 13(3), 386–392. https://doi.org/10.47750/pnr.2022.13.S03.064 

[13] Melekoodappattu, J. G., Subbian, P. S., & Queen, M. P. F. (2021). Detection and classification of breast cancer 
from digital mammograms using hybrid extreme learning machine classifier. International Journal of Imaging 
Systems and Technology, 31(2), 909–920. https://doi.org/10.1002/ima.22484 

[14] Brito, F. A., Oliveira, H. C. R., Bakic, P. R., Maidment, A. D. A., & Vieira, M. A. C. (2016). Using bilateral filter 
to denoise digital mammograms acquired with reduced radiation dose. In Congresso Brasileiro de Engenharia 
Biomédica (pp. 1334–1337). 

[15] Patil, R. S., & Biradar, N. (2020). Automated mammogram breast cancer detection using the optimized 
combination of convolutional and recurrent neural network. Evolutionary Intelligence, 14(4), 1459–1474. 
https://doi.org/10.1007/s12065-020-00403-x 

[16] Rajaguru, H., & Sannasi Chakravarthy, S. R. (2020). Efficient denoising framework for mammogram images 
with a new impulse detector and non-local means. Asian Pacific Journal of Cancer Prevention, 21(1), 179–
183. https://doi.org/10.31557/APJCP.2020.21.1.179 

[17] Fan, L., Zhang, F., Fan, H., & Zhang, C. (2019). Brief review of image denoising techniques. Visual Computing 
in Industry, Biomedicine, and Art, 2(1), 7. https://doi.org/10.1186/s42492-019-0016-7 

[18] Goyal, B., Dogra, A., Agrawal, S., Sohi, B. S., & Sharma, A. (2020). Image denoising review: From classical to 
state-of-the-art approaches. Information Fusion, 55, 220–244. https://doi.org/10.1016/j.inffus.2019.09.003 

[19] Boby, S. M. (2021). Medical image denoising techniques against hazardous noises: An IQA metrics based 
comparative analysis. I.J Image, Graphics and Signal Processing, 2(April), 25–43. 
https://doi.org/10.5815/ijigsp.2021.02.03 

[20] Spagnolo, F., Corsonello, P., Frustaci, F., & Perri, S. (2023). Design of approximate bilateral filters for image 
denoising on FPGAs. IEEE Access, 11, 1990–2000. https://doi.org/10.1109/ACCESS.2022.3233921 

[21] Boby, S. M. (2021). Medical image denoising techniques against hazardous noises: An IQA metrics based 
comparative analysis. I.J Image, Graphics and Signal Processing, 2(April), 25–43. 
https://doi.org/10.5815/ijigsp.2021.02.03 

[22] Kshema, M. J. George, & Dhas, D. A. S. (2017). Preprocessing filters for mammogram images: A review. In 
2017 Conference on Emerging Devices and Smart Systems (ICEDSS) (pp. 1–7). 
https://doi.org/10.1109/ICEDSS.2017.8073694 

[23] Kusano, G., Fukumizu, K., & Hiraoka, Y. (2018). Kernel method for persistence diagrams via kernel embedding 
and weight factor. Journal of Machine Learning Research, 18, 1–41. 

[24] Sapini, M. L., Noorani, M. S. M., Razak, F. A., Alias, M. A., & Yusof, N. M. (2022). Understanding published 
literatures on persistent homology using social network analysis. Malaysian Journal of Fundamental and 
Applied Sciences, 18(4), 413–429. https://doi.org/10.11113/mjfas.v18n4.2418 

[25] Qaiser, T., Tsang, Y. W., Epstein, D., & Rajpoot, N. (2017). Tumor segmentation in whole slide images using 
persistent homology and deep convolutional features. Communications in Computer and Information Science, 
723, 320–329. https://doi.org/10.1007/978-3-319-60964-5_28 

[26] Assaf, R., Goupil, A., Kacim, M., & Vrabie, V. (2017). Topological persistence based on pixels for object 
segmentation in biomedical images. In International Conference on Advances in Biomedical Engineering 
(ICABME) (pp. 1–6). https://doi.org/10.1109/ICABME.2017.8167531 

[27] Teramoto, T., Shinohara, T., & Takiyama, A. (2020). Computer-aided classification of hepatocellular ballooning 
in liver biopsies from patients with NASH using persistent homology. Computers in Biology and Medicine, 195, 
105614. https://doi.org/10.1016/j.cmpb.2020.105614 

[28] Rammal, A., Assaf, R., Goupil, A., Kacim, M., & Vrabie, V. (2022). Machine learning techniques on homological 
persistence features for prostate cancer diagnosis. BMC Bioinformatics, 23(1), 1–22. 
https://doi.org/10.1186/s12859-022-04992-5 

