
1. Introduction

The theory of 2-norm and n-norm on a linear space has been introduced by
Gähler in [9, 10] and subsequently studied by several authors [11, 14, 19, 20]. A
detailed theory of fuzzy norm on a linear space can be viewed in [4, 5, 6, 7, 8, 13,
15, 23]. Recently we have introduced the notion of fuzzy n-normed linear space
[22]. After the introduction of fuzzy subspace of a vector space by Katsaras
and Liu′s [12], many researchers [1, 2, 3, 16, 18, 21] engaged themselves in the
development of fuzzy subspace of a vector space. Recently, G.Lubczonok and
V.Murali introduced an interesting theory of flags and fuzzy subspaces of vector
spaces [17]. Zadeh in his pioneering work introduced the theory of interval-valued
fuzzy subset in [24].

In this paper we introduce the notions of interval-valued fuzzy subspace and
interval-valued fuzzy n-normed linear space. We also define some operations on
interval-valued fuzzy subspaces and in each case we obtain the corresponding
flags. Further we establish some properties of interval-valued fuzzy n-normed
linear space.

Interval valued Fuzzy n-normed linear space  

S. Vijayabalajia,*, S.Anita Shanthib And N.Thillaigovindanb 

a S.Vijayabalaji, Department of Science and Humanities, V.R.S College of Engineering and Technology, Arasur, Villupuram, 
Tamilnadu, India. 
bDepartment of Mathematics, Annamalai University, Annamalainagar-608002, Tamilnadu, India. 
*To whom correspondence should be addressed. E-mail: balaji−nandini@rediffmail.com 

Received 10 September 2007 

ABSTRACT 

The aim of this paper is to introduce the notion of interval-valued fuzzy subspace with its flags and interval-valued 
fuzzy n-normed linear space. We define the operations intersection, sum, directsum and tensor product of interval-
valued fuzzy subspaces and obtain their corresponding flags. Further we provide some results on interval-valued fuzzy 
n-normed linear space. 

AMS Subject Classification : 46S40, 03E72. 

| Interval valued fuzzy subspace | Operations | Flags  | Interval valued fuzzy n-normed linear space | 

A
rticle 

Journal of 
Fundamental 

Sciences

Available online at 
http://www.ibnusina.utm.my/jfs 

2. Preliminaries

In the following we provide the essential definitions and results necessary for
the development of our theory.
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Definition 2.1[24]. An interval number on [0, 1], say a, is a closed sub interval
of [0, 1] of the form a = [a−, a+], where 0 ≤ a− ≤ a+ ≤ 1. Let D[0, 1] denote
the family of all closed sub-intervals of [0, 1], that is,
D[0, 1] = {a = [a−, a+] : a− ≤ a+ and a−, a+ ∈ [0, 1]}

Definition 2.2[24]. Let ai = [a−
i , a+

i ]∈ D[0, 1] for all i ∈ Ω, Ω an index set.
Define
(a)infi{ai : i ∈ Ω} = [inf

i∈Ω
a−

i , inf
i∈Ω

a+
i ]

(b)supi{ai : i ∈ Ω} = [sup
i∈Ω

a−
i , sup

i∈Ω
a+

i ].

In particular, whenever a = [a−, a+], b = [b−, b+] in D[0, 1], we define
(i)a ≤ b if and only if a− ≤ b− and a+ ≤ b+

(ii)a = b if and only if a− = b− and a+ = b+

(iii)a < b if and only if a− < b− and a+ < b+.
(iv)mini{a, b} = [min{a−, b−},min{a+, b+}]
(v)maxi{a, b} = [max{a−, b−},max{a+, b+}].

Definition 2.3 [24]. Let X be a set. A mapping A : X → D[0, 1] is called an
interval-valued fuzzy subset(briefly, an i-v fuzzy subset) of X, where
A(x) = [A−(x), A+(x)], and A− and A+ are fuzzy subsets in X such that
A−(x) ≤ A+(x) for all x ∈ X.

Definition 2.4 [24]. Let A be an interval-valued fuzzy subset of X and [t1, t2] ∈
D[0, 1]. Then the set
U(A; [t1, t2]) = {x ∈ X : A(x) ≥ [t1, t2]} is called an upper level subset of A.
Note that
U(A; [t1, t2]) = U(A−; t1) ∩ U(A+; t2) where
U(A−; t1) = {x ∈ X : A−(x) ≥ t1} and
U(A+; t2) = {x ∈ X : A+(x) ≥ t2}.

