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Abstract Finding relevant features in ultra-high dimensional survival data is one of the most 
important and fundamental objectives in biology discovery and statistical acquisition. Conventional 
survival regression algorithms are challenged by the exponential increase in raw data. In real-world 
scenarios, data processing with ultra-high dimensionality has an impact, particularly on two-component 
structures like the kidneys, lungs, and eyes. Future system stability and the frequency of illness are 
both affected by gene interactions between two components. The traditional statistical procedures 
employed for the survival system are restricted to single component. To date, for ultra-high-dimensional 
survival data with two compartments, no feature selection method is available. Thus, with the goal to 
determine the optimal methods in this situation, this study suggested and contrasted the performance 
of ten variable selection approaches for ultra-high dimensional Renal Cell Carcinoma (RCC) survival 
data containing two compartments. The study attempted to combine Freund’s baseline hazard function 
as the baseline hazard of Cox model (Lasso Freund, Robust Lasso Freund, Elastic Net Freund) and 
integrated with sure independence screening (SIS) and iterative sure independence screening (ISIS) 
(i.e., LF-SIS, RLF-SIS, ENF-SIS, LF-ISIS, RLF-ISIS, ENF-ISIS) in an attempt to tackle this issue. 
Additionally, two basic approaches, LASSO and EN, were taken into consideration and EN is combined 
with SIS and ISIS (EN-SIS, EN-ISIS). Result shows that based on the validating model measures, 
including MSE (340.000), SSE (25300.0) and RMSE (16.490) suggest, the Robust Lasso Freund-
Iterative Sure Independence Screening (RLF-ISIS) and Robust Lasso Freund-Sure Independence 
Screening (RLF-SIS) strategy performs superior to the other suggested approaches in terms of greater 
precision in picking variables. Though both methods showed lower R2 (0.71) which advocates the 
presence of the outliers in the dataset. Additionally, the box-plot of some selected predictive genes 
confirms the presence of outliers. Furthermore, two methods, RLF-ISIS and RLF-SIS, have been used 
to identify 49 and 68 genes that have both direct and indirect effects on patients with RCC. Finally, it 
can be concluded that although RLF-SIS and RLF-ISIS outperform other proposed approaches, they 
may, however, be regarded as a variable selection strategy but they might not be the optimal choice for 
ultra-high dimensional survival data with outliers. Nevertheless, the study can be expanded in the 
future by applying competitive risk theory to a sequential and parallel structure, which serves as the 
basis for most complex mechanical systems found in manufacturing facilities. Notably, no feature 
selection method is available for ultra-high-dimensional survival data with outliers and two-
compartments. Therefore, to address this particular issue, further research should focus on developing 
an advanced hybrid feature selection approach, with a particular emphasis on deep learning strategies. 
Keywords: Ultra-high dimension, renal cell carcinoma, cox model, freund model, feature selection. 

 
Introduction 
 
As a result of high-throughput technology, more and more High-Dimensional or Ultra-High-Dimensional 
(UHD) data is being manufactured related to genomics [46, 25]. The ultimate purpose of such massive 
genomics data is to improve understanding of the biological, environmental, and behavioral factors that 
contribute to a disease. Individual differences in lifestyle, environment, and genes will be taken into 
consideration in treatment as well as prevention of diseases [11]. The precision medicine projects revolve 
around this central idea [28, 3]. High-throughput variables or predictors are frequently gathered for 
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survival outcomes in the modern age of precision medicine.  However, the key trends and extensive 
biological facts hidden within the data sometimes remain unresolved [32]. Hence, efficient computational 
techniques are necessary for mining such unusually huge data. 
 
