
 

e-ISSN 2289-599X | DOI: https://doi.org/10.11113/mjfas.v20n6.3709 1331 

Sarala and Abirami | Malaysian Journal of Fundamental and Applied Sciences, Vol. 20 (2024) 1331-1343 

 
RESEARCH ARTICLE 

 

Beta and Gamma Products of Fuzzy Random 
Graphs with Hesitancy 
N. Sarala, R. Abirami* 

Department of Mathematics, A.D.M. College for Women (Autonomous), 
Bharathidasan University, Nagapattinam-611 001, Tamil Nadu, India 
 
 

Abstract Fuzzy random graphs offer a powerful framework for modeling uncertain and imprecise 
relationships in various real-world systems. This study introduces the concept of hesitancy fuzzy 
random graphs, which incorporate both fuzziness and randomness in edge and vertex 
memberships. Additionally, this study investigates the beta and gamma products within the context 
of hesitancy fuzzy random graphs. Leveraging the beta and gamma operations, this study 
investigates the application of combining and aggregating uncertain information from multiple 
sources represented by hesitancy fuzzy random graphs. 
Keywords: Fuzzy random graph (FRG), hesitancy fuzzy random graph (hfrg), beta product, gamma 
product. 
 

 
 
Introduction 
 
Lotfi A. Zadeh invented the fuzzy set theory, which had a profound impact on the field of multidisciplinary 
study. Rosenfeld, a pioneer in the subject like Euler, created fuzzy graph theory in 1975. In a different 
seminal study on fuzzy sets, Professor Atanassov proposed intuitionistic fuzzy sets. The next significant 
breakthrough came from T. Pathinathan, who came up with the new concept of the hesitant fuzzy graph 
[3]. Furthermore, N. Sarala and R. Abirami introduced the novel idea of a fuzzy random graph [4]. Also, 
Anil P.N. and Shashikala S. focused on defining and demonstrating particular fuzzy soft graph products. It 
pays attention to the analysis of the regular characteristics and vertex degrees of these FSG products 
under particular situations [5]. 
 
In addition, the direct sum of two fuzzy graphs, residue product, strong product, and lexicographic product 
was established as well. To help with more research into fuzzy graph operations, M. Vijaya talked about 
the conditions that must be met for the modular product of two fuzzy graphs to be totally regular under 
certain constraints. He gave formulas for total degree and information about the properties of totally regular 
fuzzy graphs so that more research into fuzzy graph operations could be done [7]. 
 
A. Nagoor Gani and B. Fathima Kani invented the idea of dividing a big fuzzy graph into smaller 
components to produce a beta and gamma product of fuzzy graphs [2]. The properties of HFGs, including 
the behavior of the β-product of various types of HFGs, are discussed by Sunil M.P. and Suresh Kumar in 
their work On beta product of hesitancy fuzzy graphs and Intuitionistic hesitancy fuzzy graphs. They also 
emphasize the benefits of HFGs in decision-making and problem-solving around mergers [6]. The reader 
should also refer to [1]. 
 
In this paper, we delve into the intricate properties of hesitancy fuzzy random graphs, particularly focusing 
on the beta and gamma products with examples. These products, derived from the fusion of hesitancy and 
randomness, offer a nuanced understanding of network dynamics, shedding light on how uncertainty 
influences connectivity patterns and structural properties. 
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Preliminaries 
 
Definition 1 
 
Let 𝕍𝕍ℱℛ = {vi, i = 1,2, … … , n} be a set of n vertices has n(n − 1)/2 possible edges 𝔼𝔼ℱℛ between them. 
Then there are two sets of edges 

𝔼𝔼ℱ = {(vi, vj)/ 1 ≤ vi < vj ≤ n ; i, j = 1,2, … … , n, i ≠ j and�vi, vj� are fuzzy edges},  
              𝔼𝔼ℛ = {(vi, vj)/ 1 ≤ vi < vj ≤ n ; i, j = 1,2, … … , n, i ≠ j and�vi, vj� are random edges}                      that 
are disjoint. Consider the mapping 
 

φ𝒢𝒢:𝕍𝕍ℱℛ → [0,1]vi → φ𝒢𝒢(vi) 
ψ𝒢𝒢:𝕍𝕍ℱℛ × 𝕍𝕍ℱℛ → [0,1]P × [0,1]fA 

(vi, vj) → ψ𝒢𝒢(vi, vj) = (P(vi, vj), fA (vi, vj)) 
 
with P(vi, vj) = 0 if and only if fA (vi, vj) = 0. Then 𝔾𝔾ℱℛ = (𝕍𝕍ℱℛ ,𝔼𝔼ℱℛ) is called a fuzzy random graph (FRG) 
if ψ𝒢𝒢�vi, vj� ≤ min {φ𝒢𝒢(vi),φ𝒢𝒢�vj�}. Where (vi, vj) corresponds to the edge between vi and vj, P(vi, vj) and 
fA(vi, vj) represents the probability of the edge (vi, vj) and  the membership function for the edge (vi, vj) 
within the fuzzy set A in X respectively. 
 
Definition 2 
 
In a fuzzy random graph 𝔾𝔾ℱℛ = (𝕍𝕍ℱℛ ,𝔼𝔼ℱℛ), the degree of a fuzzy random vertex vi is defined as 

d𝔾𝔾ℱℛ(vi) = � ψ𝒢𝒢�vi, vj� + � nP
vi≠vj∈ERvi≠vj∈EF

 

for (vi, vj) ∈ 𝔼𝔼ℱℛ and ψ𝒢𝒢 (vi, vj) = 0 for (vi, vj) not in 𝔼𝔼ℱℛ.  Where  ψ𝒢𝒢�vi, vj� = P and n- number of vertices 
incident at a random edge. i.e.,n = 2 

d𝔾𝔾ℱℛ(vi) = � ψ𝒢𝒢�vi, vj� + � 2 ψ𝒢𝒢�vi, vj�
vi,vj∈ERvi,vj∈EF

 

 
Definition 3 
 
The fuzzy random graph 𝔾𝔾ℱℛ = (𝕍𝕍ℱℛ ,𝔼𝔼ℱℛ) is called a complete fuzzy random graph if  ψ𝒢𝒢�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� =
min {φ𝒢𝒢(𝑣𝑣𝑖𝑖), φ𝒢𝒢�𝑣𝑣𝑗𝑗�} for all (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗) ∈ 𝔼𝔼ℱℛ.   
 
