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Abstract This study leveraged the power of multi-phase CT radiomics, which extracts detailed 
features from multi-phase images, to explore the distinction between early (T1-T2) and advanced 
(T3-T4) colon cancer stages in each of multiple phases, providing valuable insights to healthcare 
professionals and enhancing their decision-making capabilities. A total of 191 patients with 
surgically confirmed primary colon cancer were retrospectively included, and multi-phase CT 
scans (non-enhanced contrast phase, arterial phase, portal venous phase, and delayed phase) 
were conducted within one week before surgery. Three-dimensional segmentation of colonic 
tumors was performed on the images of the four phases, and radiomics features of each colonic 
tumor were automatically extracted. Minimum redundancy maximum relevance (mRMR) was 
applied to features selection in each of the four phases. The least absolute shrinkage and 
selection operator logistic regression was conducted to determine the association between 
radiomics features and early (T1-T2) and advanced (T3-T4) stages of colon cancer. Additionally, 
diagnostic performance comparison was carried out in four phases. The mean (±SD) age of the 
191 individuals was 61.87±13.137 years, with females comprising 43.5% of the cohort. The 
selected features for the non-enhanced, arterial, portal venous, and delayed phases numbered 7, 
11, 6, and 10, respectively. In the test set, the AUC values for the on-enhanced, arterial, portal 
venous, and delayed phases were 0.86 (0.76-0.96), 0.84 (0.73-0.94), 0.82 (0.71-0.93), and 0.86 
(0.75-0.97), with corresponding accuracies of 0.84, 0.80, 0.75, and 0.88, sensitivities of 0.73, 0.64, 
0.86, and 0.68, and specificities of 0.91, 0.91, 0.68, and 1.00, respectively. DeLong's test revealed 
no statistically significant differences in the AUC values between the four phases within the test 
sets (P = 0.3233~ 0.9912). Multi-phase CT radiomics demonstrated substantial value in 
differentiating between early (T1-T2) and advanced (T3-T4) stages of patients with colon cancer. 
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Introduction 
 
Colorectal cancer stands as the predominant malignant tumor affecting the digestive system globally, 
ranking third in incidence and second in mortality rates (1). Colon cancer comprises approximately 60%-
70% of all colorectal cancer cases. In China, colon cancer accounts for about 50% of colorectal cancer 
cases (2). A discernible shift toward the affliction of a younger demographic by colon cancer has 
significantly impacted public health, exerting substantial economic burdens. Consequently, the 
imperative of both treating and preventing colon cancer cannot be overstated. Despite significant 
advancements in treatment, the early symptoms of the disease often evade detection, leading to delayed 
diagnoses that profoundly affect patient prognoses. Early detection of colon cancer and precise clinical 
staging are closely linked to the prognosis of the disease. Hence, meticulous preoperative clinical 
analysis plays an indispensable role in determining the most suitable treatment modalities for colon 
cancer (3). Tumors infiltrating different layers of the intestinal wall exhibit varied responses to surgical 
interventions at different stages. For tumors confined to the submucosa or muscularis propria without 
penetrating beyond the latter (T1-T2 stages), surgical excision is commonly employed. Conversely, for 
cases of colon cancer that have progressed beyond the muscularis propria (T3-T4 stages), personalized 
chemotherapy is recommended based on individual patient conditions to curtail recurrence rates and 
augment patient survival. Therefore, precise preoperative T staging is pivotal in dictating the appropriate 
treatment strategy for colon cancer. 
 
Various methodologies, such as fibro-colonoscopy, MRI, and CT examinations, are commonly employed 
for preoperative T staging of colon cancer. However, colonoscopy with biopsy, a conventional method, 
presents inherent complexities and associated risks (4), while providing limited insights into the 
comprehensive physiological status of the tumor (5). MRI, characterized by high-resolution multi-angle 
imaging, particularly excels in delineating tumor infiltration within the intestines. However, certain patients 
may not be suitable candidates for MRI due to specific contraindications. In contrast, CT imaging enjoys 
widespread recognition for its rapid imaging capabilities, capacity to surmount artifacts, and 
comprehensive assessment of overall bodily conditions and distant metastases. The Union for 
International Cancer Control (UICC) endorses CT imaging as a routine screening modality for colon 
cancer among high-risk populations, for preoperative evaluations, and as part of follow-up protocols 
during adjuvant chemotherapy (6, 7).  
 