Definition 2.5 [12]. Let V denote a vector space of dimension n over a field
F . A fuzzy subspace is a fuzzy subset µ of V such that
µ(αx + βy) ≥ µ(x)

∧
µ(y), x, y ∈ V , α, β ∈ F (field), where

∧
stands for inter-

section.

We recall some properties of fuzzy subspace [16]

Remark 2.6 [16]. (a)V α = µ−1([α, 1]) is a subspace of V for α ∈ [0, 1], known
as the α-cut of µ.
(b)V 0 = V
(c) µ takes at the most k + 1 values in [0, 1], say
1 > α1 > ... > αk > 0, k ≤ n (1)
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and
V ⊃ V αk ⊃ ... ⊃ V α1 ⊃ {0} (2)
We can view (2) as a flag or chain of subspaces with a weight attached to each
subspace.

Remark 2.7 [16]. A subset {x1, x2, ..., xm} of V is fuzzy linearly independent

if it is linearly independent and µ(
m

Σ
i=1

αixi) =
m∧

i=1

µ(xi) for all αi ∈ F , αi �= 0,

i = 1, , ..., m,
∧

stands for intersection.

Definition 2.8 [11]. Let n ∈N(natural numbers) and X be a real vector space
of dimension d ≥ n. A real valued function ||•, ..., •|| on X × ... × X︸ ︷︷ ︸

n

= Xn

satisfying the following four properties:
1. ||x1, x2, ..., xn|| = 0 if any only if x1, x2, ..., xn are linearly dependent
2. ||x1, x2, ..., xn|| is invariant under any permutation of x1, x2, ..., xn

3. ||x1, x2, ..., αxn|| = |α| ||x1, x2, ..., xn||, for any α ∈R( set of real numbers )
4. ||x1, x2, , xn−1, y + z|| ≤ ||x1, x2, ..., xn−1, y|| + ||x1, x2, ..., xn−1, z||,
is called an n-norm on X and the pair ( X, ||•, ..., •||) is called an n-normed

linear space.

Definition 2.9 [22]. Let X be a linear space over a real field F . A fuzzy subset
N of Xn × R is called a fuzzy n-norm on X if and only if:

(N1) For all t ∈R with t ≤ 0, N(x1, x2, ..., xn, t) = 0.
(N2) For all t ∈R with t > 0, N(x1, x2, ..., xn, t) = 1 if and only if

x1, x2, ..., xn are linearly dependent.
(N3) N(x1, x2, ..., xn, t) is invariant under any permutation of x1, x2, ..., xn.
(N4) For all t ∈R with t > 0,

N(x1, x2, ..., cxn, t) = N(x1, x2, ..., xn, t
|c| ), if c �= 0 ∈ F (field).

(N5) For all s, t ∈ R,
N(x1, x2, ..., xn + x

′
n, s + t) ≥

min
{

N(x1, x2, ..., xn, s),N(x1, x2, ..., x
′
n, t)

}
.

(N6) N(x1, x2, ..., xn, t) is a non-decreasing function of t ∈ R
and lim

t→∞N(x1, x2, ..., xn, t) = 1.

Then (X, N) is called a fuzzy n-normed linear space or in short f-n-NLS.

Remark 2.10.

(i)Let V be a vector space over a field F and let U1, U2, .., Un be the subspaces
of V . V is said to be direct sum of U1, U2, .., Un if every element v ∈ V can be
written in one and only one way v = u1+u2 + ...+un where ui ∈ Ui and denoted
as V = U1 ⊕ U2 ⊕ ... ⊕ Un.

289S. Vijayabalaji et al. / Journal of Fundamental Sciences 4 (2008) 287-297 



(ii)Let V and W be vector spaces over a field F . Then the tensor product of
two vectors is denoted by V ⊗Wand given t ∈ V ⊗W , t can be uniquely written
as , t =

∑
i,j

tijxi ⊗ yj where the sum is taken over all i, j for which tij �= 0.

3. Interval-valued fuzzy subspaces and their flags

By generalizing the Definition 2.5 we obtain a new notion of interval-valued
fuzzy subspace as follows:

Definition 3.1. Let V denote a vector space over a field F . Let A : X → D[0, 1]
be an interval-valued fuzzy subset of V . Then A is said to be an interval-valued
fuzzy subspace (or shortly i-v fuzzy subspace) if,
A(αx ∗ βy) ≥ mini{A(x), A(y)}, x, y ∈ V and α, β ∈ F (field).

