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Abstract In this article, we determine non-linear terms under the modulation of dynamic 
transmission in childhood diseases analyzed to explore the effect of Rubella virus, along with 
double-dose vaccination strategy which was suggested by WHO. Firstly, basic properties of model 
were calculated such as positiveness, boundedness, disease free and endemic points. Model 
stability was proved at the disease-free and endemic equilibrium points. The Reproductive number 
was calculated using the next generation matrix method. Furthermore, sensitivity analysis is used 
to ascertain how parameter changes impact the system's dynamic behavior. We used Euler, Rk-4 
and NSFD method. The purpose of the numerical simulations is to demonstrate the importance of 
the theoretical findings using numerical methods and the viability of the numerical schemes. 
Convergence and consistency analysis of NSFD scheme were proven. Additionally, we proved 
that NSFD is more reliable than Euler and RK4 through graphical interpretation. Incorporating this 
method enhanced the model’s accuracy, stability, and predictions for rubella dynamics. 
Keywords: Childhood disease, mathematical model, reproductive number analysis, Euler; RK4; NSFD.  

 

 
Introduction 
 
Rubella is an infectious disease caused by a virus. Additionally, it is referred to as "German measles," 
and is caused by a virus distinct from measles. In 2004, the United States declared the elimination of the 
rubella virus. The lack of ongoing disease transmission in a particular geographic area for a minimum of 
12 months is known as rubella eradication [1]. German measles has been a serious illness and a global 
public health issue ever since the epidemic of congenital cataracts brought on by maternal infection in 
1941. The most dreadful outcome of a rubella infection in an early-phase fetus is congenital rubella 
syndrome [2, 3]. Congenital rubella syndrome (CRS), a condition in babies caused by maternal rubella 
virus infection during pregnancy, and it is the most dangerous consequence of rubella virus infection. 
Before rubella was originally identified as a distinct illness in German medical literature in 1814, it was 
thought to be a variation of measles or scarlet fever. Since then, several initiatives have been made to 
stop the illness from spreading [4, 5]. The World Health Organization (WHO) has strongly advised the 
use of Measles, Mumps, Rubella (MMR) vaccinations in countries pursuing widespread immunization 
programs to eradicate the mumps, measles, and rubella viruses [6]. This recommendation resulted from 
in-depth research on the outcomes of several clinical trials. According to the research, using multivalent 
immunizations, such as the MMR vaccine, was advised to stop the spread of the rubella virus and 
eradicate both CRS and rubella. A comprehensive analysis was carried out by Vynnicky et al. [7] on 
vaccination coverage and seroprevalence to calculate the worldwide CRS burden. 
 
The research indicated that, outside of the Americas, Europe, and the Eastern Mediterranean, the 
projected global prevalence of CRS remains high even after vaccination. Following the Global Vaccine 
Action Plan [8] which did not explicitly mention the aim of eradicating measles or rubella worldwide, the 
World Health Organization released the Global Measles and Rubella Strategic Plan 2012-2020 [9]. This 
strategy calls for nations to attain and preserve a high-level of vaccination coverage (at least 80%) with 
two dose MCV-RCV or combination vaccines (MR or MMR) as one of the measures to eliminate measles, 
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rubella, and CRS. It is advised to employ a 2-dose vaccination approach since the majority of people's 
levels of rubella antibodies following a single dose of the vaccine may eventually decline. It is evident 
that after 12 to 15 years following the second dose, between 91 and 100 % of those who had two doses 
developed detectable antibodies [10]. It is standard practice to propose a 2-dose MMR immunization 
regimen for children who are 12 months or older. Rubella should be administered as a first dose between 
the ages of 12 and 15 months. If the first dose fails to elicit an immunological response, a second dose 
should be administered.  
 
Second dose is usually administered between the age of 4 and 6 before a child starts school [11].  
Numerous authors have carried out extensive research on the spread of the rubella virus, including 
different immunization approaches. There is research on the attempts to eradicate rubella that might be 
discussed by a few WHO regions. For example, in 2013 Gao et al. [12] reported that in Australia, 
vaccination rates were successfully increased by 99% in 2010 compared to the prevention era (1960–
70). Similarly, Lambert et al. [3] said that although while rubella vaccinations have been successfully 
administered throughout the Americas since 2009, incomplete immunization programs have allowed the 
virus to continue spreading, as seen in recent outbreaks in Japan and other countries.  
 
In 2016, Wu et al. [13] presented research on the age structured rubella transmission model in East 
Java, Indonesia, using seven different vaccination approaches. Their findings suggested that, if 
vaccination coverage is kept at least the same as it was for the prior two dose vaccination, substituting 
the current two dose measles vaccination with MMR vaccines would be more successful in achieving a 
99% yearly decrease in rubella transmission after 20 years. By the LeBaron research [31], which 
assessed the immunogenicity of MMR2 short and long-term, reinforced the significance of the second 
dose of the rubella immunization (MMR2). From blood specimens obtained over a 12-year period, they 
assessed the two groups' rubella antibody levels in children who obtained MMR2 at ages 4-6 and 10-12. 
According to their findings, rubella antibodies responded well to MMR2, but after 12 years, the antibodies’ 
levels tended to decline. The model [1] reflects the decline in immunity from the first dose, noting that 
rubella antibodies may decrease around 12 years after MMR1, emphasizing the importance of the 
second dose (MMR2). The second dose’s efficacy is represented by a parameter θ2, which extends 
immunity and lowers the number of susceptible individuals in the older age group. Most researchers use 
Kermack-McKendrick's standard model when discussing studies on the model of viral transmission 
[14,18,19,20] and changes, contingent upon the inclusion of new variables in the systematic model. Zhou 
et al. [15] discussed a SEIR rubella transmission framework with age factor. They inquired about the 
global stability of endemic equilibria of SEIR epidemic models with the rubella virus in susceptible, 
exposed and infected populations. Furthermore, they introduced a vaccination framework with four age 
groups to investigate different vaccination strategies for rubella virus. Sun and Hsieh [16] studied a SEIR 
model in which they considered to varying population size and vaccination strategy. The system's 
fundamental reproduction ratios were thoroughly analyzed, and the results were utilized to assess the 
stability of the endemic and disease-free equilibria. 
 
It is more critical to investigate the impact of vaccine induced immunity reduction on the transmission 
dynamics of childhood illnesses. Most semi-analytic and conventional numerical methods fail to explain 
the true behavior of an infectious disease in a community. These methods have some drawbacks and 
are incompatible with the continuous model’s biological nature [21,22]. Sometimes, it is very difficult to 
find the exact and reliable solution of many systems, so researchers use numerical techniques for finding 
the result. Because this model is following the WHO criteria, so we have done it using numerical 
techniques for reliable results. We applied the Euler, RK4, and NSFD methods to a model [1] in order to 
assess and compare their effectiveness in simulating the model's dynamics. The assumptions made by 
Hethcote [17] in 1976 are the foundation for this model. By testing multiple numerical techniques on an 
established model, we were able to evaluate their reliability and determine which method most accurately 
preserves the model's biological features. According to our study, this model is being studied first time 
using NSFD. This comparison provides valuable insights into the model's practical applicability and can 
inform future research on selecting suitable numerical methods for similar systems [23,24,25,30,32]. A 
reliable numerical analysis that preserves all the fundamental attributes is required to examine the 
precise behaviors of such a model. NSFD show convergence at very small step size, and this method is 
more reliable for other models with vaccination such as Rubella, Covid [23,24,25,26]. Using methods 
like Euler, RK4, and especially NSFD with this model improves its accuracy and stability, making long-
term predictions about rubella more reliable. These methods help keep population numbers realistic, 
which is important for planning effective vaccination strategies.  
 
This paper is divided into five sections. Section 1 is about literature review and some background; 
Section 2 is presenting the model formulation. In section 3, the equilibrium states are presented. Basic 
reproductive number, sensitivity and stability analysis of the model are presented in section 4, while in 
section 5 we discussed numerical simulation and discussion of the results. Section 6 presents the 
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stability analysis of NSFD and in section 7 we discussed the conclusion of the paper. 
 
Model Formulation 
 
The model primarily targets females because rubella increases the risk of early pregnancies, which in 
turn causes CRS in the newborns where the mother was infected during pregnancy. This sex differential 
is attributed to the danger of rubella in females of childbearing age rather than a differential susceptibility 
of females and males to the virus [1]. The Vaccination strategy is not gender-specific and there is no 
need to target males; however, targeting the females is an important requirement in eradicating CRS 
due to rubella which falls under public health priority for rubella elimination. The mathematical model [1] 
continued to focus on women. Still due to the deployment of two dose vaccine method, the population 
was split between girls aged 4 and under, girls aged 12 to 15 months and the larger population.   
 

 
 

Figure 1. SEIR two dose vaccination flow chart 
 
 
Protein Preparation 
The entire human population in figure 1 is represented by the letter N and is subdivided into eight 
epidemiological sub-populations: susceptible populations S1 and S2 infected populations I1 and I2, 
Exposed populations E1 and E2 and recovered populations R1 and R2 representing the recovered 
individual population. 
 

S1 +S2 +I1 +I2 +E1 +E2 +R1 +R2=N 
 
Variable of compartmental model S: Susceptible, I: Infected, E: Exposed, R: Recovered. 
 
𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

= Ʌ𝑁𝑁 − (1−𝜃𝜃1)𝛽𝛽𝑑𝑑1(𝐼𝐼1+𝐼𝐼2)
𝑁𝑁

− (𝜇𝜇 + 𝜂𝜂 + 𝜃𝜃1)𝑆𝑆1,                                                                                         (1𝑎𝑎) 
𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

= (1−𝜃𝜃1)𝛽𝛽𝑑𝑑1(𝐼𝐼1+𝐼𝐼2)
𝑁𝑁

− (𝜇𝜇 + 𝜂𝜂 + 𝛿𝛿)𝐸𝐸1,                                                                                                    (1𝑏𝑏) 
𝑑𝑑𝐼𝐼1
𝑑𝑑𝑑𝑑

= 𝛿𝛿𝐸𝐸1 − (𝜇𝜇 + 𝜂𝜂 + 𝛾𝛾)𝐼𝐼1,                                                                                                                     (1𝑐𝑐) 
𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝐼𝐼1 − (𝜇𝜇 + 𝜂𝜂)𝑅𝑅1 + 𝜃𝜃1𝑆𝑆1 .                                                                                                              (1𝑑𝑑) 
𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

= 𝜂𝜂𝑆𝑆1 −
(1−𝜃𝜃2)𝛽𝛽𝑑𝑑2(𝐼𝐼1+𝐼𝐼2)

𝑁𝑁
− (𝜇𝜇 + 𝜃𝜃2)𝑆𝑆2 ,                                                                                              (1𝑒𝑒) 

𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

= 𝜂𝜂𝐸𝐸1 + (1−𝜃𝜃2)𝛽𝛽𝑑𝑑2(𝐼𝐼1+𝐼𝐼2)
𝑁𝑁

− (𝜇𝜇 + 𝛿𝛿)𝐸𝐸2 ,                                                                                               (1𝑓𝑓) 
𝑑𝑑𝐼𝐼2
𝑑𝑑𝑑𝑑

= 𝜂𝜂𝐼𝐼1 + 𝛿𝛿𝐸𝐸2 − (𝜇𝜇 + 𝛾𝛾)𝐼𝐼2 ,                                                                                                                 (1𝑔𝑔) 
𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

= 𝜂𝜂𝑅𝑅1 + 𝛾𝛾𝐼𝐼2 − 𝜇𝜇𝑅𝑅2 + 𝜃𝜃2𝑆𝑆2 .                                                                                                             (1ℎ) 
We assumed all parameters of the system are non-negative. 
 
Using the following re-scaling for simplification   
 

𝑆𝑆1� =
𝑆𝑆1
𝑁𝑁 , 𝐸𝐸1� =

𝐸𝐸1
𝑁𝑁 , 𝐼𝐼1� =

𝐼𝐼1
𝑁𝑁 , 𝑅𝑅1� =

𝑅𝑅1
𝑁𝑁  

 

𝑆𝑆2� =
𝑆𝑆2
𝑁𝑁 , 𝐸𝐸2� =

𝐸𝐸2
𝑁𝑁 , 𝐼𝐼2� =

𝐼𝐼2
𝑁𝑁 , 𝑅𝑅2� =

𝑅𝑅2
𝑁𝑁  
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After using these values and dropping the caps, we got new system in a simple structure,   
 
𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

= Λ − (1 −  𝜃𝜃1)β𝑆𝑆1(𝐼𝐼1 + 𝐼𝐼2) − (µ + η + 𝜃𝜃1)𝑆𝑆1,                         
 
𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

= (1 −  𝜃𝜃1)β𝑆𝑆1(𝐼𝐼1 + 𝐼𝐼2) − (µ + η + δ)𝐸𝐸1,                            
 
𝑑𝑑𝐼𝐼1
𝑑𝑑𝑑𝑑

= δ𝐸𝐸1 − (µ + η + γ)𝐼𝐼1,                                                             
 
𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝐼𝐼1 − (𝜇𝜇 + 𝜂𝜂)𝑅𝑅1 + 𝜃𝜃1𝑆𝑆1,                                                      
                                                                                                                                                               (2) 
𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

= η𝑆𝑆1 − (1 − 𝜃𝜃2)β𝑆𝑆2(𝐼𝐼1 + 𝐼𝐼2) − (µ + 𝜃𝜃2)𝑆𝑆2,                         
 
𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

= η𝐸𝐸1 + (1 − 𝜃𝜃2)β𝑆𝑆2(𝐼𝐼1 +  𝐼𝐼2) − (µ + δ)𝐸𝐸2,                         
 
𝑑𝑑𝐼𝐼2
𝑑𝑑𝑑𝑑

= η𝐼𝐼1 +  δ𝐸𝐸2 − (µ +  γ)𝐼𝐼2,                                                      
 
𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

= 𝜂𝜂𝑅𝑅1 + 𝛾𝛾𝐼𝐼2 − 𝜇𝜇𝑅𝑅2 + 𝜃𝜃2𝑆𝑆2 .                                                  
 
Theorem 1: For given time (t) the system holds the positivity of the solution at the system of Equations 
(2). 
 
Proof: 
𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑
�
𝑑𝑑1=0

=  Λ ≥ 0 ,       𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑
�
𝑑𝑑1=0

=  (1 −  𝜃𝜃1)β𝑆𝑆1(𝐼𝐼1 + 𝐼𝐼2) ≥ 0,         𝑑𝑑𝐼𝐼1
𝑑𝑑𝑑𝑑
�
𝐼𝐼1=0

=  δ𝐸𝐸1 ≥ 0,  

 
 𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑
�
𝑑𝑑1=0

=  𝛾𝛾𝐼𝐼1 + 𝜃𝜃1𝑆𝑆1 ≥ 0,    

 
dS2
dt
�
S2=0

=   η𝑆𝑆1  ≥ 0  ,     𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑
�
𝑑𝑑2=0

=   η𝐸𝐸1 + (1 − 𝜃𝜃2)β𝑆𝑆2(𝐼𝐼1 +  𝐼𝐼2) ≥ 0 ,         𝑑𝑑𝐼𝐼2
𝑑𝑑𝑑𝑑
�
𝐼𝐼2=0

=  η𝐼𝐼1 +  δ𝐸𝐸2 ≥ 0 ,      

 
𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑
�
𝑑𝑑2=0

=  𝜂𝜂𝑅𝑅1 + 𝛾𝛾𝐼𝐼2 + 𝜃𝜃2𝑆𝑆2 ≥ 0. 

 
Which clearly indicate that positivity exists in the system.  
 
Theorem 3: System’s solution is bounded in feasible region.  
 
Proof: 
 
 The total population defined as 
 
S1 +S2 +I1 +I2 +E1 +E2 +R1 +R2=N. 
 
Differentiate with respect to time on both sides  
 
𝑑𝑑𝑁𝑁
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑠𝑠1
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝑠𝑠2
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝐼𝐼1
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝐼𝐼2
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

  , 
 
using the system’s differential equations for each compartment, substitute each term on the right-hand 
side: 
 
𝑑𝑑𝑁𝑁
𝑑𝑑𝑑𝑑

=  ΛN − µ(𝑆𝑆1  + 𝑆𝑆2  + 𝐼𝐼1  + 𝐼𝐼2  + 𝐸𝐸1  + 𝐸𝐸2  + 𝑅𝑅1  + 𝑅𝑅2). 
 
According to given condition  
 
𝑑𝑑𝑁𝑁
𝑑𝑑𝑑𝑑

= ΛN − µN. 
 
Solve the differential equation for N by variable separation and integrate, 
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𝑑𝑑𝑁𝑁
𝑁𝑁

= (Λ − µ) 𝑑𝑑𝑑𝑑, 
 
 integrate both sides and we got  
 
ln(n) = (Λ − µ)t + C,    where C is the constant of integration exponentiating both sides  
 
letting 𝑒𝑒𝐶𝐶 = 𝑁𝑁0 the initial population at t = 0, we find  
 
𝑁𝑁 = 𝑁𝑁0𝑒𝑒(Λ −µ)𝑑𝑑.  
 
If Λ = µ , then 𝑑𝑑𝑁𝑁

𝑑𝑑𝑑𝑑
= 0, which implies 𝑁𝑁 = 𝑁𝑁0 meaning the population N remains constant over time. 

Thus, the total population conserved. 
 
So, the feasible region Ω is, 
 
Ω = {(S1, S2, I1, I2, E1, E2, R1, R2) ℰ ℝ+

8  ≥ 0 | S1 +S2 +I1 +I2 +E1 +E2 +R1 +R2=N}.                                   (3) 
 
Equilibrium Points 

                                                   Disease free and endemic equilibrium points discussed in this section.  
 
                                                   From above equation we get    
 
                                                                 𝑆𝑆10 = Λ −(1 − 𝜃𝜃1)β𝑑𝑑1(𝐼𝐼1+𝐼𝐼2) 

(µ +η+𝜃𝜃1)
  , 𝐸𝐸10 = (1 − 𝜃𝜃1)β𝑑𝑑1(𝐼𝐼1+𝐼𝐼2) 

(µ +η+δ)
  ,   𝐼𝐼10 = 0 ,    𝑆𝑆20 = η𝑑𝑑1

(1 − 𝜃𝜃2)β(𝐼𝐼1+𝐼𝐼2)(µ +𝜃𝜃2)
 ,   

 
                                                    𝐸𝐸20 = η𝑑𝑑1+(1−𝜃𝜃2)β𝑑𝑑2(𝐼𝐼1+ 𝐼𝐼2)

(µ+δ)
 ,   𝐼𝐼20 = 0.     