However, the information gleaned from conventional CT scans is often constrained, relying on empirical 
approaches for analysis and diagnosis. In contrast to traditional imaging assessment methods, radiomics 
represents an emerging non-invasive multidisciplinary technology rooted in conventional imaging data. 
It involves extracting high-throughput quantitative features and transforming medical images into high-
dimensional and exploitable data. In their study, Hong et al. (8) proposed the integration of radiomic 
features with CT imaging to predict T-staging in colon cancer patients, achieving a predictive 
performance of 0.727 for T3-T4 stages. This integration significantly enhanced the detection rate among 
high-risk colon cancer patients. Similarly, Caruso et al. (9) established a radiomic model for identifying 
high-risk colon cancer (T4) in non-metastatic colon cancer patients. Their model effectively stratified 
high-risk colon cancer cases, yielding an area under the curve (AUC) of 0.75 in an external cohort study. 
Additionally, researchers such as Ma et al. (10) employed radiomic features extracted from T2-weighted 
MRI images to predict rectal cancer T-staging (T1-T2 and T3-T3), achieving an accuracy of 0.762 in their 
predictive models.  
 
However, the studies on CT-based T-staging prediction predominantly relied on single-phase imaging, 
specifically the portal venous phase (8, 9), for radiomic investigations of colon or rectal cancer. Despite 
their contribution, these studies exhibited relatively modest accuracy levels. There remains a scarcity of 
research exploring the potential of multi-phase CT (including non-enhanced, arterial, portal venous, and 
delayed phases) radiomics in distinguishing between T1-T2 and T3-T4 staging in colon cancer patients. 
Moreover, given the anatomical differences between colon and rectal cancer—particularly the fact that 
colon cancer has a serosal layer while rectal cancer does not—multi-phase CT radiomics could 
potentially offer more precise preoperative guidance for individuals with colon cancer. 
 
Recognizing this research gap, we developed the least absolute shrinkage and selection operator 
(LASSO) regression model utilizing multi-phase CT scans of colon cancer patients. Our study aimed to 
compare staging performance across distinct phases and to evaluate the model's efficacy in staging. 
Our study endeavored to provide valuable insights to healthcare professionals, enhancing their ability to 
make well-informed decisions based on the staging performance of the model derived from various 
phases of CT imaging. 
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Materials and Methods 
 

Patient Information 
This retrospective study received approval from the institution's Ethics Review Committee (Zhujiang 
Hospital of Southern Medical University, ethics number: 2023-KY-226-01) and obtained an exemption 
from the requirement for patient informed consent. The cohort comprised 191 postoperative patients 
diagnosed with colon cancer at Zhujiang Hospital of Southern Medical University between January 2020 
and August 2023, all pathologically confirmed. 
 
The inclusion criteria encompassed: (1) cases pathologically confirmed as colon cancer post-surgery, 
(2) absence of contraindications for Multiple-slice CT (MSCT) examination (e.g., iodine allergy, hepatic 
or renal function impairment, congestive heart failure), (3) complete MSCT examination conducted within 
one week preceding surgery, covering non-enhanced, arterial, portal venous, and delayed phases, (4) 
absence of prior specific cancer treatments like radiotherapy or chemotherapy before surgery, and (5) 
availability of retrievable clinical data from the medical records system, including pathological details, 
gender, and age, with patients aged 18 years or older. Exclusion criteria comprised: (1) cases 
pathologically confirmed as rectal cancer post-surgery, (2) incomplete imaging from the four-phase 
MSCT examination before surgery, (3) concurrent malignancies in patients, and (4) insufficient clinical 
data or patient refusal to participate in the study. 
 
CT Protocols 
All patients underwent comprehensive preoperative MSCT examinations encompassing four-phase 
scans, including non-enhanced, arterial, portal venous, and delayed phase. Imaging data were 
meticulously collected utilizing state-of-the-art scanning devices, namely the Philips Brilliance series (64, 
128) and Philips Brilliance iCT (256). Standardized scan parameters were employed, maintaining a tube 
voltage of 120 kV, utilizing automatic tube current modulation technology (DoseRight). The pitch was set 
at 0.925. For non-enhanced, arterial phase, and delayed phase reconstructions, the slice thickness and 
interval were set at 5 mm. For the portal venous phase, a slice thickness and interval were set at 1 mm. 
The scanning range spanned from the diaphragmatic dome to the lower margin of the pubic symphysis. 
Patients were positioned in a supine posture during the scan procedure, which commenced with a non-
enhanced scan. Subsequently, a non-ionic contrast agent (iopromide, 370 mg I/mL) was administered 
through the median cubital vein using a power injector at a flow rate of 2.5 ml/second. Sequential scans 
were then performed at intervals of 30 seconds, 60 seconds, and 90 seconds post-injection to capture 
the arterial, portal venous, and delayed phases, respectively. 
 