Survival analysis in statistics uses survival time as a random variable to represent a qualitative shift from 
one condition to another, i.e., alive to dead [38]. Healthcare survival data often face three distinct problems: 
high dimensionality (the sample size (n) is generally much smaller than the number of predictors (p), for 
instance gene characteristics (i.e., p>>n) or ultra-high-dimensionality (p is incredibly huge, for example p 
> 105), data censoring (i.e., inadequately recorded time-to-event), and breaking the assumption of 
proportional hazard [25, 9]. However, as the amount of data increases, data contain a large amount of 
unnecessary, distorted, insignificant, and insufficient information [46]. Hence, as the number of model 
parameters increases, the lack of observation in relation to the number of variables leads to incorrect 
estimates [ 52]. Also, Excessive processing of precise projections results in low accuracy (due to 
multicollinearity). As noted by Hampel et al. [17], a genuine dataset might consist of one to ten percent 
outliers. Outliers are unexpected observations in a dataset that differ from the majority, and the model 
performs poorly in the presence of an outlier [22]. Thereafter, these ultra-high-dimensional data present a 
challenge to conventional survival regression techniques, which are either impossible to adapt or are likely 
to have poor conformity as a result of overfitting [57]. Although, survival data have been analyzed using 
conventional statistical techniques including Kaplan-Meier and then Cox proportional hazard (CPH) 
frameworks [40, 7, 21] but Cox model has been developed for small data sets, therefore, cannot handle 
ultra or high-dimensional data [7, 45]. Thus, the recent focus has been on creating original methods for 
choosing risk factors and survival prediction.  
 
In such situations, Machine Learning (ML) has provided scientist different way to investigate the 
complicated relationships of variables and hazard prediction [20]. A key idea in machine learning is feature 
(or risk factors) selection, which is crucial for reducing overfitting and enhancing model effectiveness [32]. 
It is not new to employ machine learning algorithms to select important risk factors and forecast the 
likelihood of cancer patients dying using clinical data [34, 35, 23, 30, 36, 56].  A number of regularization 
techniques are offered for high-dimensional variable picking, incorporating the Dantzig selector [6, 13], the 
LASSO [43], the Smoothly Clipped Absolute deviation (SCAD) [17], the adaptive LASSO [48], as well as 
the minimax concave penalty [52] and so on. Owing to major constraints such as when p > > n, it has 
trouble selecting more predictive variables than instances and it often chooses just one predictor from a 
bunch of associated predictors [74], LASSO is no longer practical for use in UHD analysis.  Yet, as ultra-
high dimensionality encompasses simultaneous issues of computational simplicity, statistical precision, 
and algorithmic rigidity, the penalized approaches such as SCAD, Adaptive LASSO could not work 
satisfactorily because of extremely significant number of predictors [16]. An enhanced variant of LASSO 
for managing large correlations is the Elastic Net (EN) approach, which was implemented out by Zou and 
Hastie [49]. However, EN requires model tuning, which can make it operationally costly to use on huge 
data sets. Additionally, since there is no set method for selecting tuning parameters ( 1λ   and 2λ ), it can 
be difficult to make a decision [8]. This led to restrictions on EN use in UHD.  
 
Apart from the techniques outlined earlier, scholarly works suggest other feature screening methodologies, 
focusing on reducing dimensionality by incorporating predictors strongly related to outcomes. The sure 
independence screening (SIS) approach was suggested by [18] which is based on an original sure 
screening notion. It ranks the significance of every candidate factor based on its marginal Pearson 
associations with the outcome. While features are ranked according to their marginal utility, SIS may have 
some problems related to independence learning. First, compared to other significant covariates, a few 
unimportant covariates that share a strong correlation with the essential ones may have greater marginal 
utility. Secondly, following the screening stage, certain significant factors which are jointly connected but 
slightly uncorrelated with the outcome may be overlooked [18]. With the objective to tackle these problems, 
[18] also presented the iterative SIS, an expansion of the SIS methodology. The basic concept is to use 
SIS to continually revise the calculated set of key variables conditioned on the projected set of factors 
given the preceding phase [8]. 