              
                                                     So, the disease-free equilibrium points are 
 
                                                     𝜀𝜀0 = (𝑆𝑆10,𝐸𝐸10, 𝐼𝐼10 , 𝑆𝑆20,𝐸𝐸20, 𝐼𝐼20) = ( Λ

(µ+η+𝜃𝜃1)
  , (1 − 𝜃𝜃1)β𝑑𝑑1(𝐼𝐼1+𝐼𝐼2) 

(µ +η+δ)
, 0, ηΛ

(η+µ+𝜃𝜃1)(µ+𝜃𝜃2)
   , η𝑑𝑑1+(1−𝜃𝜃2)β𝑑𝑑2(𝐼𝐼1+ 𝐼𝐼2)

(µ+δ)
, 0) .         (4) 

 
                                                    And from system equation’s after simplification endemic equilibrium points obtained which are 
 
                                                    𝑆𝑆1∗ = Λ

 (1− 𝜃𝜃1)β(𝐼𝐼1+𝐼𝐼2)+(µ+η+𝜃𝜃1)
 , 𝐸𝐸1∗ =  (1− 𝜃𝜃1)β𝑑𝑑1(𝐼𝐼1+𝐼𝐼2)

(µ+η+δ)
 ,   𝐼𝐼1∗ = δ𝑑𝑑1

(µ+η+γ)
 , 𝑆𝑆2∗ =  η𝑑𝑑1

(1−𝜃𝜃2)β(𝐼𝐼1+𝐼𝐼2)+(µ+𝜃𝜃2)
 , 

 
                                                    𝐸𝐸2∗ =   η𝑑𝑑1+(1−𝜃𝜃2)β𝑑𝑑2(𝐼𝐼1+ 𝐼𝐼2)

(µ+δ)
  ,  𝐼𝐼2∗ =  η𝐼𝐼1+ δ𝑑𝑑2

(µ + γ)
 .                                                                                 

                                                    Hence, endemic points are  
  

𝜀𝜀1 = (𝑆𝑆1∗,𝐸𝐸1∗, 𝐼𝐼1∗,𝑆𝑆2∗,𝐸𝐸2∗, 𝐼𝐼2∗) = 
 
                                                               ( Λ

 (1− 𝜃𝜃1)β(𝐼𝐼1+𝐼𝐼2)+(µ+η+𝜃𝜃1)
  ,  (1− 𝜃𝜃1)β𝑑𝑑1(𝐼𝐼1+𝐼𝐼2)

(µ+η+δ)
, δ𝑑𝑑1

(µ+η+γ)
,  η𝑑𝑑1

(1−𝜃𝜃2)β(𝐼𝐼1+𝐼𝐼2)+(µ+𝜃𝜃2)
,   η𝑑𝑑1+(1−𝜃𝜃2)β𝑑𝑑2(𝐼𝐼1+ 𝐼𝐼2)

(µ+δ)
,  η𝐼𝐼1+ δ𝑑𝑑2

(µ + γ)
 ) .          (5)  

 
Basic Reproductive Number 
In this section, we use the next generation matrix technique to calculate the generation number by 
calculating the transfer and transmission matrix. 
 
𝐸𝐸1 = (1 −  𝜃𝜃1)β𝑆𝑆1(𝐼𝐼1 + 𝐼𝐼2) − (µ + η + δ)𝐸𝐸1, 
 
𝐼𝐼1 =  δ𝐸𝐸1 − (µ + η + γ)𝐼𝐼1, 
 
𝐸𝐸2 = η𝐸𝐸1 + (1 − 𝜃𝜃2)β𝑆𝑆2(𝐼𝐼1 + 𝐼𝐼2) − (µ + δ)𝐸𝐸2, 
 
𝐼𝐼2 = η𝐼𝐼1 +  δ𝐸𝐸2 − (µ +  γ)𝐼𝐼2. 
 
As a threshold, this number is used to analyse whether a disease will spread or decrease from the 
population. It may be determined with the approach of the next generation matrix. In this disease system, 
the infected population is indicated by E and I, whereas Without infection compartments are marked by 
S and R. The new rate of infection formation and the rate of stage changeover are represented by the 
two matrices, T and V, respectively. 
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By next generation matrix method 
 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑇𝑇(𝑥𝑥,𝑦𝑦) − 𝑉𝑉(𝑥𝑥,𝑦𝑦). 
 

𝑇𝑇 = �
(1 −  𝜃𝜃1)β𝑆𝑆1𝐼𝐼1 + (1 −  𝜃𝜃1)β𝑆𝑆1𝐼𝐼2)

0
(1 −  𝜃𝜃2)β𝑆𝑆2𝐼𝐼1 + (1 −  𝜃𝜃2)β𝑆𝑆2𝐼𝐼2)

0

�, 

 

V= �

−(µ + η + δ)𝐸𝐸1
δ𝐸𝐸1 − (µ + η + γ)𝐼𝐼1
η𝐸𝐸1 − (µ + δ)𝐸𝐸2

η𝐼𝐼1 +  δ𝐸𝐸2 − (µ +  γ)𝐼𝐼2

�. 

 
Thus, at the disease-free equilibrium (DFE), the transmissions matrix T and V becomes   
 

𝑇𝑇� = �
0 (1 − 𝜃𝜃1)β𝑆𝑆1 0 (1 − 𝜃𝜃1)β𝑆𝑆1
0 0 0                     0
0
0

(1 − 𝜃𝜃1)β𝑆𝑆1
0

0
0

(1 − 𝜃𝜃1)β𝑆𝑆1
0

�, 

 

𝑉𝑉� = �

−(µ + η + δ) 0 0                 0
𝛿𝛿 −(µ + η + γ) 0                 0
η
0

0
η

−(µ +  δ)
𝛿𝛿

0
−(µ +  γ)

�. 

 
𝑇𝑇� represents the changes of new infections and 𝑉𝑉�  transitions approaching equilibrium. Here we calculate 
the 𝑉𝑉�  inverse, which indicate the time spent in each compartment and the total number of new infections 
produced during the duration of the infection. So, the fundamental reproductive number has the highest 
eigenvalue. Largest eigenvalue of 
 

𝑇𝑇 �𝑉𝑉�  −1

=

⎣
⎢
⎢
⎢
⎡

(1 − 𝜃𝜃1)𝛽𝛽𝛿𝛿Λ
(µ + η + γ)(µ + η + δ)(η + µ + 𝜃𝜃1) +

(1 − 𝜃𝜃1)𝛽𝛽𝛿𝛿Λη(γ + δ + η + 2µ)
(µ + η + δ)(η + γ + µ)(µ + δ)(γ + µ)(η + µ + 𝜃𝜃1)

(1 − 𝜃𝜃1)𝛽𝛽𝛿𝛿Λ
(µ + δ)(γ + µ)(η + µ + 𝜃𝜃1)

(1 − 𝜃𝜃2)𝛽𝛽𝛿𝛿Λη
(µ + η + γ)(µ + η + δ)(η + µ + 𝜃𝜃1)(µ + 𝜃𝜃2) +

(1 − 𝜃𝜃2)𝛽𝛽𝛿𝛿Λη2(γ + δ + η + 2µ)
(µ + η + γ)(µ + η + δ)(µ + δ)(γ + µ)(η + µ + 𝜃𝜃1)(µ + 𝜃𝜃2)

(1 − 𝜃𝜃2)𝛽𝛽𝛿𝛿Λη
(µ + δ)(γ + µ)(η + µ + 𝜃𝜃1)(µ + 𝜃𝜃2)⎦

⎥
⎥
⎥
⎤
. 

 
It’s worth noting that 𝑇𝑇�  𝑉𝑉�  −1 spectral radius is referred to as the reproduction number and is Denoted as 
𝑅𝑅0. It is critical for disease control since it  
switches the illness from one equilibrium point to the next. 
So, 
                             𝑅𝑅0 = (1−𝜃𝜃1)𝛽𝛽𝛽𝛽Λ

(µ+η+γ)(µ+η+δ)(η+µ+𝜃𝜃1)
+ (1−𝜃𝜃1)𝛽𝛽𝛽𝛽Λη(γ+δ+η+2µ)

(µ+η+δ)(η+γ+µ)(µ+δ)(γ+µ)(η+µ+𝜃𝜃1)
                                      (6) 

 
Sensitivity Analysis of Parameters 
 
By calculated the partial derivative of R0 with respect to each parameter to determine if the change in 
R0 is positive or negative for each parameter. 
 
                                                   Sensitivity Analysis = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑃𝑃𝑃𝑃

𝑑𝑑0
 × 𝑝𝑝𝑃𝑃𝑃𝑃𝑑𝑑𝑝𝑝𝑃𝑃𝑝𝑝 𝑑𝑑𝑃𝑃𝑃𝑃𝑝𝑝𝑑𝑑𝑃𝑃𝑑𝑑𝑝𝑝𝑑𝑑𝑃𝑃 𝑑𝑑0

𝑝𝑝𝑃𝑃𝑃𝑃𝑑𝑑𝑝𝑝𝑃𝑃𝑝𝑝 𝑑𝑑𝑃𝑃𝑃𝑃𝑝𝑝𝑑𝑑𝑃𝑃𝑑𝑑𝑝𝑝𝑑𝑑𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑃𝑃𝑃𝑃
                           

 
According to the analysis, certain factors have negative sensitivity indices, while others show positive 
sensitivity. This suggests that while certain parameters have an inverse relationship with the reproduction 
number, others have a direct relationship with R0 as one of them represented in figure 2.  
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Figure 2. Behavior of R0 due to Ʌ 
 
 
Local Stability of Disease-Free and Endemic Equilibrium Points 
Theorem 2: The disease-free equilibrium of system point is locally asymptotically stable whenever 
 𝑅𝑅0 < 1 and unstable otherwise. 
 Proof: System of differential equation took from (1) as written below 
𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

= Λ − (1 −  𝜃𝜃1)β𝑆𝑆1(𝐼𝐼1 + 𝐼𝐼2) − (µ + η + 𝜃𝜃1)𝑆𝑆1,                     
 
𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

= (1 −  𝜃𝜃1)β𝑆𝑆1(𝐼𝐼1 + 𝐼𝐼2) − (µ + η + δ)𝐸𝐸1,            
                   
𝑑𝑑𝐼𝐼1
𝑑𝑑𝑑𝑑

= δ𝐸𝐸1 − (µ + η + γ)𝐼𝐼1  ,                                                           
 
𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

= η𝑆𝑆1 − (1 − 𝜃𝜃2)β𝑆𝑆2(𝐼𝐼1 + 𝐼𝐼2) − (µ + 𝜃𝜃2)𝑆𝑆2 ,                        
 
𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

= η𝐸𝐸1 + (1 − 𝜃𝜃2)β𝑆𝑆2(𝐼𝐼1 +  𝐼𝐼2) − (µ + δ)𝐸𝐸2 ,                        
 
𝑑𝑑𝐼𝐼2
𝑑𝑑𝑑𝑑

= η𝐼𝐼1 +  δ𝐸𝐸2 − (µ +  γ)𝐼𝐼2 ,       
                                              
to analyze the local stability of disease-free equilibrium point, Jacobian matrix of the system of equation 
disease free equation point 
 