CT Image Analysis 
Segmentation of all instances of colon cancer was conducted with utmost precision by an expert 
abdominal radiologist (Zhujiang Hospital of Southern Medical University, China). These proficient 
professionals executed meticulous volumetric segmentations of colon cancer from the preoperative CT 
scans, capturing the non-enhanced phase, arterial phase, portal venous phase, and delayed phase. The 
segmentation process utilized the open-source MITK software (version 2023.04, available at 
https://www.mitk.org/wiki/). To ensure an objective and unbiased analysis, the readers were kept blinded 
to all clinical and histological data, although essential information regarding the tumor's location was 
provided solely to facilitate accurate segmentation and qualitative assessment. The volumetric region of 
interest (ROI) underwent a thorough manual delineation, slice-by-slice, meticulously encompassing the 
entire volume occupied by colon cancer. Simultaneously, deliberate exclusion of the surrounding 
pericolic fat and healthy large bowel wall was executed from the segmentation process (see Figure 1). 
Finally, one radiologist (Zhujiang Hospital of Southern Medical University, China) reviewed and 
confirmed all ROIs to ensure the quality and consistency of tumor delineation. 

 

 
 
Figure 1. The figure illustrated the delineated ROIs of a 65-year-old female patient diagnosed with right 
colon cancer across four phases. The colon cancer lesions were depicted in the non-enhanced phase 
(a), arterial phase (b), portal venous phase (c), and delayed phase (d) CT axial images; Abbreviation: 
ROI, region of interest 
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Histopathology 
The histopathological diagnosis followed the guidelines outlined in the 8th edition of the American Joint 
Committee on Cancer staging standard (11). As per this classification, T1–T2 stages were designated 
as early stages, whereas T3–T4 stages were categorized as locally advanced stages. 
 
Feature Extraction 
Before feature computation, standardization of CT image pixel sizes was performed across the four 
phases through resampling, achieving a consistent size of 1 × 1 × 3 𝑚𝑚𝑚𝑚. Subsequently, leveraging 
PyRadiomics (version 3.0, Python 3.10, accessible at https://pyradiomics.readthedocs.io/en/latest/), a 
total of 4,872 quantitative imaging features were extracted from these standardized CT images. 
Specifically, each phase—non-enhanced, arterial, portal venous, and delayed—yielded 1,218 distinct 
features. 
 
The extracted features were categorized into three main groups: (1) First-order statistics: comprising 18 
descriptors, this category quantifies voxel intensity distribution within the CT images using fundamental 
statistical metrics. (2) Shape-based features: encompassing 14 3D features, this group characterizes 
the shape and size attributes of the segmented regions. (3) Texture features: derived from calculations 
involving the gray level co-occurrence matrix (GLCM, 22 features), gray level run length matrix (GLRLM, 
16 features), gray level size zone matrix (GLSZM, 16 features), and gray level dependence matrix 
(GLDM, 14 features), this group included 68 features that quantified heterogeneity variations within the 
region of interest. 
 
Moreover, based on the first-order statistics and texture features, an additional 430 features were derived 
using Laplacian of Gaussian (Log) transformation, while 688 features were obtained through wavelet 
transform. 
 
Feature Selection  
Before the feature selection process, normalization was conducted to achieve uniform scaling of radiomic 
features. Recognizing the computational burden imposed by high-dimensional features and the potential 
compromise in classification accuracy due to redundant features, steps were taken to mitigate these 
concerns. Z-score normalization was employed to standardize the radiomic features, ensuring their 
range fell within the range of 0-1. This normalization process was intended to enhance the identification 
of the most pertinent features crucial for effective T-staging (T1-T2 vs. T3-T4) classification tasks. 
 
After normalization, two distinct feature selection techniques were applied. First, the minimum 
redundancy maximum relevance (mRMR) method was employed to extract the top 20 features with the 
highest mRMR scores, identified as significant contributors. Subsequently, the LASSO logistic 
regression method underwent a 10-fold cross-validation process on the training dataset, consisting of 
135 cases. This step determined the tuning parameter λ (12) and identified the optimal number of 
features with a more substantial influence on T staging. 
 