Definition 4 
 
A fuzzy random graph 𝔾𝔾ℱℛ = (𝕍𝕍ℱℛ ,𝔼𝔼ℱℛ) is connected if any two vertices are joined by a path. 
 
Definition 5  
 
A hesitancy fuzzy graph is of the form G = (V, E) such that λ1: V → [0,1], μ1: V → [0,1], ν1: V → [0,1] denote 
the degree of membership, non-membership and hesitancy of the vertex v ∈ V respectively and  λ1(v) +
μ1(v) + ν1(v) = 1 for every v ∈ V, where μ1(v) = 1 − [λ1(v) + ν1(v)] and E ⊆ V × V where λ2: E → [0,1], 
μ2: E → [0,1],ν2: E → [0,1] such that                         
 

λ2(u, v) ≤ min�λ1(u), λ1(v)�; 
μ2(u, v) ≤ max�μ1(u), μ1(v)�; 

ν2(u, v) ≤ min {ν1(u), ν1(v)} and 
0 ≤ λ2(u, v) + μ2(u, v) + ν2(u, v) ≤ 1 

 
Hesitancy Fuzzy Random Graph 
 
Definition 6 
 
Consider a fuzzy random graph  𝔾𝔾ℱℛ = (𝕍𝕍ℱℛ ,𝔼𝔼ℱℛ). In cases that 
 

i. φα1 :𝕍𝕍ℱℛ → [0,1], ψβ1 :𝕍𝕍ℱℛ → [0,1], ηγ1:𝕍𝕍ℱℛ → [0,1] represents the amount of membership, non-
membership and hesitancy of the vertex vi ∈ 𝕍𝕍ℱℛ with                                          
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φα1(vi) + ψβ1(vi) + ηγ1(vi) = 1  and 
 

ii. φα2 :𝔼𝔼ℱℛ → [0,1], ψβ2:𝔼𝔼ℱℛ → [0,1], ηγ2:𝔼𝔼ℱℛ → [0,1] such that 
 

φα2
(vi, vj) ≤ min{φα1

(vi), φα1
(vj)} 

ψβ2
�vi, vj� ≤ max �ψβ1

(vi), ψβ1
�vj�� 

ηγ2
(vi, vj) ≤ min{ηγ1

(vi), ηγ1
(vj)}  and 

0 ≤ φα2(vi) + ψβ2(vi) + ηγ2(vi) ≤ 1 for all (vi, vj) ∈ 𝔼𝔼ℱℛ 
 
then 𝔾𝔾ℱℛ is referred to as hesitancy fuzzy random graph (HFRG) denoted by 𝔾𝔾ℋℱℛ = (𝕍𝕍ℋℱℛ ,𝔼𝔼ℋℱℛ) 
 
Example 1 
 

 
 

Figure 1. Hesitancy fuzzy random graph 
 
 
Note: 
In HFRG 𝔾𝔾ℋℱℛ = (𝕍𝕍ℋℱℛ ,𝔼𝔼ℋℱℛ) the membership, non membership and hesitancy of the vertex vi ∈ 𝕍𝕍ℋℱℛ 
are indicated by  φα1i

, ψβ1i
, ηγ1i

 respectively.  Moreover, each of these indicators represent edge 𝔼𝔼ℋℱℛ, 
degree of membership (if it is fuzzy edge) or probability (if it is random edge) φα2i

, degree of non-
membership ψβ2iand hesitancy of the edge ηγ2i

 respectively. 
 
Definition 7 
 
If α2ij = min�α1i,α2j� for all  vi ∈ 𝕍𝕍ℋℱℛ then the HFRG is considered as an α strong HFRG. 
 
Example 2 

 

 
 

Figure 2. α strong Hesitancy fuzzy random graph 
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Definition 8 
 
If β2ij = min�β1i,β2j�  for all  vi ∈ 𝕍𝕍ℋℱℛ then the HFRG is considered as an β strong HFRG. 
 
Example 3 
 

 
 

Figure 3. β  strong Hesitancy fuzzy random graph 
 
 
Definition 9 
 
If γ2ij = min�γ1i, γ2j�  for all vi ∈ 𝕍𝕍ℋℱℛ then the HFRG is considered as an γ strong HFRG. 
 
Example 4 
 

 
 

Figure 4. γ strong Hesitancy fuzzy random graph 
 
 
Definition 10 
 
A strong HFRG can be defined by 

α2ij = min�α1i,α2j� 
β2ij = min�β1i, β2j� 
γ2ij = min�γ1i, γ2j� 
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Example 5 
 

 
 

Figure 5. Strong Hesitancy fuzzy random graph 
 
 
Definition 11 
 
The complement of the HFRG is a HFRG where VC = V  means that α2ijC = α2ij; β2ijC = β2ij; γ2ijC = γ2ij  
and                                                          
 

α2ijC = min�α1i,α2j� − α2ij 
β2ij

C = min�β1i,β2j� − β2ij 
γ2ijC = min�γ1i, γ2j� − γ2ij 

 
Example 6 
 

 
 

Figure 6. Hesitancy fuzzy random graph 
 
 

 
 

Figure 7. Complement of Hesitancy fuzzy random graph 
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Theorem 1 
 
If 𝔾𝔾ℋℱℛ = (𝕍𝕍ℋℱℛ ,𝔼𝔼ℋℱℛ) is a strong HFRG, then 𝔾𝔾ℋℱℛ

C = (𝕍𝕍ℋℱℛC,𝔼𝔼ℋℱℛC) is also a strong HFRG. 
 
Proof: 
 
There are two cases arise.  
 
Case (i) 
If  (vi, vj) ∈ 𝔼𝔼ℱℛ, then   α2ijC = min�α1i,α2j� − α2ij = min�α1i,α2j� −min�α1i,α2j� = 0 

β2ij
C = min�β1i, β2j� − β2ij = min�β1i, β2j� − min�β1i,β2j� = 0 

γ2ijC = min�γ1i, γ2j� − γ2ij = min�γ1i, γ2j� −min�γ1i, γ2j� = 0 
Case (ii) 
If  �vi, vj� ∉ 𝔼𝔼ℱℛ, then     α2ijC = min�α1i,α2j� − α2ij = min�α1i,α2j� 

β2ij
C = min�β1i, β2j� − β2ij = min�β1i, β2j� 

γ2ijC = min�γ1i, γ2j� − γ2ij = min�γ1i, γ2j� 
 
Thus if 𝔾𝔾ℋℱℛ is a strong HFRG, then 𝔾𝔾ℋℱℛ

C is also a strong HFRG. 
 