Example 3.2. Let V = {e, x, y, z} be the Klien 4-group defined by the binary
operation ∗ as:

∗ e x y z
e e x y z
x x e z y
y y z e x
z z y x e

Let F be the field GF(2). Let 0.w = e, 1.w = w for all w ∈ V . Then V is a
vector space over F .

Define an i-v fuzzy subset A in V by
A(e) = [0.6, 0.9], A(x) = [0.3, 0.4] = A(y), A(z) = [0.5, 0.8].

Then A is an i-v fuzzy subspace of V .

Definition 3.3. Let (i) A be an interval-valued fuzzy subspace. Then
V α = {x ∈ V : A(x) ≥ [α−, α+]} is called an upper level subset of A.
(ii) Further V α = (A)−1[α, 1] is known as the α-cut of A.
(iii)A takes at the most k + 1 values in D[0, 1], say

1 > α1 > ... > αk > 0, where αi = [α−, α+] (3)
i = 1, 2, ..., k, 0 = [0, 0], 1 = [1, 1] and
V ⊃ V αk ⊃ ... ⊃ V α1 ⊃ 0 (4)

We can view (4) as a flag or chain of subspaces with a weight attached to each
subspace.
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Definition 3.4. A subset {x1, x2, ..., xm} of V is said to be interval-valued

fuzzy basis if it is linearly independent and A(
m

Σ
k=1

αkxk) = mini{A(xk)}, for all

αk ∈ F , αk �= 0, k = 1, ...,m.

We now present the intersection of two interval-valued fuzzy subspaces by the
operation ∩ and characterise its corresponding flag.

Definition 3.5. Let (V, A) and (V,B) be two i-v fuzzy subspaces. Define
(A ∩ B)(x) = mini{A(x), B(x)}, x ∈ V.

Theorem 3.6. Let (V, A) and (V, B) be two i-v fuzzy subspaces. Then A ∩ B
as in Definition 3.5. is again an i-v fuzzy subspace.

Proof. Let (V,A) and (V, B) be two i-v fuzzy subspaces.Define
(A ∩ B)(x) = mini{A(x), B(x)}, x ∈ V. Now,

(A ∩ B)(αx ∗ βy)
= mini{A(αx ∗ βy), B(αx ∗ βy)}
≥ mini{mini{A(x), A(y)},mini{B(x), B(y)}}
=mini{mini{A(x), B(x)},mini{A(y), B(y)}}
=mini{(A ∩ B)(x), (A ∩ B)(y)}.

So,
(A ∩ B)(αx ∗ βy) ≥ mini{(A ∩ B)(x), (A ∩ B)(y)}.

Thus A ∩ B is an i-v fuzzy subspace. �

Example 3.7. Let V = {e, x, y, z} be the Klien 4-group given in example 3.2.
Then V is a vector space over the field GF (2).
Define an i-v fuzzy subset A in V by
A(e) = [0.6, 0.9], A(x) = [0.3, 0.4] = A(y), A(z) = [0.5, 0.8]
Then A is an i-v fuzzy subspace of V by Example 3.2. Also define an i-v fuzzy
subset B on V by
B(e) = [0.5, 0.8], B(x) = [0.4, 0.7], B(y) = [0.2, 0.3] = B(z).
Then B is also an i-v fuzzy subspace of V.
Now, (A ∩ B)(e) = [0.5, 0.8], (A ∩ B)(x) = [0.3, 0.4], (A ∩ B)(y) = [0.2, 0.3],
(A ∩ B)(z) = [0.2, 0.3] .
Thus A∩B is an i-v fuzzy subset of V and further it is an i-v fuzzy subspace of
V.

Theorem 3.8. An interval number γ = min{αr, βs} is a weight for A ∩ B if
and only if
(i)αr−1 > γ ≥ αr and βs−1 > γ ≥ βs.

(ii)V αr ∩ W βs �= 0.
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Proof. Let (V,A) and (V, B) be two i-v fuzzy subspaces with (A ∩ B) as in
Definition 3.5.
Let V ⊃ V αk ⊃ ... ⊃ V α1 ⊃ 0
and V ⊃ W βl ⊃ ... ⊃ Wβ1 ⊃ 0 be their corresponding flags.
We need to construct a flag for A ∩ B.

Clearly the values of A ∩ B are αi
′s and βj

′
s.