Model Building 
A LASSO logistic regression model was constructed, enhancing its performance via penalty parameter 
tuning within a 10-fold cross-validation framework. A radiomic score (Rad-score) was computed for each 
patient, signifying the significance of individual features based on their respective LASSO coefficients. 
Further metrics, including receiver operating characteristic curves (ROC) curves, area under the ROC 
curve (AUC) values, accuracy, sensitivity, and specificity, were computed accordingly. Finally, a 
comparison of the AUC estimates derived from predictive models was conducted using the Delong non-
parametric method. 
 
Results and Discussion 
 
Study Population 
The study enrolled a cohort of 191 patients, with an average age of 61.87 ± 13.137 years. Females 
constituted 43.5% of the total cohort. When stratified by the T-staging system, 75 cases were categorized 
as T1-T2 staging, including 47 males and 28 females, with a mean age of 61.267 ± 11.02 years. 
Meanwhile, 116 cases fell into the T3-T4 staging category, comprising 61 males and 55 females, with a 
mean age of 62.26 ± 14.37 years. 
 
The training set comprised 135 cases, consisting of 53 early-stage (T1-T2) and 82 advanced-stage (T3-
T4) patients. Conversely, the test set encompassed 56 cases, with 22 early-stage and 34 advanced-
stage patients. Table 1 presents an overview of baseline clinical data and patient cohort. 
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Table 1. The basic information of patients 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Feature Extraction  
After employing the mRMR feature selection method, the top 20 features with the highest mRMR scores 
were selected from each phase. Subsequently, LASSO logistic regression with 10-fold cross-validation 
was performed. The resulting binomial deviances and coefficients, tuned with different factors (λ), were 
visualized in Figure 2 A1, B1, C1, and D1. Ultimately, a set of 34 non-zero coefficient features was 
chosen: 7 for the non-enhanced phase, 11 for the arterial phase, 6 for the portal venous phase, and 10 
for the delayed phase, as depicted in Figure 2 A3, B3, C3, and D3 (refer to Table 2). These features 
were associated with corresponding optimal λ values of 0.024, 0.015, 0.039, and 0.026, respectively, 
elucidated in Figure 2 A1, B1, C1, and D1. 
 

 
 
Figure 2. illustrates the key steps in the model selection process using ten-fold cross-validation to identify 
the optimal parameter (λ), denoted by the minimal criterion and the 1-standard error (SE) of the minimum 
criterion marked by vertical lines in A1, B1, C1, and D1. A2, B2, C2, and D2 depicted the Least Absolute 
Shrinkage and Selection Operator (LASSO) coefficient profiles showcasing the features with nonzero 
coefficients. The selected features' corresponding coefficients were presented in A3, B3, C3, D3. Lastly, 
A4, B4, C4, and D4 demonstrated the radiomics signature (Rad Score) 
 
 
These selected features encompassed shape and wavelet features in the non-enhanced phase, while 
the arterial, portal venous, and delayed phases exhibited LoG, wavelet, and shape features. Notably, 
the 'original_shape_LeastAxisLength' feature consistently exhibited the highest coefficient across the 
non-enhanced, arterial, portal venous, and delayed phases. Additionally, all phases incorporated wavelet 
features (Table 2, Figure 2 A3, B3, C3, D3). 

 Early 
Staging (75) 

Advanced staging 
(116) 

Age (average±SD) 61.267 
±11.02 

62.26±14.37 

Female 28 55 
Male 47 61 

T staging   
T1 26 / 
T2 49 / 
T3 / 79 
T4 / 37 

Training data 53 82 
Testing data 22 34 
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          Table 2. The non-zero coefficient features were chosen in each of the four phases 
 