𝐹𝐹 = Λ − (1 −  𝜃𝜃1)β𝑆𝑆1(𝐼𝐼1 + 𝐼𝐼2) − (µ + η + 𝜃𝜃1)𝑆𝑆1                                                                                         (7) 
 
𝐺𝐺 = (1 −  𝜃𝜃1)β𝑆𝑆1(𝐼𝐼1 + 𝐼𝐼2) − (µ + η + δ)𝐸𝐸1                                                                                                 (8) 
 
𝐻𝐻 = δ𝐸𝐸1 − (µ + η + γ)𝐼𝐼1                                                                                                                             (9) 
 
𝐿𝐿 = η𝑆𝑆1 − (1 − 𝜃𝜃2)β𝑆𝑆2(𝐼𝐼1 + 𝐼𝐼2) − (µ + 𝜃𝜃2)𝑆𝑆2                                                                                               (10) 
 
𝑀𝑀 = η𝐸𝐸1 + (1 − 𝜃𝜃2)β𝑆𝑆2(𝐼𝐼1 + 𝐼𝐼2) − (µ + δ)𝐸𝐸2                                                                                          (11) 
 
𝑁𝑁 = η𝐼𝐼1 +  δ𝐸𝐸2 − (µ +  γ)𝐼𝐼2                                                                                                                   (12) 
 
Differentiating F, G, H, L, M and N with respect to compartmental model perimeters S, E, I and R. Now 
J will be 
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𝐽𝐽 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝐹𝐹𝑑𝑑1 𝐹𝐹𝑑𝑑1 𝐹𝐹𝐼𝐼1 𝐹𝐹𝑑𝑑2 𝐹𝐹𝑑𝑑2 𝐹𝐹𝐼𝐼2
𝐺𝐺𝑑𝑑1 𝐺𝐺𝑑𝑑1 𝐺𝐺𝐼𝐼1 𝐺𝐺𝑑𝑑2 𝐺𝐺𝑑𝑑2 𝐺𝐺𝐼𝐼2
𝐻𝐻𝑑𝑑1
𝐿𝐿𝑑𝑑1
𝑀𝑀𝑑𝑑1
𝑁𝑁𝑑𝑑1

𝐻𝐻𝑑𝑑1
𝐿𝐿𝑑𝑑1
𝑀𝑀𝑑𝑑1
𝑁𝑁𝑑𝑑1

𝐻𝐻𝐼𝐼1 𝐻𝐻𝑑𝑑2 𝐻𝐻𝑑𝑑2 𝐻𝐻𝐼𝐼2
𝐿𝐿𝐼𝐼1 𝐿𝐿𝑑𝑑2 𝐿𝐿𝑑𝑑2 𝐿𝐿𝐼𝐼2
𝑀𝑀𝐼𝐼1
𝑁𝑁𝐼𝐼1

𝑀𝑀𝑑𝑑2
𝑁𝑁𝑑𝑑2

𝑀𝑀𝑑𝑑2
𝑁𝑁𝑑𝑑2

𝑀𝑀𝐼𝐼2
𝑁𝑁𝐼𝐼2 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

  , 

 

J =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

 

−(µ + η + 𝜃𝜃1) 0 −(1−𝜃𝜃1)βΛ
(µ+η+𝜃𝜃1) 0 0  −(1−𝜃𝜃1)βΛ

(µ+η+𝜃𝜃1)

0 −(µ + η + δ) (1−𝜃𝜃1)βΛ
(µ+η+𝜃𝜃1) 0 0 (1−𝜃𝜃1)βΛ

(µ+η+𝜃𝜃1)

0 𝛿𝛿 −(µ + η + γ) 0 0 0
η 0 −(1−𝜃𝜃2)βΛη

(µ+η+𝜃𝜃1)(µ+𝜃𝜃2) −(µ + 𝜃𝜃2) 0 −(1−𝜃𝜃2)βΛη
(µ+η+𝜃𝜃1)(µ+𝜃𝜃2)

0 η −(1−𝜃𝜃2)βΛη
(µ+η+𝜃𝜃1)(µ+𝜃𝜃2) 0 −(µ + δ) (1−𝜃𝜃2)βΛη

(µ+η+𝜃𝜃1)(µ+𝜃𝜃2)

0 0 η 0 𝛿𝛿 −(µ + γ) ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  . 

         
We calculated 𝑑𝑑𝑒𝑒𝑑𝑑(𝐽𝐽 − 𝜆𝜆𝐼𝐼),  
 

                                             |𝐽𝐽 − 𝜆𝜆𝐼𝐼|  =

�

�

�
−(µ + η + 𝜃𝜃1) − 𝜆𝜆 0 −(1−𝜃𝜃1)βΛ

(µ+η+𝜃𝜃1) 0 0  −(1−𝜃𝜃1)βΛ
(µ+η+𝜃𝜃1)

0 −(µ + η + δ) − 𝜆𝜆 (1−𝜃𝜃1)βΛ
(µ+η+𝜃𝜃1) 0 0 (1−𝜃𝜃1)βΛ

(µ+η+𝜃𝜃1)

0 𝛿𝛿 −(µ + η + γ) − 𝜆𝜆 0 0 0
η 0 −(1−𝜃𝜃2)βΛη

(µ+η+𝜃𝜃1)(µ+𝜃𝜃2) −(µ + 𝜃𝜃2) − 𝜆𝜆 0 −(1−𝜃𝜃2)βΛη
(µ+η+𝜃𝜃1)(µ+𝜃𝜃2)

0 η −(1−𝜃𝜃2)βΛη
(µ+η+𝜃𝜃1)(µ+𝜃𝜃2) 0 −(µ + δ) − 𝜆𝜆 (1−𝜃𝜃2)βΛη

(µ+η+𝜃𝜃1)(µ+𝜃𝜃2)

0 0 η 0 𝛿𝛿 −(µ + γ) − 𝜆𝜆

�

�

�

. 

 
which give us the following eigen values by solving this matrix  
 
λ1 = - 𝛿𝛿 − η − 𝜃𝜃1 , 
λ2 = - η −  γ − µ   , 
λ3 = - η −  µ − 𝜃𝜃1 ,  
λ4 = - µ − 𝜃𝜃2 , 
 
the rest of two were complex so we found by python and checked they are also negative but for more 
clarification we used MATLAB and found the numeric values as given below 

λ= -0.9503, - 0.8541, -0.0284, -0.0244, -0.3041, -0.3005. 
From which we conclude that 𝑅𝑅0 < 1. 
 
Theorem 3:  The endemic equilibrium points is locally asymptotically stable if Ro >1. 
 
Proof:  
 
System obtained by linearizing with endemic equilibrium points which gives the following matrix 

 
 

                             J=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

 

−β(1 − 𝜃𝜃1)(𝐼𝐼1∗ − 𝐼𝐼2∗) 0 −β𝑆𝑆1∗(1 − 𝜃𝜃1) 0 0  −β𝑆𝑆1∗(1 − 𝜃𝜃1)
β𝐼𝐼1∗(1 − 𝜃𝜃1) + 𝛽𝛽𝐼𝐼2∗(1 − 𝜃𝜃1) −(µ + η + δ)  β𝑆𝑆1∗(1 − 𝜃𝜃1) 0 0  β𝑆𝑆1∗(1 − 𝜃𝜃1)

0 𝛿𝛿 −(µ + η + γ) 0 0 0
0 0 −β𝑆𝑆2∗(1 − 𝜃𝜃2) −β𝐼𝐼1∗(1 − 𝜃𝜃2) − 𝛽𝛽𝐼𝐼2∗(1 − 𝜃𝜃2) −(µ + δ) −β𝑆𝑆2∗(1 − 𝜃𝜃2)
0 0 β𝑆𝑆2∗(1 − 𝜃𝜃2) β𝐼𝐼1∗(1 − 𝜃𝜃2) −(µ + δ) β𝑆𝑆2∗(1 − 𝜃𝜃2)
0 0 η 0 𝛿𝛿 −(µ + γ) ⎦

⎥
⎥
⎥
⎥
⎥
⎤

. 

 
So, we calculated 𝑑𝑑𝑒𝑒𝑑𝑑( 𝐽𝐽 − 𝜆𝜆𝐼𝐼), 
 

                                                     𝑑𝑑𝑒𝑒𝑑𝑑(𝐽𝐽 − 𝜆𝜆𝐼𝐼) = 
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�

�

−β(1 − 𝜃𝜃1)(𝐼𝐼1∗ − 𝐼𝐼2∗) − 𝜆𝜆 0 −β𝑆𝑆1∗(1 − 𝜃𝜃1) 0 0  −β𝑆𝑆1∗(1 − 𝜃𝜃1)
β𝐼𝐼1∗(1 − 𝜃𝜃1) + 𝛽𝛽𝐼𝐼2∗(1 − 𝜃𝜃1) −(µ + η + δ) − 𝜆𝜆  β𝑆𝑆1∗(1 − 𝜃𝜃1) 0 0  β𝑆𝑆1∗(1 − 𝜃𝜃1)

0 𝛿𝛿 −(µ + η + γ) − 𝜆𝜆 0 0 0
0 0 −β𝑆𝑆2∗(1 − 𝜃𝜃2) −β𝐼𝐼1∗(1 − 𝜃𝜃2) − 𝛽𝛽𝐼𝐼2∗(1 − 𝜃𝜃2) − 𝜆𝜆 −(µ + δ) −β𝑆𝑆2∗(1 − 𝜃𝜃2)
0 0 β𝑆𝑆2∗(1 − 𝜃𝜃2) β𝐼𝐼1∗(1 − 𝜃𝜃2) −(µ + δ) − 𝜆𝜆 β𝑆𝑆2∗(1 − 𝜃𝜃2)
0 0 η 0 𝛿𝛿 −(µ + γ) − 𝜆𝜆

�

�
. 