Define Uγ = (A ∩ B)−1([γ, 1]) = V γ ∩ W γ .
Suppose Uγ �= 0. Then for some r and s
αr−1 > γ ≥ αr and βs−1 > γ ≥ βs.

Then V γ = V αr and W γ = W βs . So Uγ = V αr ∩ Wβs .
Therefore Uγ = V αr ∩ W βs , where γ = min{αr, βs}.
Since the argument can be reversed, we have the required result. �

Theorem 3.9. An interval number γ = min{αr, βs} is a weight for A + B if
and only if αr−1 > γ ≥ αr and βs−1 > γ ≥ βs. The subspace corresponding to
γ in the flag representation of A + B is V γ + W γ .

Proof. Define,
(A + B)(x) = sup

x=x1+x2

A(x1) ∩ B(x2).

Now, x ∈ (A + B)−1([γ, 1])
⇔ A(x1) + B(x2) ≥ γ
⇔ A(x1) ≥ γ and B(x2) ≥ γ
⇔ x1 ∈ V γ and x2 ∈ W γ

⇔ x1 + x2 ∈ V γ + W γ .
So, (A + B)−1([γ, 1]) = V γ + W γ = Uγ , where γ = min[αr, βs]. �

Theorem 3.10. An interval number γ = min{αr, βs} is a weight for A ⊕ B.
The subspace corresponding to γ in the flag representation of A⊕B is V γ ⊕W γ .

Proof. Let U = V ⊕W . Suppose (V, A) and (W,B) are i-v fuzzy subspaces with
their corresponding flags.
Define,
(A ⊕ B)(x, y) = A(x) ∩ B(y), x ∈ V, y ∈ W.
We have, (x, y) ∈ (A ⊕ B)−1([α, 1])

⇔ A(x) ∩ B(y) ≥ α
⇔ A(x) ≥ α and B(y) ≥ α
⇔ (x, y) ∈ V α ⊕ Wα. �

Theorem 3.11. An interval number γ = min{αr, βs} is a weight for A⊗B and
the subspace corresponding to γ in the flag representation of A⊗B is V γ ⊗W γ .
Proof. Let (V,A) and (W, B) be i-v fuzzy subspaces with their corresponding

270 S. Vijayabalaji et al. / Journal of Fundamental Sciences 4 (2008) 287-297 



flags. Consider the tensor product V ⊗ W .
Let {xi}, i = 1, 2, ..., n and {yj}, j = 1, 2, ...,m be i-v fuzzy bases of V and W
respectively. Given t ∈ V ⊗W , t can be uniquely expressed as , t =

∑
i,j

tijxi ⊗ yj

where the sum is taken over all i, j for which tij �= 0. Now we define
(A ⊗ B)(t) = ∨

i,j
{A(xi) ∩ B(yj) : tij �= 0}

Now,
t ∈ (A ⊗ B)−1([γ, 1])

⇔ A(x) ⊗ B(y) ≥ γ
⇔ A(xr)∩ B(ys) ≥ γ
⇔ A(xr) ≥ γ and B(ys) ≥ γ
⇔ xr ∈ V γ and ys ∈ W γ . �

4.Interval-valued fuzzy n-normed linear space

As a generalization of Definition 2.9 we have the following notion of interval-
valued fuzzy n-normed linear space.

Definition 4.1. Let X be a linear space over a real field F . An interval-valued
fuzzy subset N of Xn × R is called an interval-valued fuzzy n-norm if and only
if :

(N1) For all t ∈ R with t ≤ 0, N(x1, x2, ..., xn, t) = 0.
(N2) For all t ∈ R with t > 0, N(x1, x2, ..., xn, t) = 1 if and only if x1, x2, ..., xn

are linearly dependent.
(N3) N(x1, x2, ..., xn, t) is invariant under any permutation of x1, x2, ..., xn.
(N4) For all t ∈ R with t > 0,

N(x1, x2, ..., cxn, t) = N(x1, x2, ..., xn, t
|c|), if c �= 0 ∈ F (field).

(N5) For all s, t ∈ R,
N(x1, x2, ..., xn + x

′
n, s + t) ≥

mini{N(x1, x2, ..., xn, s), N(x1, x2, ..., x
′
n, t)}.

(N6) N(x1, x2, ..., xn, t) is a non-decreasing function of t ∈ R
and lim

t→∞N(x1, x2, ..., xn, t) = 1.