[29] Asaad, A., Ali, D., Majeed, T., & Rashid, R. (2022). Persistent homology for breast tumor classification using 
mammogram scans. Mathematics, 10(21), 1–13. https://doi.org/10.3390/math10214039 

[30] Oyama, A., et al. (2019). Hepatic tumor classification using texture and topology analysis of non-contrast-
enhanced three-dimensional T1-weighted MR images with a radiomics approach. Scientific Reports, 9(1), 2–
11. https://doi.org/10.1038/s41598-019-45283-z 

[31] Avilés-Rodríguez, G. J., et al. (2021). Topological data analysis for eye fundus image quality assessment. 
Diagnostics, 11(8). https://doi.org/10.3390/diagnostics11081322 

[32] Malek, A. A., Alias, M. A., Razak, F. A., Noorani, M. S., Mahmud, R., & Zulkepli, N. F. (2023). Persistent 
homology-based machine learning method for filtering and classifying mammographic microcalcification 
images in early cancer detection. Cancers, 15(9). https://doi.org/10.3390/cancers15092606 

[33] Hu, C. S., Lawson, A., Chen, J. S., Chung, Y. M., Smyth, C., & Yang, S. M. (2021). Toporesnet: A hybrid deep 
learning architecture and its application to skin lesion classification. Mathematics, 9(22), 1–22. 
https://doi.org/10.3390/math9222924 

[34] Atienza, N., Escudero, L. M., & Jimenez, M. J. (2019). Persistent entropy: A scale-invariant topological statistic 
for analysing cell arrangements, 1–14. 

[35] Leykam, D., Rondón, I., & Angelakis, D. G. (2022). Dark soliton detection using persistent homology. Chaos: 
An Interdisciplinary Journal of Nonlinear Science, 32(7), 73133. https://doi.org/10.1063/5.0097053 



 

e-ISSN 2289-599X | DOI: https://doi.org/10.11113/mjfas.v20n6.3714 1307 

Abdul Malek et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 20 (2024) 1288-1307 
 

[36] Rammal, A., Assaf, R., Goupil, A., Kacim, M., & Vrabie, V. (2022). Machine learning techniques on homological 
persistence features for prostate cancer diagnosis. BMC Bioinformatics, 23(1), 1–22. 
https://doi.org/10.1186/s12859-022-04992-5 

[37] Adams, H., et al. (2017). Persistence images: A stable vector representation of persistent homology. Journal 
of Machine Learning Research, 18, 1–35. 

[38] Teramoto, T., Shinohara, T., & Takiyama, A. (2020). Computer-aided classification of hepatocellular ballooning 
in liver biopsies from patients with NASH using persistent homology. Comput Methods Programs Biomed, 195. 
https://doi.org/10.1016/j.cmpb.2020.105614 

[39] Asaad, A., Ali, D., Majeed, T., & Rashid, R. (2022). Persistent homology for breast tumor classification using 
mammogram scans. Mathematics, 10(21). https://doi.org/10.3390/math10214039 

[40] Suckling, J. (1994). The mammographic image analysis society digital mammogram database. Exerpta Medica 
International Congress, 375–386. 

[41] Heath, M., Bowyer, K., Kopans, D., Moore, R., & Kegelmeyer, P. (2000). The digital database for screening 
mammography. In Fifth International Workshop on Digital Mammography (pp. 212–218). Toronto, Canada. 

[42] Goyal, B., Dogra, A., Agrawal, S., Sohi, B. S., & Sharma, A. (2020). Image denoising review: From classical to 
state-of-the-art approaches. Information Fusion, 55(September 2019), 220–244. 
https://doi.org/10.1016/j.inffus.2019.09.003 

[43] Michael, E., Ma, H., Li, H., Kulwa, F., & Li, J. (2021). Breast cancer segmentation methods: Current status and 
future potentials. Biomed Res Int, 2021. https://doi.org/10.1155/2021/9962109 

[44] Garg, S., Vijay, R., & Urooj, S. (2019). Statistical approach to compare image denoising techniques in medical 
MR images. Procedia Comput Sci, 152, 367–374. https://doi.org/10.1016/j.procs.2019.05.004 

[45] Zhang, X., Gao, W., Zhu, S., & Engineering, I. (2020). Research on noise reduction and enhancement of weld 
image. In 9th International Conference on Signal, Image Processing and Pattern Recognition (SPPR 2020) 
(pp. 13–26). https://doi.org/10.5121/csit.2020.101902 

[46] Ramadan, Z. M. (2018). Optimum image filters for various types of noise. TELKOMNIKA, 16(5), 2458–2464. 
https://doi.org/10.12928/TELKOMNIKA.v16i5.10508 