 
Now, 
 
|J−𝜆𝜆𝐼𝐼|=0.  
 
One of the roots is −(µ + η + γ) rest are so complex so by Mathematica calculations and by MATLAB 
numeric values we checked all eigen values are with negative real parts so, endemic points are locally 
asymptotically stable if R0 >1. 
 
Numerical Analysis of SEIR Model 
In this section for numerical investigation, we used EULER, RK4 and NSFD method, NSFD method is 
positive preserving numerical scheme. Further justification proved in this section by graphical proving. 
The recovered sub-populations 𝑅𝑅1 and 𝑅𝑅2 were not considered in the analysis, because they do not 
support other subpopulations. Therefore, the research focuses on the following simple systems. 
Parametric values used in numerical analysis written in Table 1 obtained from [1]. 
 

Table 1. Parametric values 
 

Parameters Properties  DFE EE UNIT Reference  
Λ Influx of 

susceptible 
1000 1000 1000 

Per 
week 

[1] 

𝛽𝛽 Transmission 
rate 

0.000001 0.0007  DFE(Fitted), 
EE [1] 

𝛿𝛿 Aging ratio 0.3 0.3  [1] 
𝛾𝛾 Incubation 

period 
0.0243 0.0243 Per 

week 
[1] 

η Recovery 
ratio 

0.00385 0.00385 Per 
week 

[1] 

𝜇𝜇 Natural death 
rate 

0.3 0.3 Per 
week  

[1] 

𝜃𝜃1 MMR1 
impact 

0.85 0.85  [1] 

𝜃𝜃2 MMR2 
impact 

0.95 0.95  [1] 

 
 

From SEIR model, now we will use the numerical modelling to solve the problem. First, we’ll use the 
Forward Euler scheme, followed by the Fourth Order Runge-Kutta scheme, and finally the proposed 
approach. 

 
Euler Scheme 
By the model’s equations Euler scheme represented as  
 
𝑆𝑆1𝑛𝑛+1 = 𝑆𝑆1𝑛𝑛 + ℎ(Λ − (1 − 𝜃𝜃1)β𝑆𝑆1𝑛𝑛(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛) − (µ + η + 𝜃𝜃1)𝑆𝑆1𝑛𝑛),                                                             (13.1) 
 
𝐸𝐸1𝑛𝑛+1 = 𝐸𝐸1𝑛𝑛 + ℎ((1 − 𝜃𝜃1)β𝑆𝑆1𝑛𝑛(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛) − (µ + η + δ)𝐸𝐸1𝑛𝑛),                                                                    (13.2) 
 
𝐼𝐼1𝑛𝑛+1 = 𝐼𝐼1𝑛𝑛 + ℎ(δ𝐸𝐸1𝑛𝑛 − (µ + η + γ)𝐼𝐼1𝑛𝑛),                                                                                                   (13.3) 
 
𝑆𝑆2𝑛𝑛+1 = 𝑆𝑆2𝑛𝑛 + ℎ(η𝑆𝑆1 − (1 − 𝜃𝜃2)β𝑆𝑆2𝑛𝑛(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛) − (µ + 𝜃𝜃2)𝑆𝑆2𝑛𝑛),                                                                  (13.4) 
 
𝐸𝐸2𝑛𝑛+1 = 𝐸𝐸2𝑛𝑛 + ℎ(η𝐸𝐸1𝑛𝑛 + (1 − 𝜃𝜃2)β𝑆𝑆2𝑛𝑛(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛) − (µ + δ)𝐸𝐸2𝑛𝑛),                                                                (13.5) 
 
𝐼𝐼2𝑛𝑛+1 = 𝐼𝐼2𝑛𝑛 + ℎ(η𝐼𝐼1𝑛𝑛 + 𝛿𝛿𝐸𝐸2𝑛𝑛 − (µ + γ)𝐼𝐼2𝑛𝑛).                                                                                              (13.6) 
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Runge-Kutta Fourth Order Method  
We use the SEIR system to develop an explicit RK4-method. 

 
𝐾𝐾1 = h(Λ − (1 − 𝜃𝜃1)β𝑆𝑆1𝑛𝑛(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛) − (µ + η + 𝜃𝜃1)𝑆𝑆1𝑛𝑛),                                                                              (13.7) 
 
𝑚𝑚1 = h((1 − 𝜃𝜃1)β𝑆𝑆1𝑛𝑛(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛) − (µ + η + δ)𝐸𝐸1𝑛𝑛),                                                                                (13.8) 
 
𝑛𝑛1 = h(δ𝐸𝐸1𝑛𝑛 − (µ + η + γ)𝐼𝐼1𝑛𝑛),                                                                                                           (13.9) 
 
𝑝𝑝1 = h(η𝑆𝑆1𝑛𝑛 − (1 − 𝜃𝜃2)β𝑆𝑆2𝑛𝑛(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛) − (µ + 𝜃𝜃2)𝑆𝑆2𝑛𝑛),                                                                        (13.10) 
 
𝑑𝑑1 = h(η𝐸𝐸1𝑛𝑛 + (1 − 𝜃𝜃2)β𝑆𝑆2𝑛𝑛(𝐼𝐼1𝑛𝑛 +  𝐼𝐼2𝑛𝑛) − (µ + δ)𝐸𝐸2𝑛𝑛),                                                                              (13.11) 
  
𝑢𝑢1 = h(η𝐼𝐼1𝑛𝑛 + δ𝐸𝐸2𝑛𝑛 − (µ + γ)𝐼𝐼2𝑛𝑛).                                                                                                     (13.12) 
 
𝑘𝑘2 = h(Λ − (1 − 𝜃𝜃1)β(𝑆𝑆1𝑛𝑛 + 𝑘𝑘1

2
)((𝐼𝐼1𝑛𝑛 + 𝑛𝑛1

2
) + (𝐼𝐼2𝑛𝑛 + 𝑢𝑢1

2
)) − (µ + η + 𝜃𝜃1)(𝑆𝑆1𝑛𝑛 + 𝑘𝑘1

2
)),                              (13.13) 

 
𝑚𝑚2 = h((1 − 𝜃𝜃1)β(𝑆𝑆1𝑛𝑛 + 𝑘𝑘1

2
)((𝐼𝐼1𝑛𝑛 + 𝑛𝑛1

2
) + (𝐼𝐼2𝑛𝑛 + 𝑢𝑢1

2
)) − (µ + η + δ)(𝐸𝐸1𝑛𝑛 + 𝑃𝑃1

2
)),                                    (13.14) 

 
𝑛𝑛2 = h(δ(𝐸𝐸1𝑛𝑛 +  𝑃𝑃1

2
) − (µ + η + γ)(𝐼𝐼1𝑛𝑛 + 𝑛𝑛1

2
)),                                                                                   (13.15) 

 
𝑝𝑝2 = h(η(𝑆𝑆1𝑛𝑛 + 𝑘𝑘1

2
) − (1 − 𝜃𝜃2)β(𝑆𝑆2𝑛𝑛 + 𝑝𝑝1

2
)((𝐼𝐼1𝑛𝑛 + 𝑛𝑛1

2
) + (𝐼𝐼2𝑛𝑛 + 𝑢𝑢1

2
)) − (µ + 𝜃𝜃2)(𝑆𝑆2𝑛𝑛 + 𝑝𝑝1

2
)),                    (13.16) 

 
𝑑𝑑2 = h(η(𝐸𝐸1𝑛𝑛 + 𝑃𝑃1

2
) + (1 − 𝜃𝜃2)β(𝑆𝑆2𝑛𝑛 + 𝑝𝑝1

2
)((𝐼𝐼1𝑛𝑛 + 𝑛𝑛1

2
) + (𝐼𝐼2𝑛𝑛 + 𝑢𝑢1

2
)) − (µ + δ)(𝐸𝐸2𝑛𝑛 + 𝑑𝑑1

2
)),                       (13.17) 

 
𝑢𝑢2 = h(η(𝐼𝐼1𝑛𝑛 + 𝑛𝑛1

2
) + δ(𝐸𝐸2𝑛𝑛 + 𝑑𝑑1

2
) − (µ + γ)(𝐼𝐼2𝑛𝑛 + 𝑢𝑢1

2
)).                                                                        (13.18) 

 
𝑘𝑘3 = h(Λ − (1 − 𝜃𝜃1)β(𝑆𝑆1𝑛𝑛 + 𝑘𝑘2

2
)((𝐼𝐼1𝑛𝑛 + 𝑛𝑛2

2
) + (𝐼𝐼2𝑛𝑛 + 𝑢𝑢2

2
)) − (µ + η + 𝜃𝜃1)(𝑆𝑆𝑛𝑛1 + 𝑘𝑘2

2
)),                              (13.19) 

 
𝑚𝑚3 = h((1 − 𝜃𝜃1)β(𝑆𝑆1𝑛𝑛 + 𝑘𝑘2

2
)((𝐼𝐼1𝑛𝑛 + 𝑛𝑛2

2
) + (𝐼𝐼2𝑛𝑛 + 𝑢𝑢2

2
)) − (µ + η + δ)(𝐸𝐸1𝑛𝑛 + 𝑃𝑃2

2
)),                                   (13.20) 

 
𝑛𝑛3 = h(δ(𝐸𝐸1𝑛𝑛 + 𝑃𝑃2

2
) − (µ + η γ)(𝐼𝐼1𝑛𝑛 + 𝑛𝑛2

2
)),                                                                                        (13.21) 