Phase Feature coefficients 

Non-enhance phase original_shape_LeastAxisLength 0.894 

 wavelet-LHL_firstorder_Kurtosis 0.142 

 wavelet-HHH_glszm_LargeAreaLowGrayLevelEmphasis 0.062 

 wavelet-HLH_glszm_LargeAreaLowGrayLevelEmphasis -0.136 

 wavelet-HHH_glcm_MaximumProbability -0.298 

 wavelet-LLH_firstorder_Skewness -0.542 

 wavelet-HHH_firstorder_InterquartileRange -0.593 

Arterial phase log-sigma-5-0-mm-3D_glszm_GrayLevelNonUniformity 0.942 

 log-sigma-2-0-mm-3D_firstorder_90Percentile 0.657 

 log-sigma-1-0-mm-3D_glszm_GrayLevelNonUniformity 0.352 

 wavelet-HLH_glszm_ZoneVariance 0.160 

 wavelet-HLH_glszm_LargeAreaLowGrayLevelEmphasis 0.096 

 wavelet-LHL_glszm_LargeAreaEmphasis 0.058 

 wavelet-LLL_gldm_SmallDependenceLowGrayLevelEmphasis -0.046 

 wavelet-HHH_glcm_MaximumProbability -0.109 

 wavelet-LHH_firstorder_Median -0.382 

 original_shape_MajorAxisLength -0.523 

 wavelet-HHH_firstorder_InterquartileRange -0.557 

Portal venous phase original_shape_LeastAxisLength 0.712 

 wavelet-LLH_firstorder_Median 0.382 

 log-sigma-1-0-mm-3D_firstorder_Maximum 0.316 

 wavelet-HHL_glcm_Idn 0.029 

 log-sigma-2-0-mm-3D_firstorder_90Percentile 0.024 

 wavelet-LHH_gldm_DependenceNonUniformityNormalized -0.188 

Delayed phase original_shape_LeastAxisLength 0.887 

 log-sigma-1-0-mm-3D_glrlm_RunVariance 0.493 

 wavelet-LHH_gldm_SmallDependenceLowGrayLevelEmphasis 0.375 

 wavelet-LHL_glcm_MaximumProbability 0.269 

 wavelet-LHL_glszm_LargeAreaHighGrayLevelEmphasis 0.188 

 wavelet-HLH_glrlm_RunVariance 0.167 

 wavelet-LHL_firstorder_Kurtosis 0.101 

 wavelet-HHH_firstorder_InterquartileRange -0.044 

 wavelet-HHL_glszm_LargeAreaLowGrayLevelEmphasis -0.049 

  wavelet-HHH_glcm_MaximumProbability -0.507 
 
 
Model Performance 
In both the training and test sets across all four phases, the radiomics signature (Rad Score) for T3-T4 
stage patients surpassed that of T1-T2 stage patients (all P < 0.001). This signature was derived from 
the selected features and their corresponding coefficients, as depicted in Figure 2 A4, B4, C4, and D4. 
 
In the training set, the AUC values for the non-enhanced, arterial, portal venous, and delayed phases 
were 0.87 (95% CI 0.82-0.93), 0.86 (95% CI 0.80-0.92), 0.83 (95% CI 0.76-0.90), and 0.86 (95% CI 0.80-
0.92), respectively. Corresponding accuracy values were 0.77, 0.81, 0.76, and 0.78, sensitivities were 
0.91, 0.79, 0.74, and 0.87, and specificities were 0.68, 0.82, 0.78, and 0.72 (Table 3, Figure 3 A1, B1, 
C1, D1). The DeLong test indicated no statistically significant differences in the AUC values among the 
four phases in the training set (P = 0.3233-0.7213, Table 4). 
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Table 3. The evaluations of performance in each of the four phases 
 
Phase dataset AUC P value Accuracy Sensitivity Specificity 

Non-enhance phase 

Train 0.87(0.82-0.93) 
0.7896 

0.77 0.91 0.68 

Test 0.86(0.76-0.96) 0.84 0.73 0.91 

Arterial Phase 
Train 0.86(0.80-0.92) 

0.7221 
0.81 0.79 0.82 

Test 0.84(0.73-0.94) 0.80 0.64 0.91 

Portal venous phase 

Train 0.83(0.76-0.90) 
0.8739 

0.76 0.74 0.78 

Test 0.82(0.71-0.93) 0.75 0.86 0.68 

Delayed phase 
Train 0.86(0.80-0.92) 

1 
0.78 0.87 0.72 

Test 0.86(0.75-0.97) 0.88 0.68 1.00 

 
 
In the test set, the AUC values for the non-enhanced, arterial, portal venous, and delayed phases were 
0.86 (0.76-0.96), 0.84 (0.73-0.94), 0.82 (0.71-0.93), and 0.86 (0.75-0.97), respectively. The accuracy 
values were 0.84, 0.80, 0.75, and 0.88, sensitivities were 0.73, 0.64, 0.86, and 0.68, and specificities 
were 0.91, 0.91, 0.68, and 1.00 (Table 3, Figure 3 A2, B2, C2, D2). The DeLong test revealed no 
statistically significant differences in the AUC values among the four phases in the test set (P = 0.5413-
0.9912, Table 4). 
 