Results and Discussion 
 
Beta product of HFRG 
Definition 12 
Let 𝔾𝔾ℋℱℛ

𝟏𝟏 = (𝕍𝕍ℋℱℛ𝟏𝟏,𝔼𝔼ℋℱℛ𝟏𝟏), 𝔾𝔾ℋℱℛ
𝟐𝟐 = (𝕍𝕍ℋℱℛ𝟐𝟐,𝔼𝔼ℋℱℛ𝟐𝟐) be two HFRGs.  The 𝛽𝛽 - product of two HFRGs 

𝔾𝔾ℋℱℛ
𝟏𝟏 and 𝔾𝔾ℋℱℛ

𝟐𝟐denoted by 
𝔾𝔾ℋℱℛ = 𝔾𝔾ℋℱℛ

𝟏𝟏�×β�𝔾𝔾ℋℱℛ
𝟐𝟐 = �𝕍𝕍ℋℱℛ𝟏𝟏�×β�𝕍𝕍ℋℱℛ𝟐𝟐,𝔼𝔼ℋℱℛ𝟏𝟏�×β�𝔼𝔼ℋℱℛ𝟐𝟐� 

Where      �φα1
𝟏𝟏�×β�φα1

𝟏𝟏� (𝑣𝑣) = φα1
𝟏𝟏(𝑣𝑣) ∧ φα1

𝟏𝟏(𝑣𝑣) 

�ψβ1
𝟏𝟏�×β�ψβ1

𝟏𝟏� (𝑣𝑣) = ψβ1
𝟏𝟏(𝑣𝑣) ∨ ψβ1

𝟏𝟏(𝑣𝑣) 

�ηγ1
𝟏𝟏�×β�ηγ1

𝟏𝟏� (𝑣𝑣) = 1 − {ηγ1
𝟏𝟏(𝑣𝑣) ∧ ηγ1

𝟏𝟏(𝑣𝑣) + ψβ1
𝟏𝟏(𝑣𝑣) ∨ ψβ1

𝟏𝟏(𝑣𝑣) 
 
and �𝔼𝔼ℋℱℛ𝟏𝟏�×β�𝔼𝔼ℋℱℛ𝟐𝟐�(𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) is defined by, 
 

�φα2
𝟏𝟏�×β�φα2

𝟐𝟐� (𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) =

⎩
⎨

⎧ φα2
𝟏𝟏(𝑢𝑢1𝑢𝑢2) ∧ φα2

𝟐𝟐(𝑣𝑣1𝑣𝑣2) ; if 𝑢𝑢1𝑢𝑢2 ∈ 𝔼𝔼ℋℱℛ𝟏𝟏 and 𝑣𝑣1𝑣𝑣2 ∈ 𝔼𝔼ℋℱℛ𝟐𝟐

φα1
𝟐𝟐(𝑣𝑣1) ∧ φα1

𝟐𝟐(𝑣𝑣2) ∧ φα2
𝟏𝟏(𝑢𝑢1𝑢𝑢2) ; if 𝑣𝑣1 ≠ 𝑣𝑣2𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢1𝑢𝑢2 ∈ 𝔼𝔼ℋℱℛ𝟏𝟏

φα1
𝟏𝟏(𝑢𝑢1) ∧ φα1

𝟏𝟏(𝑢𝑢2) ∧ φα2
𝟐𝟐(𝑣𝑣1𝑣𝑣2) ; if 𝑢𝑢1 ≠ 𝑢𝑢2𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣1𝑣𝑣2 ∈ 𝔼𝔼ℋℱℛ𝟐𝟐

 

 

�ψβ2
𝟏𝟏�×β�ψβ2

𝟐𝟐� (𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) =

⎩
⎪
⎨

⎪
⎧ ψβ2

𝟏𝟏 ∧ ψβ2
𝟐𝟐 ; if 𝑢𝑢1𝑢𝑢2 ∈ 𝔼𝔼ℋℱℛ𝟏𝟏 and 𝑣𝑣1𝑣𝑣2 ∈ 𝔼𝔼ℋℱℛ𝟐𝟐

ψβ1
𝟐𝟐(𝑣𝑣1) ∧ψβ1

𝟐𝟐(𝑣𝑣2) ∧ ψβ2
𝟏𝟏(𝑢𝑢1𝑢𝑢2) ; if 𝑣𝑣1 ≠ 𝑣𝑣2𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢1𝑢𝑢2 ∈ 𝔼𝔼ℋℱℛ𝟏𝟏

ψβ1
(𝑢𝑢1) ∧ ψβ1

𝟏𝟏(𝑢𝑢2) ∧ ψβ2
𝟐𝟐(𝑣𝑣1𝑣𝑣2) ; if 𝑢𝑢1 ≠ 𝑢𝑢2𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣1𝑣𝑣2 ∈ 𝔼𝔼ℋℱℛ𝟐𝟐

 

 

�ηγ2
𝟏𝟏�×β�ηγ2

𝟐𝟐� (𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) =

⎩
⎪
⎨

⎪
⎧ ηγ2

𝟏𝟏 ∧ ηγ2
𝟐𝟐 ; if 𝑢𝑢1𝑢𝑢2 ∈ 𝔼𝔼ℋℱℛ𝟏𝟏 and 𝑣𝑣1𝑣𝑣2 ∈ 𝔼𝔼ℋℱℛ𝟐𝟐

ηγ1
𝟐𝟐(𝑣𝑣1) ∧ ηγ1

𝟐𝟐(𝑣𝑣2) ∧ ηγ2
𝟏𝟏(𝑢𝑢1𝑢𝑢2) ; if 𝑣𝑣1 ≠ 𝑣𝑣2𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢1𝑢𝑢2 ∈ 𝔼𝔼ℋℱℛ𝟏𝟏

ηγ1
𝟏𝟏(𝑢𝑢1) ∧ ηγ1

𝟏𝟏(𝑢𝑢2) ∧ ηγ2
𝟐𝟐(𝑣𝑣1𝑣𝑣2) ; if 𝑢𝑢1 ≠ 𝑢𝑢2𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣1𝑣𝑣2 ∈ 𝔼𝔼ℋℱℛ𝟐𝟐
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Example 7 
 
Consider the HFRGs given by, 

 

 
 

Figure 8. Beta product of Hesitancy fuzzy random graphs 
 
Example 8 
 

 
 

Figure 9. Beta product of Hesitancy fuzzy random graphs 
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Theorem 2 
 
If 𝔾𝔾ℋℱℛ

𝟏𝟏 and 𝔾𝔾ℋℱℛ
𝟐𝟐 are two strong HFRGs, then their 𝛽𝛽- product 𝔾𝔾ℋℱℛ

𝟏𝟏�×β�𝔾𝔾ℋℱℛ
𝟐𝟐 is also a strong 

HFRG. 
 