 
Beside the feature selection problem in UHD, in real-world scenarios, data processing with ultra-high 
dimensionality has an impact, particularly on two-component structures like the kidneys, lungs, and eyes. 
Future system stability and the frequency of illness are both affected by gene interactions between two 
components. In more detail, when a patient loses one kidney due to cancer, disease, or large stone, the 
remaining kidney shows a higher failure rate, affecting the remaining normal function. This phenomenon 
also occurs in the lungs and ears. The current statistical procedures employed for the survival systems 
are restricted to single component systems. Furthermore, high-dimensional problems presented 
significant obstacles for the older statistical approaches for variable selection, for instance stepwise 
regression, all subsets regression, and ridge regression, necessitated the use of very sophisticated 
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statistical approach [1, 50]. Thus, in the recent past, computational scientists and statisticians have made 
phenomenal efforts to design and construct completely novel techniques for modeling and variable 
selection with regard to the emerging issues. Nevertheless, no generally recognized model has been 
created for the efficient handling of ultra-high dimensional survival data that includes two-component 
systems. Thus, with the goal to determine the optimal methods in this situation, this study suggested and 
contrasted the performance of ten variable selection approaches for ultra-high dimensional renal cell 
carcinoma (RCC) survival data containing two-compartments. Freund's (1961) [21] model is a crucial 
and efficient model for life testing in biological systems with dual chemicals. Where and the well-known 
Cox’s proportional hazards model [7] is the frequently utilized framework for analyzing right-censored 
survival data. An exponential distribution with one parameter defines the baseline hazard function of Cox 
proportional hazard model. Unluckily, structures with two or more components cannot be handled by it. 
Therefore, Freund's baseline hazard function in parallel two-component or multi-component systems can 
be utilized to solve this problem. Thus, the study attempted to combine Freund’s baseline hazard function 
as the baseline hazard of Cox model (Lasso Freund, Robust Lasso Freund, Elastic Net Freund) and 
integrated with sure independence screening (SIS) and iterative sure independence screening (ISIS) 
(i.e., LF-SIS, RLF-SIS, ENF-SIS, LF-ISIS, RLF-ISIS, ENF-ISIS) in an attempt to tackle this issue. 
Additionally, two basic approaches, LASSO and EN, were taken into consideration and EN is combined 
with SIS and ISIS (EN-SIS, EN-ISIS). Therefore, a total of ten techniques were evaluated and tested for 
ultra-high dimensional renal cell carcinoma (RCC) survival data. The renal cell carcinoma (RCC), a 
critical health condition in the kidneys is made up of several different kinds of kidney tumors. Nearly 90% 
of all kidney malignancies are RCC [4]. To date, three forms of kidney cancers are available worldwide 
[42].  Kidney renal clear cell carcinoma otherwise known as clear cell RCC (KIRC or ccRCC), which 
ccounts for approximately 70–75% of all renal cancers.  
 
Related Works 
 
Numerous techniques described in the scientific literature can be used to pick features. An overview of 
the pertinent studies on these techniques is given in this section (Table 1). The first two applications of 
least squares with penalty were LASSO [43] and ridge regression [70]. First introduced by [49], the EN 
regression is an expanded variant of penalized regression that performs better in variable selection. 
However, there are certain drawbacks of LASSO, EN and Ridge regression, such as algorithms stability 
and computational simplicity [18, 69]. Consequently, using an embedded approach in conjunction with a 
filter as well wrapper is beneficial, particularly in cases whenever the number of characteristics greatly 
outweighs the extent of the data collection [69]. 
 
The research [61] Id a generic procedure called concordance index screening (CI-SIS) to handle 
categorical outcome in data with extremely high dimensions. Test findings indicate that the suggested 
approach may successfully discover genes linked to certain illness. After analyzing four genuine high-
dimensional datasets, the authors of the paper [62] offered Deep Feature Screening (DeepFS), which 
performed better than ISIS, Plasso, CAE, FsNet, LassoNet, TSFS, and other alternatives. Author [63] 
advocated Sparse support vector machines with L0 approximation, taking into account datasets on 
ovarian cancer.  After removing the superfluous qualities, a unique feature selection technique (DRPT) 
was proposed by [64]. This technique discovers correlations among the remaining features. Author [2] 
examined data on kidney cancer and suggested LASSO-Freund in a two-component concurrent 
configuration to extend the Cox PH-based iterative sure independence screening. Random bits forest 
recursive clustering elimination (RBF-RCE), SVM-RCE, and RF were compared by the author [66]. 
However, the study utilized High Dimensional data, not Ultra High Dimensional data. Authors [40, 67, 
68] have also suggested feature selection techniques for HD data. In order to differentiate among early-
phage and late-stage ccRCC, author [71] employed RNAseq expression data out of The Cancer Genome 
Atlas (TCGA) project in Kidney Renal Clear Cell Carcinoma (KIRC) patients. With the help of an apprised 
Korean Renal Cell Carcinoma (KORCC) record that included information on 10,068 individuals who had 
undergone an operation for customized renal cell carcinoma (RCC), the researchers [72] created an 
original forecasting model for survival and recurrence in patients with RCC after surgery. The feature 
selection process was executed using an elastic net after data pre-processing. Though author [71, 72] 
investigated renal cell carcinoma data but they did not consider ultra-high dimensional data. 
 