Then (X, N)is called an interval-valued fuzzy n-normed linear space or briefly
i-v f-n-NLS.

The following example agrees with our notion of i-v f-n-NLS.

Example 4.2. Let (X,||•, •, ..., •||) be an n-normed space. Define

N(x1, x2, ..., xn, t) =
{

0, when t ≤ ||x1, x2, ..., xn||
1, when ||x1, x2, ..., xn|| < t
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Then (X,N) is an i-v f-n-NLS.

Proof. (N1) For all t ∈ R with t ≤ 0 we have by our definition,
N(x1, x2, ..., xn, t) = 0.
(N2) For all t ∈ R with t > 0, if x1, x2, ..., xn are linearly dependent.

⇒ ||x1, x2, ..., xn|| = 0 by definition 2.9.
⇒ N(x1, x2, ..., xn, t) = 1 by definition.

Also N(x1, x2, ..., xn, t) = 1.
⇒ ||x1, x2, ..., xn|| < t.
⇒ ||x1, x2, ..., xn|| = 0.
⇒x1, x2, ..., xn are linearly dependent.

Thus for all t > 0, N(x1, x2, ..., xn, t) = 1 if and only if x1, x2, ..., xn are linearly
dependent.
(N3) As ||x1, x2, ..., xn|| is invariant under any permutation, it follows that
N(x1, x2, ..., xn, t) is invariant under any permutation of x1, x2, ..., xn.
(N4) For all t ∈R with t > 0 and c ∈ F ,c �= 0

N(x1, x2, ..., cxn, t) = 0
⇔ t ≤ ||x1, x2, ..., cxn||
⇔ t

|c| ≤ ||x1, x2, ..., xn||.
⇔ N(x1, x2, ..., xn, t

|c|) = 0 and
N(x1, x2, ..., cxn, t) = 1

⇔ ||x1, x2, ..., cxn|| < t
⇔ |c| ||x1, x2, ..., xn|| < t
⇔ ||x1, x2, ..., xn|| < t

|c|
⇔ N(x1, x2, ..., xn, t

|c|) = 1.

Thus N(x1, x2, ..., cxn, t) = N(x1, x2, ..., xn, t
|c| )

(N5)For all s, t ∈ R,
N(x1, x2, ..., xn + x

′
n, s + t) = 0

⇔ s + t ≤ ||x1, x2, ..., xn + x
′
n|| ≤ ||x1, x2, ..., xn|| + ||x1, x2, ..., x

′
n||.

If ||x1, x2, ..., xn|| < s then ||x1, x2, ..., x
′
n|| �< t.

That is, if N(x1, x2, ..., xn, s) = 1 then N(x1, x2, ..., x
′
n, t) = 0.

Thus N(x1, x2, ..., xn + x
′
n, s + t) = 0

⇒mini{N(x1, x2, ..., xn, s),N(x1, x2, ..., x
′
n, t)} = 0

Similarly, N(x1, x2, ..., xn + x
′
n, s + t) = 1

⇒ N(x1, x2, ..., xn + x
′
n, s + t) ≥

mini{N(x1, x2, ..., xn, s),N(x1, x2, ..., x
′
n, t)}.

Thus,
N(x1, x2, ..., xn + xn′ , s + t) ≥

mini{N(x1, x2, ..., xn, s),N(x1, x2, ..., x
′
n, t)}.
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(N6)From the definition it is clear that N(x1, x2, ..., xn, t) is a non-decreasing
function of t ∈ R and lim

t→∞ N(x1, x2, ..., xn, t) = 1.

Thus (X, N)is an i-v f-n-NLS. �

Theorem 4.3. Let (X, N1) and (X,N2) be two i-v fuzzy n-normed linear spaces.
Define
(N1 ∩ N2)(x1, x2, ..., xn, t) = mini{N1(x1, x2, ..., xn, t), N2(x1, x2, ..., xn, t)}
for all (x1, x2, ..., xn, t) ∈ Xn × R. Then N1 ∩ N2 is an i-v f-n-NLS.

Proof. (N1) For all t ∈ R with t ≤ 0 we have
N1(x1, x2, ..., xn, t) = 0 and N2(x1, x2, ..., xn, t) = 0

So, (N1 ∩ N2)(x1, x2, ..., xn, t) = 0
(N2) For all t ∈ R with t > 0 we have

(N1 ∩ N2)(x1, x2, ..., xn, t) = 1
⇔ mini{(N1(x1, x2, ..., xn, t), N2(x1, x2, ..., xn, t)} = 1
⇔ N1(x1, x2, ..., xn, t) = N2(x1, x2, ..., xn, t) = 1.
⇔ x1, x2, ..., xn are linearly dependent.