Proof: 
Let 𝔾𝔾ℋℱℛ

𝟏𝟏 = (𝕍𝕍ℋℱℛ𝟏𝟏,𝔼𝔼ℋℱℛ𝟏𝟏), 𝔾𝔾ℋℱℛ
𝟐𝟐 = (𝕍𝕍ℋℱℛ𝟐𝟐,𝔼𝔼ℋℱℛ𝟐𝟐) be two HFRGs.  

Then for   𝑢𝑢1𝑢𝑢2 ∈ 𝔼𝔼ℋℱℛ𝟏𝟏 and 𝑣𝑣1𝑣𝑣2 ∈ 𝔼𝔼ℋℱℛ𝟐𝟐, 
 

φα2
𝟏𝟏(𝑢𝑢1𝑢𝑢2) = φα1

𝟏𝟏(𝑢𝑢1) ∧ φα1
𝟏𝟏(𝑢𝑢2);       φα2

𝟐𝟐(𝑣𝑣1𝑣𝑣2) = φα1
𝟐𝟐(𝑣𝑣1) ∧ φα1

𝟐𝟐(𝑣𝑣2) 
ψβ2

𝟏𝟏(𝑢𝑢1𝑢𝑢2) = ψβ1
𝟏𝟏(𝑢𝑢1) ∨ ψβ1

𝟏𝟏(𝑢𝑢2);       ψβ2
𝟐𝟐(𝑣𝑣1𝑣𝑣2) = ψβ1

𝟐𝟐(𝑣𝑣1) ∨ ψβ1
𝟐𝟐(𝑣𝑣2) 

ηγ2
𝟏𝟏(𝑢𝑢1𝑢𝑢2) = ηγ1

𝟏𝟏(𝑢𝑢1) ∧ ηγ1
𝟏𝟏(𝑢𝑢2);          ηγ2

𝟐𝟐(𝑣𝑣1𝑣𝑣2) = ηγ1
𝟐𝟐(𝑣𝑣1) ∧ ηγ1

𝟐𝟐(𝑣𝑣2) 
 
Case (i):  When if 𝑢𝑢1𝑢𝑢2 ∈ 𝔼𝔼ℋℱℛ𝟏𝟏 and 𝑣𝑣1𝑣𝑣2 ∈ 𝔼𝔼ℋℱℛ𝟐𝟐 
 
�φα2

𝟏𝟏�×β�φα2
𝟐𝟐� (𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) = φα2

𝟏𝟏(𝑢𝑢1𝑢𝑢2) ∧ φα2
𝟐𝟐(𝑣𝑣1𝑣𝑣2) 

= φα1
𝟏𝟏(𝑢𝑢1) ∧ φα1

𝟏𝟏(𝑢𝑢2) ∧ φα1
𝟐𝟐(𝑣𝑣1) ∧ φα1

𝟐𝟐(𝑣𝑣2) 

= �φα1
𝟏𝟏�×β�φα1

𝟐𝟐� (𝑢𝑢1𝑣𝑣1) ∧ �φα1
𝟏𝟏�×β�φα1

𝟐𝟐� (𝑢𝑢2𝑣𝑣2) 
 
�ψβ2

𝟏𝟏�×β�ψβ2
𝟐𝟐� (𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) = ψβ2

𝟏𝟏(𝑢𝑢1𝑢𝑢2) ∧ ψβ2
𝟐𝟐(𝑣𝑣1𝑣𝑣2) 

= ψβ1
𝟏𝟏(𝑢𝑢1) ∨ ψβ1

𝟏𝟏(𝑢𝑢2) ∨ ψβ1
𝟐𝟐(𝑣𝑣1) ∨ ψβ1

𝟐𝟐(𝑣𝑣2) 

= �ψβ1
𝟏𝟏�×β�ψβ1

𝟐𝟐� (𝑢𝑢1𝑣𝑣1) ∨ �ψβ1
𝟏𝟏�×β�ψβ1

𝟐𝟐� (𝑢𝑢2𝑣𝑣2) 
 
�ηγ2

𝟏𝟏�×β�ηγ2
𝟐𝟐� (𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) = ηγ2

𝟏𝟏(𝑢𝑢1𝑢𝑢2) ∧ ηγ2
𝟐𝟐(𝑣𝑣1𝑣𝑣2) 

= ηγ1
𝟏𝟏(𝑢𝑢1) ∧ ηγ1

𝟏𝟏(𝑢𝑢2) ∧ ηγ1
𝟐𝟐(𝑣𝑣1) ∧ ηγ1

𝟐𝟐(𝑣𝑣2) 

= �ηγ1
𝟏𝟏�×β�ηγ1

𝟐𝟐� (𝑢𝑢1𝑣𝑣1) ∧ �ηγ1
𝟏𝟏�×β�ηγ1

𝟐𝟐� (𝑢𝑢2𝑣𝑣2) 
 
Case (ii):  When if 𝑣𝑣1 ≠ 𝑣𝑣2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢1𝑢𝑢2 ∈ 𝔼𝔼ℋℱℛ𝟏𝟏 
 
�φα2

𝟏𝟏�×β�φα2
𝟐𝟐� (𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) = φα1

𝟐𝟐(𝑣𝑣1) ∧ φα1
𝟐𝟐(𝑣𝑣2) ∧ φα2

𝟏𝟏(𝑢𝑢1𝑢𝑢2) 
= φα1

𝟐𝟐(𝑣𝑣1) ∧ φα1
𝟐𝟐(𝑣𝑣2) ∧ φα1

𝟏𝟏(𝑢𝑢1) ∧ φα1
𝟏𝟏(𝑢𝑢2) 

= �φα1
𝟏𝟏�×β�φα1

𝟐𝟐� (𝑢𝑢1𝑣𝑣1) ∧ �φα1
𝟏𝟏�×β�φα1

𝟐𝟐� (𝑢𝑢2𝑣𝑣2) 
 