 
 
Figure 3. The ROC curves among each of the four phases are displayed for both the train and test sets. 
In the train set, the labels representing the non-enhanced, arterial, portal venous, and delayed phases 
were A1, B1, C1, and D1, respectively. In the test set, the labels corresponding to the non-enhanced, 
arterial, portal venous, and delayed phases were A2, B2, C2, and D2, respectively 
 
 
No statistically significant differences were observed in the AUC values between the training and test 
sets in each of the four phases (P = 0.7221-1). Overall, each phase demonstrated good predictive 
performance in both the training and test sets, with the highest AUC value reaching 0.86 and the highest 
precision reaching 0.88 in the test set. 
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Table 4. The P values across four phases in both train and test sets 
 

Abbreviations: N, non-enhanced phase; A, arterial phase; P, Portal venous phase; D, Delayed phase;  
ROC, receiver operating characteristic curves. 

 
 

Discussion 
Early and accurate diagnosis, along with precise clinical staging of colon cancer, significantly influences 
the prognosis and guides treatment strategies. In this study, leveraging multi-phase CT scans and 
employing radiomics methods, we aimed to distinguish between T1-T2 and T3-T4 stages across each 
phase. Our results indicated that radiomics showcased remarkable predictive performance using multi-
phase CT images in both the training and test datasets. 
 
Accurate preoperative staging not only helps avoid unnecessary overtreatment but also contributes to 
improved postoperative survival rates among colon cancer patients. CT imaging has conventionally been 
an integral component of colon cancer evaluations, primarily to rule out distant disease. While CT 
provides precise information regarding tumor size and potential invasion into surrounding organs and 
structures, its accuracy in differentiating between various T stages (T1-T4) is limited due to insufficient 
soft tissue contrast resolution. These limitations are supported by a meta-analysis (13), suggesting that 
CT's accuracy in colon cancer staging falls short of ideal standards. Consequently, there is a pressing 
need for alternative risk stratification methods using CT imaging. Radiomics has emerged as a prominent 
field within radiology in recent years. Several applications have demonstrated the potential of utilizing 
routinely acquired radiographic data to predict genetic phenotypes, prognosis, and potential responses 
to treatment (14-16). 
 
Multivariable logistic regression has become widely utilized in recent research studies, ranging from 
predicting muscle invasion status in bladder cancer (17)  to forecasting the enlargement of intracerebral 
hemorrhage (18) and preoperative classification of ovarian cysts (19). In this study, we developed and 
validated a multi-phase CT radiomics model to distinguish between T1-T2 and T3-T4 staging in colon 
cancer patients. By extracting features from non-enhanced, arterial, portal venous, and delayed phases, 
we covered the entire tumor and identified independent predictive factors for distinguishing between T1-
T2 and T3-T4 staging using LASSO logistic regression. Our investigation involved employing LASSO 
logistic regression to validate the T staging (T1-T2 versus T3-T4) performance across different phases. 
In the test set, AUC values ranged from 0.82 to 0.86 for the four phases, with the non-enhanced and 
delayed phases exhibiting the highest performance at 0.86. The accuracy across the four phases varied 
from 0.75 to 0.88, with the delayed phase achieving the highest accuracy at 0.88 (see Table 3). DeLong's 
test results revealed no significant differences in the AUC values between the four phases in the test set 
(P = 0.5413-0.9912). Similarly, there were no significant differences observed in the AUC values between 
the four phases in both the training and test sets (P = 0.7221-1). Additionally, we conducted a 
comparative analysis of staging performance (T1-T2 vs T3-T4) utilizing portal vein images in conjunction 
with the expertise of radiologists (XX). Our findings revealed that within the test set, the radiomic AUC 
values for staging surpassed those derived from the radiologists' expertise (AUC = 0.72, 95% CI (0.61-
0.72)). 
 