 
𝑝𝑝3 = h(η(𝑆𝑆𝑛𝑛1 + 𝑘𝑘2

2
) − (1 − 𝜃𝜃2)β(𝑆𝑆2𝑛𝑛 + 𝑝𝑝2

2
)((𝐼𝐼1𝑛𝑛 + 𝑛𝑛2

2
) + (𝐼𝐼2𝑛𝑛 +  𝑢𝑢2

2
)) − (µ + 𝜃𝜃2)(𝑆𝑆2𝑛𝑛 + 𝑝𝑝2

2
)) ,                   (13.22) 

 
𝑑𝑑3 = h(η(𝐸𝐸1𝑛𝑛 +  𝑃𝑃2

2
) + (1 − 𝜃𝜃2)β(𝑆𝑆2𝑛𝑛 + 𝑝𝑝2

2
)((𝐼𝐼1𝑛𝑛 + 𝑛𝑛2

2
) + (𝐼𝐼2𝑛𝑛 + 𝑢𝑢2

2
)) − (µ + δ)(𝐸𝐸2𝑛𝑛 + 𝑑𝑑2

2
)),                      (13.23) 

 
𝑢𝑢3 = h(η(𝐼𝐼1𝑛𝑛 + 𝑛𝑛2

2
) + δ(𝐸𝐸2𝑛𝑛 + 𝑑𝑑2

2
) − (µ + γ)(𝐼𝐼2𝑛𝑛 + 𝑢𝑢2

2
)).                                                                                  (13.24)  

 
𝑘𝑘4 = h(Λ − (1 − 𝜃𝜃1)β(𝑆𝑆1𝑛𝑛 + 𝑘𝑘3)((𝐼𝐼1𝑛𝑛 + 𝑛𝑛3) + (𝐼𝐼2𝑛𝑛 + 𝑢𝑢3)) − (µ + η + 𝜃𝜃1)(𝑆𝑆1𝑛𝑛 + 𝑘𝑘3)),                            (13.25) 
 
𝑚𝑚4 = h((1 − 𝜃𝜃1)β(𝑆𝑆1𝑛𝑛 + 𝑘𝑘3)((𝐼𝐼1𝑛𝑛 + 𝑛𝑛3) + (𝐼𝐼2𝑛𝑛 + 𝑢𝑢3)) − (µ + η + δ)(𝐸𝐸1𝑛𝑛 + 𝑚𝑚3)),                               (13.26) 
 
𝑛𝑛4 = h(δ(𝐸𝐸1𝑛𝑛 + 𝑚𝑚3) − (µ + η + γ)(𝐼𝐼1𝑛𝑛 + 𝑛𝑛3)),                                                                                 (13.27) 
 
𝑝𝑝4 = h(η(𝑆𝑆1𝑛𝑛 + 𝑘𝑘3) − (1 − 𝜃𝜃2)β(𝑆𝑆2𝑛𝑛 + 𝑝𝑝3)((𝐼𝐼1𝑛𝑛 + 𝑛𝑛3) + (𝐼𝐼2𝑛𝑛 + 𝑢𝑢3)) − (µ + 𝜃𝜃2)(𝑆𝑆2𝑛𝑛 + 𝑝𝑝3)),                  (13.28) 
 
𝑑𝑑4 = h(η(𝐸𝐸1𝑛𝑛 + 𝑚𝑚3) + (1 − 𝜃𝜃2)β(𝑆𝑆2𝑛𝑛 + 𝑝𝑝3)((𝐼𝐼1𝑛𝑛 + 𝑛𝑛3) + (𝐼𝐼2𝑛𝑛 + 𝑢𝑢3)) − (µ + δ)(𝐸𝐸2𝑛𝑛 + 𝑑𝑑3)),                   (13.29) 
 
𝑢𝑢4 = h(η(𝐼𝐼1𝑛𝑛 + 𝑛𝑛3) + δ(𝐸𝐸2𝑛𝑛 + 𝑑𝑑3) − (µ + γ)(𝐼𝐼2𝑛𝑛 + 𝑢𝑢3).                                                                      (13.30) 
 
𝑆𝑆1𝑛𝑛+1 = 𝑆𝑆1𝑛𝑛 + 1

6
(𝑘𝑘1 + 2𝑘𝑘2 + 2𝑘𝑘3 + 𝑘𝑘4).                                                                                           (14) 

 
𝐸𝐸1𝑛𝑛+1 = 𝐸𝐸1𝑛𝑛 + 1

6
(𝑚𝑚1 + 2𝑚𝑚2 + 2𝑚𝑚3 + 𝑚𝑚4).                                                                                           (15) 

 
𝐼𝐼1𝑛𝑛+1 = 𝐼𝐼1𝑛𝑛 + 1

6
(𝑛𝑛1 + 2𝑛𝑛2 + 2𝑛𝑛3 + 𝑛𝑛4).                                                                                                 (16) 
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                                                       𝑆𝑆2𝑛𝑛+1 = 𝑆𝑆2𝑛𝑛 + 1

6
(𝑝𝑝1 + 2𝑝𝑝2 + 2𝑝𝑝3 + 𝑝𝑝4).                                                                                                    (17) 

 
𝐸𝐸2𝑛𝑛+1 = 𝐸𝐸2𝑛𝑛 + 1

6
(𝑑𝑑1 + 2𝑑𝑑2 + 2𝑑𝑑3 + 𝑑𝑑4) .                                         (18) 

 
𝐼𝐼2𝑛𝑛+1 = 𝐼𝐼2𝑛𝑛 + 1

6
(𝑢𝑢1 + 2𝑢𝑢2 + 2𝑢𝑢3 + 𝑢𝑢4) .                              (19) 

 
Non-Standard Finite Difference Scheme 
In this part, we’ll look at the stability of the NSFD schemes of the SEIR model’s disease-free equilibrium 
point (DFE). 
𝑆𝑆1𝑛𝑛+1 = 𝑑𝑑1𝑛𝑛+hΛ

 1+h(1− 𝜃𝜃1)β(𝐼𝐼1𝑛𝑛+𝐼𝐼2𝑛𝑛)+h(µ+η+𝜃𝜃1)
                                                                                                     (20.1) 

 
𝐸𝐸1𝑛𝑛+1 = 𝑑𝑑1𝑛𝑛+h (1− 𝜃𝜃1)β𝑑𝑑1𝑛𝑛(𝐼𝐼1𝑛𝑛+𝐼𝐼2𝑛𝑛)

1+h(µ+η+δ)
                                                                                                               (20.2) 

 
𝐼𝐼1𝑛𝑛+1 = 𝐼𝐼1𝑛𝑛+hδ𝑑𝑑1𝑛𝑛

1+h(µ+η+γ)
                                                                                                                             (20.3) 

 
𝑆𝑆2𝑛𝑛+1 = 𝑑𝑑2𝑛𝑛+h η𝑑𝑑1𝑛𝑛

1+h(1−𝜃𝜃2)β(𝐼𝐼1𝑛𝑛+𝐼𝐼2𝑛𝑛)+h(µ+𝜃𝜃2)
                                                                                                                   (20.4) 

 
𝐸𝐸2𝑛𝑛+1 =  𝑑𝑑2𝑛𝑛+hη𝑑𝑑1𝑛𝑛+h(1−𝜃𝜃2)β𝑑𝑑2𝑛𝑛((𝐼𝐼1𝑛𝑛+𝐼𝐼2𝑛𝑛)

1+h(µ+δ)
                                                                                                          (20.5) 

 
𝐼𝐼2𝑛𝑛+1 = 𝐼𝐼2𝑛𝑛+hη𝐼𝐼1𝑛𝑛+hδ𝑑𝑑2𝑛𝑛

1+h(µ + γ)
                                                                                                                                   (20.6) 

 
Stability Analysis of NSFD Scheme 
 
After taking the partial derivative of NSFD equations and putting the disease-free points, we got the 
matrix J. 
 
F= 𝑑𝑑1𝑛𝑛+hΛ

 1+h(1− 𝜃𝜃1)β(𝐼𝐼1𝑛𝑛+𝐼𝐼2𝑛𝑛)+h(µ+η+𝜃𝜃1)
                                                                                                         (21.1) 

 
𝐺𝐺 = 𝑑𝑑1𝑛𝑛+h (1− 𝜃𝜃1)β𝑑𝑑1𝑛𝑛(𝐼𝐼1𝑛𝑛+𝐼𝐼2𝑛𝑛)

1+h(µ+η+δ)
                                                                                                                   (21.2) 

 
𝐻𝐻 = 𝐼𝐼1𝑛𝑛+hδ𝑑𝑑1𝑛𝑛

1+h(µ+η+γ)
                                                                                                                                 (21.3) 

 
𝐿𝐿 = 𝑑𝑑2𝑛𝑛+h η𝑑𝑑1𝑛𝑛

1+h(1−𝜃𝜃2)β(𝐼𝐼1𝑛𝑛+𝐼𝐼2𝑛𝑛)+h(µ+𝜃𝜃2)
                                                                                                              (21.4) 

 
𝑀𝑀 =  𝑑𝑑2𝑛𝑛+hη𝑑𝑑1𝑛𝑛+h(1−𝜃𝜃2)β𝑑𝑑2𝑛𝑛((𝐼𝐼1𝑛𝑛+𝐼𝐼2𝑛𝑛)

1+h(µ+δ)
                                                                                                          (21.5) 

 
𝑁𝑁 = 𝐼𝐼2𝑛𝑛+hη𝐼𝐼1𝑛𝑛+hδ𝑑𝑑2𝑛𝑛

1+h(µ + γ)
                                                                                                                              (21.6) 

 
Differentiating these F, G, H, L, M and N with respect to compartmental model perimeters S, E, I and 
R. Now J will be  
 