�ψβ2

𝟏𝟏�×β�ψβ2
𝟐𝟐� (𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) = ψβ1

𝟐𝟐(𝑣𝑣1) ∨ ψβ1
𝟐𝟐(𝑣𝑣2) ∨ ψβ2

𝟏𝟏(𝑢𝑢1𝑢𝑢2) 
= ψβ1

𝟐𝟐(𝑣𝑣1) ∨ ψβ1
𝟐𝟐(𝑣𝑣2) ∨ ψβ1

𝟏𝟏(𝑢𝑢1) ∨ ψβ1
𝟏𝟏(𝑢𝑢2) 

= �ψβ1
𝟏𝟏�×β�ψβ1

𝟐𝟐� (𝑢𝑢1𝑣𝑣1) ∨ �ψβ1
𝟏𝟏�×β�ψβ1

𝟐𝟐� (𝑢𝑢2𝑣𝑣2) 
 
�ηγ2

𝟏𝟏�×β�ηγ2
𝟐𝟐� (𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) = ηγ1

𝟐𝟐(𝑣𝑣1) ∧ ηγ1
𝟐𝟐(𝑣𝑣2) ∧ ηγ2

𝟏𝟏(𝑢𝑢1𝑢𝑢2) 
= ηγ1

𝟐𝟐(𝑣𝑣1) ∧ ηγ1
𝟐𝟐(𝑣𝑣2) ∧ ηγ1

𝟏𝟏(𝑢𝑢1) ∧ ηγ1
𝟏𝟏(𝑢𝑢2) 

= �ηγ1
𝟏𝟏�×β�ηγ1

𝟐𝟐� (𝑢𝑢1𝑣𝑣1) ∧ �ηγ1
𝟏𝟏�×β�ηγ1

𝟐𝟐� (𝑢𝑢2𝑣𝑣2) 
 
Case (iii):  When if 𝑢𝑢1 ≠ 𝑢𝑢2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣1𝑣𝑣2 ∈ 𝔼𝔼ℋℱℛ𝟐𝟐 
 
�φα2

𝟏𝟏�×β�φα2
𝟐𝟐� (𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) = φα1

𝟏𝟏(𝑢𝑢1) ∧ φα1
𝟏𝟏(𝑢𝑢2) ∧ φα2

𝟐𝟐(𝑣𝑣1𝑣𝑣2) 
= φα1

𝟏𝟏(𝑢𝑢1) ∧ φα1
𝟏𝟏(𝑢𝑢2) ∧ φα1

𝟐𝟐(𝑣𝑣1) ∧ φα1
𝟐𝟐(𝑣𝑣2) 

= �φα1
𝟏𝟏�×β�φα1

𝟐𝟐� (𝑢𝑢1𝑣𝑣1) ∧ �φα1
𝟏𝟏�×β�φα1

𝟐𝟐� (𝑢𝑢2𝑣𝑣2) 
 
�ψβ2

𝟏𝟏�×β�ψβ2
𝟐𝟐� (𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) = ψβ1

(𝑢𝑢1) ∧ ψβ1
𝟏𝟏(𝑢𝑢2) ∧ ψβ2

𝟐𝟐(𝑣𝑣1𝑣𝑣2) 
= ψβ1

(𝑢𝑢1) ∧ψβ1
𝟏𝟏(𝑢𝑢2) ∧ ψβ1

𝟐𝟐(𝑣𝑣1) ∨ ψβ1
𝟐𝟐(𝑣𝑣2) 
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= �ψβ1
𝟏𝟏�×β�ψβ1

𝟐𝟐� (𝑢𝑢1𝑣𝑣1) ∨ �ψβ1
𝟏𝟏�×β�ψβ1

𝟐𝟐� (𝑢𝑢2𝑣𝑣2) 

�ηγ2
𝟏𝟏�×β�ηγ2

𝟐𝟐� (𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) = ηγ1
𝟏𝟏(𝑢𝑢1) ∧ ηγ1

𝟏𝟏(𝑢𝑢2) ∧ ηγ2
𝟐𝟐(𝑣𝑣1𝑣𝑣2) 

= ηγ1
𝟏𝟏(𝑢𝑢1) ∧ ηγ1

𝟏𝟏(𝑢𝑢2) ∧ ηγ1
𝟐𝟐(𝑣𝑣1) ∧ ηγ1

𝟐𝟐(𝑣𝑣2) 

= �ηγ1
𝟏𝟏�×β�ηγ1

𝟐𝟐� (𝑢𝑢1𝑣𝑣1) ∧ �ηγ1
𝟏𝟏�×β�ηγ1

𝟐𝟐� (𝑢𝑢2𝑣𝑣2) 
 
Thus the 𝛽𝛽- product 𝔾𝔾ℋℱℛ

𝟏𝟏�×β�𝔾𝔾ℋℱℛ
𝟐𝟐 is also a strong HFRG. 

 
Theorem 3 
 
If 𝔾𝔾ℋℱℛ

𝟏𝟏 and 𝔾𝔾ℋℱℛ
𝟐𝟐 are two HFRGs such that their 𝛽𝛽- product 𝔾𝔾ℋℱℛ

𝟏𝟏�×β�𝔾𝔾ℋℱℛ
𝟐𝟐 is a strong HFRG , then 

atleast one of 𝔾𝔾ℋℱℛ
𝟏𝟏 or 𝔾𝔾ℋℱℛ

𝟐𝟐 will be strong. 
 
Proof: 
Assume that the two HFRGs 𝔾𝔾ℋℱℛ

𝟏𝟏and 𝔾𝔾ℋℱℛ
𝟐𝟐 are not strong.  Then there exists at least one         

𝑢𝑢1𝑢𝑢2 ∈ 𝔼𝔼ℋℱℛ𝟏𝟏 and 𝑣𝑣1𝑣𝑣2 ∈ 𝔼𝔼ℋℱℛ𝟐𝟐, 
 

φα2
𝟏𝟏(𝑢𝑢1𝑢𝑢2) < φα1

𝟏𝟏(𝑢𝑢1) ∧ φα1
𝟏𝟏(𝑢𝑢2);       φα2

𝟐𝟐(𝑣𝑣1𝑣𝑣2) < φα1
𝟐𝟐(𝑣𝑣1) ∧ φα1

𝟐𝟐(𝑣𝑣2) 
ψβ2

𝟏𝟏(𝑢𝑢1𝑢𝑢2) < ψβ1
𝟏𝟏(𝑢𝑢1) ∨ψβ1

𝟏𝟏(𝑢𝑢2);       ψβ2
𝟐𝟐(𝑣𝑣1𝑣𝑣2) < ψβ1

𝟐𝟐(𝑣𝑣1) ∨ ψβ1
𝟐𝟐(𝑣𝑣2) 