Overall, all phases demonstrated good predictive performance in both the test and training sets, with the 
highest AUC value reaching 0.86 and the highest accuracy at 0.88. Hong et al. (8) conducted a logistic 
regression analysis of portal venous CT images in primary surgically resected colon cancer patients to 
ascertain the relationship between radiomic features and high-risk (T3-T4) colon tumors. They 
established a combined model of radiomics and CT staging, achieving an AUC of 0.799 (95% CI: 0.720-
0.839). In our study, the AUC for the portal venous phase in the training set was 0.83 (95% CI: 0.76- 
0.90), and the sensitivity and specificity were 0.74 and 0.78, respectively. For the portal venous phase 

Train N ROC A ROC P ROC 

A ROC 0.7213 / / 

P ROC 0.3233 0.5302 / 

D ROC 0.7151 0.9919 0.5389 

Test    

A ROC 0.7629 / / 

P ROC 0.5988 0.8242 / 

D ROC 0.9912 0.7284 0.5413 
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in the test set, the AUC was 0.82 (95% CI: 0.71-0.93), and the sensitivity and specificity were 0.76 and 
0.74, respectively. 
 
Given the limited research on CT radiomics in distinguishing colon cancer staging between T1-T2 and 
T3-T4 stages, we compared our findings with some MR radiomics-related research in rectal cancer 
patients between T1-T2 and T3-T4 stages. Our diagnostic performance exceeded theirs. For instance, 
Liu et al. (20) performed a texture feature analysis of ADC maps from MRI images of 68 rectal cancer 
patients, providing valuable information for identifying locally advanced rectal cancer, with an AUC of 
0.743. Additionally, Dou et al. (21) utilized LASSO regression to predict essential factors for high-risk 
rectal staging (T3-T4 staging) in rectal cancer patients, achieving an AUC of 0.85. Meanwhile, Ma et al. 
(10) used MRI radiomics extracted from T2-weighted images to predict pathological features of rectal 
cancer, employing the LASSO method for optimal feature selection. Their findings revealed 11 features 
associated with T (T1-T2 and T3-T3) staging, achieving a prediction accuracy of 0.762. 
 
In our study, we conducted feature extraction from both original images and images processed through 
various filters, such as wavelet and LoG filters. The major proportion of features utilized to construct the 
Rad Score predominantly originated from images filtered through the wavelet technique (outlined in 
Table 2). Wavelet filtering, known for its effectiveness in signal denoising, has gained substantial traction 
and application in recent research endeavors (22, 23). For instance, a prospective investigation that 
predicted radiomic features for grading rectal cancer tumors primarily relied on features derived from 
wavelet-filtered images (22). This aligns with Ma et al.'s findings (10), where weighted MRI images were 
employed to extract radiomic features for predicting pathological characteristics in rectal cancer. 
 
Moreover, in the prediction of pathological responses (23) and liver metastasis in rectal cancer patients 
(24), the predominant features were extracted from wavelet-filtered images. Furthermore, the inclusion 
of the "original_shape_LeastAxisLength" feature across non-enhanced, portal venous, and delayed 
phases, demonstrating the highest coefficient, emphasized the crucial role of the shortest axis shape 
feature in staging colon cancer. This finding aligns with results from some studies (25, 26) indicating the 
discriminative capability of tumor size in staging. 
 
Despite these significant findings, our study faces certain limitations. Firstly, our sample size is relatively 
restricted, and the absence of external validation limits the ability to confirm the model's performance. In 
future research, we intend to continue this study by incorporating data from other hospitals and 
establishing a multi-center study to validate our model further. Secondly, all images were obtained from 
CT scanners produced by a single manufacturer, which may limit the generalizability of the model and 
could affect the accuracy of staging predictions when using CT scanners from other manufacturers. To 
address this, we plan to include colon cancer data from CT scanners of different manufacturers in future 
studies to further refine our staging model. Thirdly, our study did not incorporate clinical laboratory 
indicators or integrate them with radiomic scores for combined predictive analysis. In future studies, we 
aim to collect data from patients with comprehensive clinical information to develop a combined model 
that integrates clinical and radiomic features, thereby enhancing the model’s predictive power. Finally, 
due to data confidentiality, we were unable to obtain data from previously published studies for validation 
purposes, which constitutes one of the limitations of this study. 
 
Conclusions 
 
In conclusion, our findings demonstrated that multi-phase CT radiomics exhibited high performance in 
distinguishing between early (T1 -T2) stage and advanced (T3 -T4) stage colon cancer, with the highest 
AUC reaching 0.86. These results held significant value for accurately staging patients with colon cancer 
and guiding neoadjuvant treatments. 
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