(N3) As N1(x1, x2, ..., xn, t) and N2(x1, x2, ..., xn, t) are invariant under any per-
mutation, we have (N1∩N2)(x1, x2, ..., xn, t) is invariant under any permutation
of x1, x2, ..., xn

(N4) For all t ∈ R with t > 0 and c ∈ F ,c �= 0
(N1 ∩ N2)(x1, x2, ..., cxn, t)

= mini{N1(x1, x2, ..., cxn, t), N2(x1, x2, ..., cxn, t)}
= mini{N1(x1, x2, ..., xn, t

|c| ), N2(x1, x2, ..., xn, t
|c| )}

= (N1 ∩ N2)(x1, x2, ..., xn, t
|c| )

(N5) For all s, t ∈ R,
(N1 ∩ N2)(x1, x2, ..., xn + x

′
n, s + t)

= mini{N1(x1, x2, ..., xn + x
′
n, s + t), N2(x1, x2, ..., xn + x

′
n, s + t)}

≥ mini{mini{N1(x1, x2, ..., xn, s), N1(x1, x2, ..., x
′
n, t)},

mini{N2(x1, x2, ..., xn, s), N2(x1, x2, ..., x
′
n, t)}}

= mini{mini{N1(x1, x2, ..., xn, s), N2(x1, x2, ..., xn, s)},
mini{N1(x1, x2, ..., x

′
n, t), N2(x1, x2, ..., x

′
n, t)}}

= mini{(N1 ∩ N2)(x1, x2, ..., xn, s), (N1 ∩ N2)(x1, x2, ..., x
′
n, t)}

Thus,
(N1 ∩ N2)(x1, x2, ..., xn + x

′
n, s + t)

≥ mini{(N1 ∩ N2)(x1, x2, ..., xn, s), (N1 ∩ N2)(x1, x2, ..., x
′
n, t)}

(N6) As N1(x1, x2, ..., xn, t) and N2(x1, x2, ..., xn, t) are non-decreasing functions
of t ∈ R it follows that (N1 ∩ N2)(x1, x2, ..., xn, t) is a non-decreasing function
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of t ∈ R and lim
t→∞(N1 ∩ N2)(x1, x2, ..., xn, t) = 1.

Thus (X, N1 ∩ N2) is an i-v f-n-NLS. �

Remark 4.4. Let (X,N1) and (X, N2) be two i-v fuzzy n-normed linear spaces.
Define
(N1 ∪ N2)(x1, x2, ..., xn, t) = maxi{N1(x1, x2, ..., xn, t), N2(x1, x2, ..., xn, t)}
for all (x1, x2, ..., xn, t) ∈ Xn × R. Then N1 ∪ N2 is not an i-v f-n-NLS.

REFERENCES

[1]  K.S.Abdukhalikov, M.S.Tulenbaev and U.U.Umirbaev,On fuzzy bases of vector spaces,Fuzzy sets  
      and systems,63(1994),201-206.
[2]  K.S.Abdukhalikov,The dual of a fuzzy subspace,Fuzzy sets and systems,82(1996),375-381.
[3]  K.S.Abdukhalikov,Fuzzy linear maps,Journal of Math. Analysis and Appl.,220(1998),1-12.
[4] T.Bag and S.K.Samanta,Finite dimensional fuzzy normed linear spaces, The Journal of  
       Fuzzy Mathematics,11(2003),No.3,687-705.
[5] S.C.Chang and J.N.Mordesen, Fuzzy linear operators and fuzzy normed linear spaces,  
       Bull.Cal.Math.Soc.,86(1994),429-436.
[6]  C.Felbin,Finite dimensional fuzzy normed linear spaces, Fuzzy Sets and Systems, 48 (1992),  
       239-248.
[7]  C.Felbin, The Completion of fuzzy normed linear space, Journal of Mathematical Analysis  
       and Applications,174(1993),No.2,428-440.
[8] C.Felbin, Finite dimensional fuzzy normed linear spaces II, Journal of Analysis, 7 (1999),

117-131.
[9] S.Gähler, Lineare 2-Normierte Räume, Math.Nachr.,28 (1965),1-43.
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