ηγ2
𝟏𝟏(𝑢𝑢1𝑢𝑢2) < ηγ1

𝟏𝟏(𝑢𝑢1) ∧ ηγ1
𝟏𝟏(𝑢𝑢2);          ηγ2

𝟐𝟐(𝑣𝑣1𝑣𝑣2) < ηγ1
𝟐𝟐(𝑣𝑣1) ∧ ηγ1

𝟐𝟐(𝑣𝑣2) 
 
 Let if 𝑢𝑢1𝑢𝑢2 ∈ 𝔼𝔼ℋℱℛ𝟏𝟏 and 𝑣𝑣1𝑣𝑣2 ∈ 𝔼𝔼ℋℱℛ𝟐𝟐 
�φα2

𝟏𝟏�×β�φα2
𝟐𝟐� (𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) = φα2

𝟏𝟏(𝑢𝑢1𝑢𝑢2) ∧ φα2
𝟐𝟐(𝑣𝑣1𝑣𝑣2) 

< φα1
𝟏𝟏(𝑢𝑢1) ∧ φα1

𝟏𝟏(𝑢𝑢2) ∧ φα1
𝟐𝟐(𝑣𝑣1) ∧ φα1

𝟐𝟐(𝑣𝑣2) 

𝑖𝑖𝑖𝑖., �φα2
𝟏𝟏�×β�φα2

𝟐𝟐� (𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) < �φα1
𝟏𝟏�×β�φα1

𝟐𝟐� (𝑢𝑢1𝑣𝑣1) ∧ �φα1
𝟏𝟏�×β�φα1

𝟐𝟐� (𝑢𝑢2𝑣𝑣2) 
 
�ψβ2

𝟏𝟏�×β�ψβ2
𝟐𝟐� (𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) = ψβ2

𝟏𝟏(𝑢𝑢1𝑢𝑢2) ∧ ψβ2
𝟐𝟐(𝑣𝑣1𝑣𝑣2) 

< ψβ1
𝟏𝟏(𝑢𝑢1) ∨ ψβ1

𝟏𝟏(𝑢𝑢2) ∨ ψβ1
𝟐𝟐(𝑣𝑣1) ∨ ψβ1

𝟐𝟐(𝑣𝑣2) 

𝑖𝑖𝑖𝑖., �ψβ2
𝟏𝟏�×β�ψβ2

𝟐𝟐� (𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) < �ψβ1
𝟏𝟏�×β�ψβ1

𝟐𝟐� (𝑢𝑢1𝑣𝑣1) ∨ �ψβ1
𝟏𝟏�×β�ψβ1

𝟐𝟐� (𝑢𝑢2𝑣𝑣2) 
 
�ηγ2

𝟏𝟏�×β�ηγ2
𝟐𝟐� (𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) = ηγ2

𝟏𝟏(𝑢𝑢1𝑢𝑢2) ∧ ηγ2
𝟐𝟐(𝑣𝑣1𝑣𝑣2) 

< ηγ1
𝟏𝟏(𝑢𝑢1) ∧ ηγ1

𝟏𝟏(𝑢𝑢2) ∧ ηγ1
𝟐𝟐(𝑣𝑣1) ∧ ηγ1

𝟐𝟐(𝑣𝑣2) 

𝑖𝑖𝑖𝑖., �ηγ2
𝟏𝟏�×β�ηγ2

𝟐𝟐� (𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) < �ηγ1
𝟏𝟏�×β�ηγ1

𝟐𝟐� (𝑢𝑢1𝑣𝑣1) ∧ �ηγ1
𝟏𝟏�×β�ηγ1

𝟐𝟐� (𝑢𝑢2𝑣𝑣2) 
 
This implies that the  𝛽𝛽- product 𝔾𝔾ℋℱℛ

𝟏𝟏�×β�𝔾𝔾ℋℱℛ
𝟐𝟐 is not strong. So at least one of 𝔾𝔾ℋℱℛ

𝟏𝟏 or 𝔾𝔾ℋℱℛ
𝟐𝟐 will 

be strong. 
 
Gamma Product of HFRGs: 
Definition 13 
The 𝛾𝛾 - product of two HFRGs 𝔾𝔾ℋℱℛ

𝟏𝟏 = (𝕍𝕍ℋℱℛ𝟏𝟏,𝔼𝔼ℋℱℛ𝟏𝟏), 𝔾𝔾ℋℱℛ
𝟐𝟐 = (𝕍𝕍ℋℱℛ𝟐𝟐,𝔼𝔼ℋℱℛ𝟐𝟐) is defined as a 

HFRG 𝔾𝔾ℋℱℛ = 𝔾𝔾ℋℱℛ
𝟏𝟏�×γ�𝔾𝔾ℋℱℛ

𝟐𝟐 = �𝕍𝕍ℋℱℛ𝟏𝟏�×γ�𝕍𝕍ℋℱℛ𝟐𝟐,𝔼𝔼ℋℱℛ𝟏𝟏�×γ�𝔼𝔼ℋℱℛ𝟐𝟐� 
Where    �φα1

𝟏𝟏�×γ�φα1
𝟏𝟏� (𝑣𝑣) = φα1

𝟏𝟏(𝑣𝑣) ∧ φα1
𝟏𝟏(𝑣𝑣) 

 
�ψβ1

𝟏𝟏�×γ�ψβ1
𝟏𝟏� (𝑣𝑣) = ψβ1

𝟏𝟏(𝑣𝑣) ∨ ψβ1
𝟏𝟏(𝑣𝑣) 

 
�ηγ1

𝟏𝟏�×γ�ηγ1
𝟏𝟏� (𝑣𝑣) = 1 − {ηγ1

𝟏𝟏(𝑣𝑣) ∧ ηγ1
𝟏𝟏(𝑣𝑣) + ψβ1

𝟏𝟏(𝑣𝑣) ∨ ψβ1
𝟏𝟏(𝑣𝑣) 

 
and �𝔼𝔼ℋℱℛ𝟏𝟏�×γ�𝔼𝔼ℋℱℛ𝟐𝟐�(𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) is defined by, 
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�φα2
𝟏𝟏�×γ�φα2