𝐽𝐽 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝐹𝐹𝑑𝑑1 𝐹𝐹𝑑𝑑1 𝐹𝐹𝐼𝐼1 𝐹𝐹𝑑𝑑2 𝐹𝐹𝑑𝑑2 𝐹𝐹𝐼𝐼2
𝐺𝐺𝑑𝑑1 𝐺𝐺𝑑𝑑1 𝐺𝐺𝐼𝐼1 𝐺𝐺𝑑𝑑2 𝐺𝐺𝑑𝑑2 𝐺𝐺𝐼𝐼2
𝐻𝐻𝑑𝑑1
𝐿𝐿𝑑𝑑1
𝑀𝑀𝑑𝑑1
𝑁𝑁𝑑𝑑1

𝐻𝐻𝑑𝑑1
𝐿𝐿𝑑𝑑1
𝑀𝑀𝑑𝑑1
𝑁𝑁𝑑𝑑1

𝐻𝐻𝐼𝐼1 𝐻𝐻𝑑𝑑2 𝐻𝐻𝑑𝑑2 𝐻𝐻𝐼𝐼2
𝐿𝐿𝐼𝐼1 𝐿𝐿𝑑𝑑2 𝐿𝐿𝑑𝑑2 𝐿𝐿𝐼𝐼2
𝑀𝑀𝐼𝐼1
𝑁𝑁𝐼𝐼1

𝑀𝑀𝑑𝑑2
𝑁𝑁𝑑𝑑2

𝑀𝑀𝑑𝑑2
𝑁𝑁𝑑𝑑2

𝑀𝑀𝐼𝐼2
𝑁𝑁𝐼𝐼2 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 , 

                                    
From the above Jacobian matrix, we obtained eigenvalues. So, by the determinant of the Jacobian 
matrix we analyzed that our scheme is stable.  
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Consistency Analysis 
 
Consistency analysis of NSFD scheme is performed by using Taylor’s series expansion [29,30]. First, 
we took (20.1) then applied Taylor series 
 
𝑆𝑆1𝑛𝑛+1 = 𝑆𝑆1𝑛𝑛 + ℎ𝑑𝑑𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑
+ ℎ2

2!
𝑑𝑑2𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑2
+ ℎ3

3!
𝑑𝑑3𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑3
+. ..                                                                                                         (22) 

 
In the following expression  
 
𝑆𝑆1𝑛𝑛+1 = 𝑑𝑑1𝑛𝑛+hΛ

 1+h(1− 𝜃𝜃1)β(𝐼𝐼1𝑛𝑛+𝐼𝐼2𝑛𝑛)+h(µ+η+𝜃𝜃1)
, 

 
𝑆𝑆1𝑛𝑛+1( 1 + h(1 −  𝜃𝜃1)β(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛) + h(µ + η + 𝜃𝜃1)) = 𝑆𝑆1𝑛𝑛 + hΛ  , 
 
(  𝑆𝑆1𝑛𝑛 + ℎ𝑑𝑑𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑
+ ℎ2

2!
𝑑𝑑2𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑2
+ ℎ3

3!
𝑑𝑑3𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑3
+. . . )( 1 + h(1 −  𝜃𝜃1)β(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛) + h(µ + η + 𝜃𝜃1)) = 𝑆𝑆1𝑛𝑛 + hΛ , 

 
𝑆𝑆1𝑛𝑛 + 𝑆𝑆1𝑛𝑛h(1 − 𝜃𝜃1)β(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛) + 𝑆𝑆1𝑛𝑛h(µ + η + 𝜃𝜃1) + ℎ𝑑𝑑𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑
+ ℎ2𝑑𝑑𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑
𝛽𝛽(1 − 𝜃𝜃1)(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛) + ℎ2𝑑𝑑𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑
(µ + η + 𝜃𝜃1) + 

(ℎ
2

2!
𝑑𝑑2𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑2
+ ℎ3

3!
𝑑𝑑3𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑3
. . . )( 1 + h(1 −  𝜃𝜃1)β(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛) + h(µ + η + 𝜃𝜃1)) = 𝑆𝑆1𝑛𝑛 + hΛ, 

 
𝑆𝑆1𝑛𝑛h(1 − 𝜃𝜃1)β(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛) + 𝑆𝑆1𝑛𝑛h(µ + η + 𝜃𝜃1) + ℎ𝑑𝑑𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑
+ ℎ2𝑑𝑑𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑
𝛽𝛽(1 − 𝜃𝜃1)(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛) + ℎ2𝑑𝑑𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑
(µ + η + 𝜃𝜃1) + 

(ℎ
2

2!
𝑑𝑑2𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑2
+ ℎ3

3!
𝑑𝑑3𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑3
. . . )( 1 + h(1 −  𝜃𝜃1)β(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛) + h(µ + η + 𝜃𝜃1)) = hΛ, 

 
By taking h common and then apply h→0 
 
 𝑆𝑆1𝑛𝑛(1 − 𝜃𝜃1)β(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛) + 𝑆𝑆1𝑛𝑛(µ + η + 𝜃𝜃1) + 𝑑𝑑𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑
= Λ, 

 
𝑑𝑑𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑
= Λ −  𝑆𝑆1𝑛𝑛(1 − 𝜃𝜃1)β(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛)  −  𝑆𝑆1𝑛𝑛(µ + η + 𝜃𝜃1).                                                                                       (23) 

 
Similarly taking equation (20.2) and then apply Taylor expansion for 𝐸𝐸1𝑛𝑛+1 
 
𝐸𝐸1𝑛𝑛+1 = 𝐸𝐸1𝑛𝑛 + ℎ𝑑𝑑𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑
+ ℎ2

2!
𝑑𝑑2𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑2
+ ℎ3

3!
𝑑𝑑3𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑3
+. ..                                                                                                            (24) 

 
𝐸𝐸1𝑛𝑛+1 = 𝑑𝑑1𝑛𝑛+h (1− 𝜃𝜃1)β𝑑𝑑1𝑛𝑛(𝐼𝐼1𝑛𝑛+𝐼𝐼2𝑛𝑛)

1+h(µ+η+δ)
, 

 
𝐸𝐸1𝑛𝑛+1(1 + h(µ + η + δ)) =  𝐸𝐸1𝑛𝑛 + h (1−  𝜃𝜃1)β𝑆𝑆1𝑛𝑛(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛), 
 
(𝐸𝐸1𝑛𝑛 + ℎ𝑑𝑑𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑
+ ℎ2

2!
𝑑𝑑2𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑2
+ ℎ3

3!
𝑑𝑑3𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑3
+ ⋯)(1 + h(µ + η + δ)) = 𝐸𝐸1𝑛𝑛 + h (1 −  𝜃𝜃1)β𝑆𝑆1𝑛𝑛(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛), 

 
from the following expression we obtained, 
 
 𝐸𝐸1𝑛𝑛 + 𝐸𝐸1𝑛𝑛 h(µ + η + δ) + ℎ𝑑𝑑𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑
 +  ℎ

2𝑑𝑑𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑
 (µ + η + δ) + (ℎ

2

2!
𝑑𝑑2𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑2
+ ℎ3

3!
𝑑𝑑3𝑑𝑑1𝑛𝑛

𝑑𝑑𝑑𝑑3
. ..) (1 + h(µ + η + δ))= 𝐸𝐸1𝑛𝑛 + h (1 −

 𝜃𝜃1)β𝑆𝑆1𝑛𝑛(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛), 
     
after simplification and then apply h→0 we got  
 
𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

= (1 −  𝜃𝜃1)β𝑆𝑆1𝑛𝑛(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛)- 𝐸𝐸1𝑛𝑛 (µ + η + δ).                                                                                                  (25) 
 
Now by taking equation (20.3) 
 
𝐼𝐼1𝑛𝑛+1 = 𝐼𝐼1𝑛𝑛 + ℎ𝑑𝑑𝐼𝐼1𝑛𝑛

𝑑𝑑𝑑𝑑
+ ℎ2

2!
𝑑𝑑2𝐼𝐼1𝑛𝑛

𝑑𝑑𝑑𝑑2
+ ℎ3

3!
𝑑𝑑3𝐼𝐼1𝑛𝑛

𝑑𝑑𝑑𝑑3
+. ..                                                                                                           (26)  

𝐼𝐼1𝑛𝑛+1 = 𝐼𝐼1𝑛𝑛+hδ𝑑𝑑1𝑛𝑛

1+h(µ+η+γ) ,  
 
𝐼𝐼1𝑛𝑛+1(1 + h(µ + η + γ)) = 𝐼𝐼1𝑛𝑛 + hδ𝐸𝐸1𝑛𝑛,  
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(𝐼𝐼1𝑛𝑛 + ℎ𝑑𝑑𝐼𝐼1𝑛𝑛

𝑑𝑑𝑑𝑑
+ ℎ2

2!
𝑑𝑑2𝐼𝐼1𝑛𝑛

𝑑𝑑𝑑𝑑2
+ ℎ3

3!
𝑑𝑑3𝐼𝐼1𝑛𝑛

𝑑𝑑𝑑𝑑3
+. ..)(1 + h(µ + η + γ)) = 𝐼𝐼1𝑛𝑛 + hδ𝐸𝐸1𝑛𝑛 , 

 
𝐼𝐼1𝑛𝑛 + 𝐼𝐼1𝑛𝑛h(µ + η + γ) + ℎ𝑑𝑑𝐼𝐼1𝑛𝑛

𝑑𝑑𝑑𝑑
+ ℎ2𝑑𝑑𝐼𝐼1𝑛𝑛

𝑑𝑑𝑑𝑑
(µ + η + γ) + (ℎ

2

2!
𝑑𝑑2𝐼𝐼1𝑛𝑛

𝑑𝑑𝑑𝑑2
+ ℎ3

3!
𝑑𝑑3𝐼𝐼1𝑛𝑛

𝑑𝑑𝑑𝑑3
…)�1 + h(µ + η + γ)� = 𝐼𝐼1𝑛𝑛 + hδ𝐸𝐸1𝑛𝑛, 

 
By simplification and then after applying h→0 we got  
 
𝑑𝑑𝐼𝐼1𝑛𝑛

𝑑𝑑𝑑𝑑
=  δ𝐸𝐸1𝑛𝑛  −  𝐼𝐼1𝑛𝑛(µ + η + γ)                                                                                                                                (27) 