To the extent of our expertise, there are no hybrid feature selection methods for ultra-high dimensional 
RCC survival data that includes parallel two-component systems. Thus, more study in this field is 
required. 
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Table 1. Summary of the previous study 
 

SL 
No 

Author’s Data Source Number of 
compartments 

Methods Findings 

1 [43] Prostate cancer 
data 

1 Compared among Ridge 
regression, garotte and LASSO 

Suggest a novel strategy named 
LASSO to estimating linear models  
 

2 [49] Prostate cancer 
data 

1 Compared among OLS, Ridge 
Regression, LASSO, Naïve Elastic 
Net and EN 

Provide a novel approach to selection 
of variables as well as regularization 
called the elastic net.  
 

3 [61] Lung Dataset 1 LDA, RF, CI-SIS Create a generic concordance index 
screening (CI-SIS) process to manage 
categorical response in ultra-high 
dimensional data. The suggested 
approach can effectively identify genes 
linked to certain diseases, according to 
experimental findings. 
 

4. [62] Four large-scale 
datasets with low 
sample sizes and 
high dimensions 
(Colon, Leukemia, 
B-cell chronic 
lymphocytic 
leukemia and 
Prostate Cancer 
 

1 Deep Feature Screening (DeepFS) DeepFS outperformed ISIS, Plasso, 
CAE, FsNet, LassoNet, TSFS, and 
other options. 
 

5. [63] Obese, Ovarian 
cancer 

2 Advised Sparse support vector 
machines with L0 approximation 
 

Advised method outperformed. 

6. [64] Gene Expression 
Data 

1 Proposed a novel feature selection 
technique (DRPT) 

The author presents a novel feature 
selection technique (DRPT) that finds 
correlations amongst all remaining 
characteristics after eliminating the 
unnecessary ones. 
 

7. [65] 4 real HD datasets 
(Riboflavin, 
Eyedata, Boston 
Housing and 
Longley) 

1 This work presents a novel blended 
feature selection method that 
combines Elastic Net regularized 
regression (K-EN) with feature 
filtering using Kendall’s tau. 
 

Proposed method outperformed 

8. [39] Prostate cancer 
and Lung Cancer 

 
1 

Offer the LASSO along with SCAD 
R packages SIS and ISIS, which 
integrate in the CoxPH model. 
 

Offered method works well. 
 

9 [2] Kidney 
cancer 
 

2 LASSOFreund is used within a two-
component concurrent setup to 
expand the iterative sure 
independence screening utilizing 
Cox PH. 
 

Recommended method performed well. 
 

10 
 

[66] High-dimensional 
data (colon, 
prostate cancer, 
DLBCL, GLI) 

1 Compared random bits forest 
recursive clustering 
elimination (RBF-RCE), SVM-RCE, 
RF. 
 

RBF-RCE is best. 
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SL 
No 

Author’s Data Source Number of 
compartments 

Methods Findings 

11. [67] Prostate cancer 1  In light of the MCAR and MAR missing 
processes, the study suggested a 
screening process as per the ML of the 
linear correlation coefficient. 
 

12. [68] Results of an 
investigation on 
breast cancer 
concerning survival 
 

2 Proposed (Matched Case-Control 
Logistic Regression), PL-Cox 
 

Proposed method outperformed. 

13. [40] HD data of 
dementia 

 Both filter and wrapper 
Methods 

Random Forest Minimal Depth 
algorithm outperforms. 