𝟐𝟐� (𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) =

⎩
⎪⎪
⎨

⎪⎪
⎧ φα2

𝟏𝟏 ∧ φα2
𝟐𝟐 ; if 𝑢𝑢1𝑢𝑢2 ∈ 𝔼𝔼ℋℱℛ𝟏𝟏 and 𝑣𝑣1𝑣𝑣2 ∈ 𝔼𝔼ℋℱℛ𝟐𝟐

φα1
𝟐𝟐(𝑣𝑣2) ∧ φα2

𝟏𝟏(𝑢𝑢1𝑢𝑢2) ; if 𝑣𝑣1 = 𝑣𝑣2𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢1𝑢𝑢2 ∈ 𝔼𝔼ℋℱℛ𝟏𝟏

φα1
𝟏𝟏(𝑢𝑢1) ∧ φα2

𝟐𝟐(𝑣𝑣1𝑣𝑣2) ; if 𝑢𝑢1 = 𝑢𝑢2𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣1𝑣𝑣2 ∈ 𝔼𝔼ℋℱℛ𝟐𝟐

φα1
𝟏𝟏(𝑢𝑢1) ∧ φα1

𝟏𝟏(𝑢𝑢2) ∧ φα2
𝟐𝟐(𝑣𝑣1𝑣𝑣2) ; if 𝑢𝑢1 ≠ 𝑢𝑢2𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣1𝑣𝑣2 ∈ 𝔼𝔼ℋℱℛ𝟐𝟐

φα1
𝟐𝟐(𝑣𝑣1) ∧ φα1

𝟐𝟐(𝑣𝑣2) ∧ φα2
𝟏𝟏(𝑢𝑢1𝑢𝑢2) ; if 𝑣𝑣1 ≠ 𝑣𝑣2𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢1𝑢𝑢2 ∈ 𝔼𝔼ℋℱℛ𝟏𝟏

 

 

�ψβ2
𝟏𝟏�×γ�ψβ2

𝟐𝟐� (𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ ψβ2

𝟏𝟏 ∧ ψβ2
𝟐𝟐 ; if 𝑢𝑢1𝑢𝑢2 ∈ 𝔼𝔼ℋℱℛ𝟏𝟏 and 𝑣𝑣1𝑣𝑣2 ∈ 𝔼𝔼ℋℱℛ𝟐𝟐

ψβ1
𝟐𝟐(𝑣𝑣2) ∧ ψβ2

𝟏𝟏(𝑢𝑢1𝑢𝑢2) ; if 𝑣𝑣1 = 𝑣𝑣2𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢1𝑢𝑢2 ∈ 𝔼𝔼ℋℱℛ𝟏𝟏

ψβ1
𝟏𝟏(𝑢𝑢1) ∧ ψβ2

𝟐𝟐(𝑣𝑣1𝑣𝑣2) ; if 𝑢𝑢1 = 𝑢𝑢2𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣1𝑣𝑣2 ∈ 𝔼𝔼ℋℱℛ𝟐𝟐

ψβ1
𝟐𝟐(𝑣𝑣1) ∧ ψβ1

𝟐𝟐(𝑣𝑣2) ∧ ψβ2
𝟏𝟏(𝑢𝑢1𝑢𝑢2) ; if 𝑣𝑣1 ≠ 𝑣𝑣2𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢1𝑢𝑢2 ∈ 𝔼𝔼ℋℱℛ𝟏𝟏

ψβ1
𝟐𝟐(𝑢𝑢1) ∧ ψβ1

𝟏𝟏(𝑢𝑢2) ∧ ψβ2
𝟐𝟐(𝑣𝑣1𝑣𝑣2) ; if 𝑢𝑢1 ≠ 𝑢𝑢2𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣1𝑣𝑣2 ∈ 𝔼𝔼ℋℱℛ𝟐𝟐

 

  

�ηγ2
𝟏𝟏�×γ�ηγ2

𝟐𝟐� (𝑢𝑢1𝑣𝑣1,𝑢𝑢2𝑣𝑣2) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ ηγ2

𝟏𝟏 ∧ ηγ2
𝟐𝟐 ; if 𝑢𝑢1𝑢𝑢2 ∈ 𝔼𝔼ℋℱℛ𝟏𝟏 and 𝑣𝑣1𝑣𝑣2 ∈ 𝔼𝔼ℋℱℛ𝟐𝟐

ηγ1
𝟐𝟐(𝑣𝑣2) ∧ ηγ2

𝟏𝟏(𝑢𝑢1𝑢𝑢2) ; if 𝑣𝑣1 = 𝑣𝑣2𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢1𝑢𝑢2 ∈ 𝔼𝔼ℋℱℛ𝟏𝟏

ηγ1
𝟏𝟏(𝑢𝑢1) ∧ ηγ2

𝟐𝟐(𝑣𝑣1𝑣𝑣2) ; if 𝑢𝑢1 = 𝑢𝑢2𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣1𝑣𝑣2 ∈ 𝔼𝔼ℋℱℛ𝟐𝟐

ηγ1
𝟐𝟐(𝑣𝑣1) ∧ ηγ1

𝟐𝟐(𝑣𝑣2) ∧ ηγ2
𝟏𝟏(𝑢𝑢1𝑢𝑢2) ; if 𝑣𝑣1 ≠ 𝑣𝑣2𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢1𝑢𝑢2 ∈ 𝔼𝔼ℋℱℛ𝟏𝟏

ηγ1
𝟏𝟏(𝑢𝑢1) ∧ ηγ1

𝟏𝟏(𝑢𝑢2) ∧ ηγ2
𝟐𝟐(𝑣𝑣1𝑣𝑣2) ; if 𝑢𝑢1 ≠ 𝑢𝑢2𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣1𝑣𝑣2 ∈ 𝔼𝔼ℋℱℛ𝟐𝟐

 

 
Example 9 
 

 
 

Figure 10. Gamma product of Hesitancy fuzzy random graphs 
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Result: 
If 𝔾𝔾ℋℱℛ

𝟏𝟏 and 𝔾𝔾ℋℱℛ
𝟐𝟐 are two strong HFRGs, then their 𝛾𝛾- product need not to be a strong HFRG. 

 
Comparison of beta and gamma products of HFRG: 
Comparing beta and gamma products of hesitancy fuzzy random graphs is a relatively niche area of 
research in fuzzy graph theory. In these types of graphs, hesitancy arises when there is uncertainty or 
hesitation in assigning membership values to elements, reflecting hesitation between a degree of 
membership and non-membership. 