[47] Rybakova, E. O., Limonova, E. E., & Nikolaev, D. P. (2024). Fast Gaussian filter approximations comparison 
on SIMD computing platforms. Applied Sciences, 14(11). https://doi.org/10.3390/app14114664 

[48] Ramadan, S. Z. (2020). Methods used in computer-aided diagnosis for breast cancer detection using 
mammograms: A review. J Healthc Eng, 2020. https://doi.org/10.1155/2020/9162464 

[49] Günther, D., Jacobson, A., Reininghaus, J., Seidel, H. P., Sorkine-Hornung, O., & Weinkauf, T. (2014). Fast 
and memory-efficient topological denoising of 2D and 3D scalar fields. IEEE Trans Vis Comput Graph, 20(12), 
2585–2594. https://doi.org/10.1109/TVCG.2014.2346432 

[50] Fan, L., Zhang, F., Fan, H., & Zhang, C. (2019). Brief review of image denoising techniques. Vis Comput Ind 
Biomed Art, 2(1), 7. https://doi.org/10.1186/s42492-019-0016-7 

[51] Avilés-Rodríguez, G. J., et al. (2021). Topological data analysis for eye fundus image quality assessment. 
Diagnostics, 11(8). https://doi.org/10.3390/diagnostics11081322 

[52] Otter, N., Porter, M. A., Tillmann, U., Grindrod, P., & Harrington, H. A. (2017). A roadmap for the computation 
of persistent homology. EPJ Data Sci, 6, 1–38. 

[53] Garin, A., & Tauzin, G. (2019). A topological ‘reading’ lesson: Classification of MNIST using TDA. In 
Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019 (pp. 
1551–1556). https://doi.org/10.1109/ICMLA.2019.00256 

[54] Adams, H., et al. (2017). Persistence images: A stable vector representation of persistent homology. Journal 
of Machine Learning Research, 18, 1–35. 

[55] Iqbal, S., Qureshi, A. N., Li, J., & Mahmood, T. (2023). On the analyses of medical images using traditional 
machine learning techniques and convolutional neural networks. Springer Netherlands, 30(5). 
https://doi.org/10.1007/s11831-023-09899-9 

[56] Jiao, Y., & Du, P. (2016). Performance measures in evaluating machine learning based bioinformatics 
predictors for classifications. Quantitative Biology, 4(4), 320–330. https://doi.org/10.1007/s40484-016-0081-2 

[57] Yurdusev, A. A., Adem, K., & Hekim, M. (2023). Detection and classification of microcalcifications in 
mammograms images using difference filter and Yolov4 deep learning model. Biomed Signal Process Control, 
80. https://doi.org/10.1016/j.bspc.2022.104360 

[58] Kaji, S., Sudo, T., & Ahara, K. (2020). Cubical Ripser: Software for computing persistent homology of image 
and volume data. D, 1–9. Retrieved from http://arxiv.org/abs/2005.12692 

 
 

https://doi.org/10.12928/TELKOMNIKA.v16i5.10508
http://arxiv.org/abs/2005.12692

	Introduction
	Methodology
	Figure 2. Illustration of cubical complex formation in grayscale images using persistent homology tools. (a) sample test image, (b) pixel values of the image, (c) the barcode of topological features and (d) the persistent diagram
	The grayscale test image in Figure 2(a) contains three objects, A, B, and C, placed against a uniform background. These objects are differentiated by their pixel values, as Figure 2(b) illustrates. Object A has a value of 195, B is 235, and C is at th...
	The differences between death and birth points on the diagram represent the feature's lifespan, providing a measure of feature persistency [52]. Points far from the diagonal (long lifespan) indicate their significance or robustness features in the dat...
	Transitioning from the conceptual to the practical, Figure 3 illustrates examples of PDs for both benign and malignant microcalcifications in the DDSM dataset. The PDs demonstrate that images with similar structures exhibit similar patterns [53]. Spec...
	Figure 3. The ,𝑯-𝟏. PDs of benign and malignant microcalcifications in the DDSM dataset
	PH-Based Filtering
	The PH-based filtering approach provides an innovative method for image denoising by operating on PDs rather than directly on the image. In our previous study, we proposed a multi-level filtering technique using PDs, to effectively filter and classify...
	In this study, we expand our previous work by integrating spatial filters with the PH-based filter to enhance the classification performance further. The proposed approach applies spatial filters to preprocess the images and then derives PDs from the ...
	The complete algorithm for PH-based filtering is summarised in Algorithm 1.
	Based on this algorithm, the threshold value corresponds to the percentage of denoising. We used a 20% filter for the MIAS dataset and 30% for the DDSM dataset for comparison purposes, as proposed by [32].
	PH Features
	Implementation Details
	Results and Discussion
	Conclusions
	Conflicts of Interest
	Acknowledgement
	References