14. [71] Clear cell renal cell 
carcinoma  
 

2 SVM, LR, NB, MLP, RF SVM outperformed. 

15. [72] The Korean Renal 
Cell Carcinoma 
(KORCC) 

2 EN Developed a novel predicting technique 
to forecast the survival and relapse of 
RCC patients following surgery. 

 
Materials and Methods 
 
To accomplish our aim, we carefully developed a study plan that we strictly followed, displayed in Figure 
1. Shortly, with the aim to develop a hybrid model for feature selection of UHD data, the study started 
with combining Freund’s baseline hazard function as the baseline hazard of Cox model. The UHD RCC 
data was then pre-processed and partitioned into 70:30 ratio where 70% was used as training and rest 
30% was considered to validate all techniques. A total of 10 ML feature selection approaches then run 
on the UHD data including two traditional feature selection methods: LASSO and EN and eight proposed 
feature selection approach. The proposed approaches were divided into two groups where in one, SIS 
was integrated with LF, EN, ENF and RLF: LF-SIS, EN-SIS, ENF-SIS, RLF-SIS and in another group, 
ISIS was combined with LF, EN, ENF and RLF produces LF-ISIS, EN-ISIS, ENF-ISIS, RLF-ISIS. The 
performance of all 10 feature selection methods was evaluated based on SSE, MSE, RMSE and R2 . To 
further investigate the cause of the low R2 , a boxplot analysis was used to examine any outliers in the 
dataset. Finally, the optimal feature selection technique was selected and employed to extract the 
significant features/genes associated with RCC. 
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Figure 1. Flowchart of the study’s overall methodology
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Cox proportional hazard 
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Model) 
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on Machine Learning Method 
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ENF-ISIS and RLF-ISIS 
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Performance 
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Data Description 
From R package ‘kidpack’, the gene expression data was collected.  It is a data frame with 4224 rows of 
Differentially Expressed Genes (DEG) for 74 people whom it believes may have kidney cancer. Since 
the dataset contains huge number of predictors (DEG), the dataset can be considered as the ultra-high 
dimensional data. A total of 74 kidney tumor samples with varying histological types, differentiation 
grades, stages, and chromosomal abnormalities and follow-up data were included in the study. Patients’ 
survival status, survival rates are also in the dataset. Samples were hybridized using a shared reference 
that was created by combining several kidney tumor samples. The overall information about the dataset 
can be found and the data can also be downloaded from this link: E-DKFZ-1 < ArrayExpress < BioStudies 
< EMBL-EBI. The outcome variable of this study is survival hazard, whether a patient death = 1 or alive 
= 0 during the study period and the predictors are 4224 genes. 
 
Data Processing 
The dataset was partitioned into two parts, 70% was used as training and rest 30% was considered to 
validate all techniques. 
 
Cox Proportional Hazard Model 
Cox’s proportional hazards model [7] is the frequently utilized framework for analyzing right-censored 
survival data. It uses an independent lifetime distribution with a predetermined hazard function. The 
hazard function, which represents the likelihood that an occurrence will happen at time t, is how the Cox 
model is stated can be written as: 
 

0 1 1 2 2( ) ( ) exp( ... )p ph t h t x x xβ β β= × + + +  or 

                                     0( ) ( ) exp( )Th t h t x β= ×                                                                         (1) 
 
Here, t serve as the time of survival, ( )h t represents the function of hazard and 1 2{ , ,..., }px x x
considered as p covariates values whereas coefficients are denoted as 1 2{ , ,..., }pβ β β  which calculate 

the impact of explanatory factors on the time to survival and  h0(t) is the unknown baseline hazard function 
[26, 40]. The unknown parameters are calculated from partial likelihood by maximizing it. 
 