• Beta Product: A product where the vertex and edge membership functions are combined using 
a beta-type operation. This can involve, for instance, taking a specific combination (like a product 
or a sum) of the hesitancy values of individual graphs. 

• Gamma Product: Similar, but the operation is defined using gamma-type rules, which may differ 
in how they handle hesitancy values. 

 
Table 1. Comparison of beta and gamma product of HFRG 

 

 
 
The beta product and gamma product offer different methods of combining hesitancy fuzzy random 
graphs, with the beta product being more flexible and computationally lighter, while the gamma product 
tends to be more rigid but possibly more robust in high-uncertainty or risk scenarios. The choice between 
them depends on the specific needs of the problem, such as whether flexibility or strictness is desired in 
handling hesitancy and randomness. 
The beta and gamma products in hesitancy fuzzy random graphs are specific types of operations 
designed to handle the combination of multiple graphs under conditions of uncertainty (hesitancy). These 
operations differ from traditional or existing operations in fuzzy graphs in several ways, primarily in how 
they handle uncertainty and hesitancy within the graph structures. A detailed comparison of how the beta 
and gamma products vary from existing operations in HFRG is given below. 
 

Table 2. Comparison of the beta and gamma products with the existing operations of HFRG 

Comparison Beta Product Gamma Product 

Handling of 
Hesitancy 

Beta product tends to be more flexible and 
can use operations like weighted averages, 
arithmetic products, or sums to combine 
hesitancy values 

Gamma product might use stricter or 
more conservative rules, such as 
max-min combinations or other non-
linear compositions that handle the 
uncertainty more cautiously. 

Combination 
Rules 

In the beta product, the combination might 
focus on aggregating the hesitancy values 
from different graphs in a more flexible 
manner (e.g., using linear combinations, 
averaging methods). 

 

In the gamma product, the 
combination might be stricter, 
focusing on selecting the most 
uncertain or conservative outcomes 
from the hesitancy values, often 
using max-min or non-linear 
combinations. 

Behavior 
Under 

Randomness 

Beta product could involve smoother 
handling of randomness and hesitancy, 
where the combined hesitancy values 
adjust more gradually based on the 
randomness in the graph. 

 

Gamma product might provide more 
conservative outcomes under 
randomness, choosing the most 
uncertain (worst-case) combination 
when randomness introduces 
ambiguity. 

Computational 
Complexity 

Beta product might involve multiple 
operations, such as weighted averages, 
linear combinations, or more complex 
aggregation rules that increase the 
complexity. 
 

Gamma product might involve even 
more computationally intensive 
operations like max-min or other non-
linear combinations, especially when 
the hesitancy and randomness are 
handled together. 

Flexibility vs. 
Conservatism: 

Beta product offers more flexibility, allowing 
for smoother or less restrictive combinations 
of the hesitancy and randomness. 
 

Gamma product, in contrast, is more 
conservative and cautious, focusing 
on preserving the maximum 
uncertainty or hesitation, making it 
better suited for scenarios where risk 
or extreme cases must be 
considered. 
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Comparison Existing Operations Beta and Gamma Products 
Handling of 
Hesitancy 

Traditional operations in fuzzy graphs, such as 
union, intersection, or complement, do not 
explicitly account for hesitancy. They are 
primarily designed for graphs where 
membership values (of vertices and edges) are 
known or deterministic. For example, the 
intersection of two fuzzy graphs might take the 
minimum of the membership values for 
corresponding vertices and edges, while the 
union might take the maximum. 
 

In hesitancy fuzzy random 
graphs, the membership of an 
element (vertex or edge) is not a 
single value but can be 
represented by an interval or a set 
of possible values reflecting the 
uncertainty. Both beta and 
gamma products aim to combine 
these intervals or sets in ways 
that explicitly handle hesitancy. 
 

Combination 
Rules 

 In regular fuzzy graph theory, combination 
operations like the Cartesian product or direct 
product involve straightforward combinations of 
membership values (often using basic 
arithmetic operations such as min, max, or 
product). These operations are designed for 
graphs where there's a known membership 
value for each edge and vertex. 
 

These introduce more complex 
combination rules to handle the 
additional uncertainty introduced 
by hesitancy. 

 

Behavior Under 
Randomness 

 In traditional fuzzy random graphs, randomness 
typically affects the presence or membership 
value of edges or vertices based on a 
probability distribution. Operations in these 
graphs deal with combining randomness and 
fuzziness, but hesitancy is not explicitly 
modeled 

Both the beta and gamma 
products are designed to handle 
the triple combination of 
fuzziness, randomness, and 
hesitancy. This means they do 
not only deal with probabilistic 
uncertainty but also with 
hesitation about the membership 
values. 
 

Computational 
Complexity 

Basic operations like union, intersection, 
or complement in fuzzy graphs are 
generally computationally simpler 
because they involve straightforward 
arithmetic or logical combinations (min, 
max, complement, etc.) between the 
membership values. 

  

The computational complexity of 
the beta and gamma products 
can be higher due to the more 
sophisticated nature of the 
operations. 

Flexibility vs. 
Conservatism 

Fuzzy graph operations like union and 
intersection are usually fixed in how they 
combine membership values, typically focusing 
on combining certainty in a deterministic or 
probabilistic way. 

  

Offer a balance between flexibility 
and conservatism in the way they 
manage the hesitancy. 
 

 
 
Applications 
 
Modeling uncertain relationships or affiliations in social networks where connections are not clearly 
defined. Understanding uncertain interactions or dependencies in biological systems where data is 
inherently noisy or incomplete. Assessing reliability or vulnerability of infrastructure networks such that 
power grids, transportation networks under uncertain conditions. These applications highlight how beta 
and gamma products, along with concepts like hesitancy in fuzzy random graphs, can be utilized across 
various fields to model and analyze uncertainty and probabilistic relationships with complex systems. Beta 
and gamma products are more suited for problems where there is uncertainty not just in the structure 
(randomness) but also in the values themselves (hesitancy). They are useful in areas such as risk analysis, 
decision-making under uncertainty, and modeling scenarios where there is significant hesitation in 
assigning values to graph elements. 
Conclusion 
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This study proposes the innovative concept of a Hesitancy fuzzy random graph. The strong Hesitancy 
fuzzy random graph and its complement are also discussed, with examples and theorems. Furthermore, 
examples with related theorems are given to discover the beta and gamma products of two Hesitancy 
fuzzy random graphs. 
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