 
Now if we take equation (20.4) 
 
𝑆𝑆2𝑛𝑛+1 = 𝑆𝑆2𝑛𝑛 + ℎ𝑑𝑑𝑑𝑑2𝑛𝑛

𝑑𝑑𝑑𝑑
+ ℎ2

2!
𝑑𝑑2𝑑𝑑2𝑛𝑛

𝑑𝑑𝑑𝑑2
+ ℎ3

3!
𝑑𝑑3𝑑𝑑2𝑛𝑛

𝑑𝑑𝑑𝑑3
+. ..                                                                                                      (28) 

 
𝑆𝑆2𝑛𝑛+1 = 𝑑𝑑2𝑛𝑛+h η𝑑𝑑1𝑛𝑛

1+h(1−𝜃𝜃2)β(𝐼𝐼1𝑛𝑛+𝐼𝐼2𝑛𝑛)+h(µ+𝜃𝜃2)
 , 

                                                                          
 
𝑆𝑆2𝑛𝑛+1(1 + h(1 − 𝜃𝜃2)β(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛) + h(µ + 𝜃𝜃2)) =  𝑆𝑆2𝑛𝑛 + h η𝑆𝑆1𝑛𝑛 , 
 
(𝑆𝑆2𝑛𝑛 + ℎ𝑑𝑑𝑑𝑑2𝑛𝑛

𝑑𝑑𝑑𝑑
+ ℎ2

2!
𝑑𝑑2𝑑𝑑2𝑛𝑛

𝑑𝑑𝑑𝑑2
+ ℎ3

3!
𝑑𝑑3𝑑𝑑2𝑛𝑛

𝑑𝑑𝑑𝑑3
+. . . )(1 + h(1 − 𝜃𝜃2)β(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛) + h(µ + 𝜃𝜃2)) = 𝑆𝑆2𝑛𝑛 + h η𝑆𝑆1𝑛𝑛 , 

 
by applying simplification and then h→0 we got  
 
ℎ𝑑𝑑𝑑𝑑2𝑛𝑛

𝑑𝑑𝑑𝑑
= η𝑆𝑆1𝑛𝑛  − (1 − 𝜃𝜃2)β𝑆𝑆2𝑛𝑛(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛)  − 𝑆𝑆2𝑛𝑛(µ + 𝜃𝜃2)                                                                                            (29) 

 
By equation (20.5)  
 
𝐸𝐸2𝑛𝑛+1 = 𝐸𝐸2𝑛𝑛 + ℎ𝑑𝑑𝑑𝑑2𝑛𝑛

𝑑𝑑𝑑𝑑
+ ℎ2

2!
𝑑𝑑2𝑑𝑑2𝑛𝑛

𝑑𝑑𝑑𝑑2
+ ℎ3

3!
𝑑𝑑3𝑑𝑑2𝑛𝑛

𝑑𝑑𝑑𝑑3
+. ..                                                                                                     (30) 

 
𝐸𝐸2𝑛𝑛+1 =  𝑑𝑑2𝑛𝑛+hη𝑑𝑑1𝑛𝑛+h(1−𝜃𝜃2)β𝑑𝑑2𝑛𝑛(𝐼𝐼1𝑛𝑛+𝐼𝐼2𝑛𝑛)

1+h(µ+δ)
 , 

 
𝐸𝐸2𝑛𝑛+1(1 + h(µ + δ)) =  𝐸𝐸2𝑛𝑛 + hη𝐸𝐸1𝑛𝑛 + h(1 − 𝜃𝜃2)β𝑆𝑆2𝑛𝑛(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛), 
 
(𝐸𝐸2𝑛𝑛 + ℎ𝑑𝑑𝑑𝑑2𝑛𝑛

𝑑𝑑𝑑𝑑
+ ℎ2

2!
𝑑𝑑2𝑑𝑑2𝑛𝑛

𝑑𝑑𝑑𝑑2
+ ℎ3

3!
𝑑𝑑3𝑑𝑑2𝑛𝑛

𝑑𝑑𝑑𝑑3
+. ..)(1 + h(µ + δ)) =𝐸𝐸2𝑛𝑛 + hη𝐸𝐸1𝑛𝑛 + h(1 − 𝜃𝜃2)β𝑆𝑆2𝑛𝑛(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛), 

 
by simplification and with same step as above we got 
 
𝑑𝑑𝐸𝐸2𝑛𝑛

𝑑𝑑𝑑𝑑 =  η𝐸𝐸1𝑛𝑛 +  h(1 − 𝜃𝜃2)β𝑆𝑆2𝑛𝑛(𝐼𝐼1𝑛𝑛 + 𝐼𝐼2𝑛𝑛) − 𝐸𝐸2𝑛𝑛(µ + δ)                                                                                                (31) 
 
with same method, by applying expansion and then h→0 we can get our system from equation (20.6) 
 
𝑑𝑑𝐼𝐼2𝑛𝑛

𝑑𝑑𝑑𝑑 =  η𝐼𝐼1𝑛𝑛 +  δ𝐸𝐸2𝑛𝑛 − 𝐼𝐼2𝑛𝑛(µ + γ)                                                                                                                                        (32) 
 
Hence NSFD numerical scheme is consistent with the system. 
 
Graphs at Different Points  
 
Using Euler, Runge-Kutta 4 (RK4) and Non-Standard Finite Difference (NSFD) methods for this rubella 
model provides accurate and stable approximate solutions, especially when applied to dynamic and 
long-term model base predictions. Solutions available in Euler and RK4 are simpler and have raised 
accuracy and especially RK-4 suited the differential system problems. NSFD though is especially 
useful since it retains all important of the model properties. Thus, the system results do reflect realities 
of biological relevance even when the system is analyzed for longer spans of time. Such stability level 
makes NSFD especially useful for epidemiological models where sustainable, precise predictions are 
needed most.  
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Figure 3. Euler behavior on SEIR first and second dose when h =2.05 
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Figure 4. Euler behavior on SEIR first and second dose when h =2.2 
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Figure 5. Euler behavior on SEIR first and second dose when h =3.0 
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Figure 6. RK4 behavior on SEIR first and second dose when h =2.2 
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Figure 7. RK4 behavior on SEIR first and second dose when h =2.05 
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Figure 8. RK4 behavior on SEIR first and second dose when h =3 
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Figure 9. NSFD behavior on SEIR first and second dose when h =2.05 
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Figure 10. NSFD behavior on SEIR first and second dose when h =2.2 
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Figure 11. NSFD behavior on SEIR first and second dose when h =3 
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The Euler and RK4 techniques can provide divergent solutions at tiny step sizes and different behaviour 
at large step size as shown in figure 3, 4, 5, 6, 7 and 8. By way of comparison, the Non-Standard Finite 
Difference (NSFD) approach produces convergent solutions even with same and  tiny step sizes while 
maintaining the system's qualitative characteristics as shown in figure 9, 10 and 11. Because of this, 
NSFD ensures numerical stability and is more suited for managing intricate epidemiological models 
[27][28]. 
 
Hence by graphically analysis proved that NSFD is more reliable than Euler and Rk4. NSFD methods 
offer greater accuracy and stability compared to Euler and RK4 by better preserving the qualitative 
dynamics of disease models. Euler, which may introduce errors over time, and RK4, which can be less 
efficient for stiff systems, NSFD ensures more reliable long-term predictions. This makes NSFD 
particularly useful for guiding public health strategies like the WHO's two-dose vaccination plan. The 
NSFD method, helps in preserving realistic properties, ensuring that solutions remain biologically feasible 
across longer time periods, which strengthens the model’s practical applicability for public health 
planning. 
 
Conclusions 
 
Mathematical modelling of epidemiological disorders is a significant tool for studying disease dynamics. 
We have seen significant solutions to overcoming the disasters of vaccination loss worldwide. Model 
equilibrium points and reproductive number discovered. As reproductive number increase the disease 
spread in the community while it decreases then disease reduce. Effect of parameters play a vital role 
on reproductive number that we can easily identify by sensitivity analysis. With the help of a nonstandard 
finite difference method, an accurate and dependable numerical solution of a vaccination epidemic model 
is offered in this study effort. The suggested method keeps all the fundamental aspects of the vaccination 
epidemic model, demonstrating its efficacy. The well-defined NSFD technique compared with Euler and 
RK-4 methods. 
The simulations revealed that both classical approaches were unsuccessful in providing faultless results, 
even at very small step sizes. Furthermore, the model’s equilibrium points are determined, and it is 
discovered that the system has two steady states, one of which is disease free, and the other is endemic 
equilibrium. The stability at DFE and EE points is being studied. The role of R0 in determining the basic 
reproduction number is being investigated when R0 < 1, the equilibrium point is locally asymptotically 
stable; however, when R0 > 1, it is unstable. In this paper, we compared forward Euler, RK-4 and NSFD 
method. NSFD is more sufficient and reliable as compared to forward Euler and RK-4 because NSFD 
shows convergence at very small step size. NSFD is dynamically consistent scheme and also by 
graphical results we proved that NSFD method hold the properties of SEIR mathematical model. Hence 
this model is reliable and also will provide better results with NSFD technique. This approach can 
contribute to further understanding of rubella dynamics, enhancing the model's applicability in public 
health planning. In the future, this model can be extended by incorporating fractional order derivatives 
by integrating stochastic elements to account for variability and uncertainty in disease transmission, 
further enhancing its applicability for real-world public health scenarios. 
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