Freund Model 
One of the most important and useful models for applications and life testing in biological systems with 
dual chemicals is Freund’s (1961) model [21]. The Freund thought that two identical components, for 
instance the eyes, ears, kidneys, lungs, etc., would be distributed together in a single system. Till a single 
of the two components—referred to as the parallel system—remains, the system will keep running. 
Freund’s main assumption is that the rates of danger for the two components are equal. However, if one 
component fails, the risk rating of the others will go up and stay at that level unless the whole thing is 
turned off altogether. Additionally, consider two distinct arbitrary variables (X, Y) that are distributed 
exponentially and represent the lifetimes of the two components (A, B). X* denotes the component (A)’s 
survival time in the event that component (B) is substituted with an element of the same type each time 
it fails, and Y*   denotes the component (B)’s duration of stay in the event that component (A) is replaced 
with an element of the same type each time it fails (Freund, 1961). Since Freund’s model is a double 
exponential model, the following is an expression for his pdf: 
 

                                                             
1 2 2 1 1 2

2 2 2 1 1 2

exp{ ( ) }, 0
( , )

exp{ ( ) }, 0
A B B y A B B x x y

f x y
B A A x A B A y y x

− − + − < <
=  − − + − < <

                          (2) 

 
For all values of x, y, A1, A2, B1, and B2 greater than 0, For the survival time of parts 1 and 2, equation 1 
uses x and y as arbitrary variables. An exponential distribution with parameters A1 and B1, respectively, 
is supposed to be followed by the random variables x and y. 
 
The baseline hazard function for Freund’s with both components is formatted as thereafter: 
 

                                                           
01

0
02

Fh
Fh

Fh


=


                                                                                (3) 

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-DKFZ-1
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-DKFZ-1
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Where 0Fh is represented Freund’s baseline hazard function. 
 

                          

1 2 3

1 2

1 4 1 2

2 2

1 (3 )
2

2 1 2 3

1 3 41 ( )
2

1 2 1 3

01
( ) ( )

1 2 1 3 1 2 1 4

1 2 1 4 3 1 2 1 3 4

1{ (3 )}
2

1 ( )( )
2

1 1( ) ( )
2 2
1 1( )( ) ( )( )
2 2

a a a t

a a t

a a t a a t

a t a t

a a a a e
a a a

a a a a e
Fh

a a a a e a a a a e

a a a a a e a a a a a e

− + −

− −

− − − −

− −

  
+ −  

  
  

+ − −    =
− + + −


− + − − − −



 

   
                                                where Freund’s baseline hazard function for kidney one is represented by the symbol  

01Fh [1,2] 
 

( )1 4
1 2 3 1 4 1 2 1 43

1 2
1 4

1

3 1 1( ) ( )[ ( )]
2 2 2

4 3 1 2 3

02 1 ( )( ) 2
1 2 1 3 3 4 1 4

1 2 3 4

1 2 1 4 3 3 4 1 3 4

3 1( )( )
2 2

1 1( )] ( )1 2 2( ) ( )
2 1 ( )( ) ( )( )

2

a a ta a a t a a a a e a a a

a a ta a t

a t

a a a a a e
Fh

a a a a e a a a a e
a a a a

a a a a a a a a a a e

− −− + − + + +

− +− −

−

− + −
=

 
+ + − 

+ − −  
 − + − − − −  

 

 
where, 02Fh  refers to Freund’s baseline hazard function for kidney tow [1, 2]. 
 
Cox Proportional Hazard Models by Freund Model (Hybrid Cox 
Regression) 
In equation 1, after combining Freund’s baseline hazard function as the baseline hazard of Cox model, 
we get the following 
 

                                           0( ) ( ) exp( )Th t Fh t x β= ×  
 

0 ( )Fh t  is the baseline hazard function of Freund in two-component systems. 
 
Feature Extraction Methods 
In real-world scenarios, data processing with ultra-high dimensionality has an impact, particularly on 
multi-component structures like the kidneys, lungs, and eyes. Nevertheless, no generally recognized 
model has been created for the efficient handling of ultra-high dimensional survival data that includes 
concurrent multi-component systems. With the goal to determine the optimal methods in this situation, 
this study suggested and contrasted the performance of ten variable picking techniques for ultra-high 
dimensional survival data with many compartments. The approaches can be divided into 2 distinct 
categories: conventional methods and proposed methods. Among conventional, LASSO and Elastic Net 
(EN) was used. The proposed methods are: Lasso Freund-Sure Independence Screening (LF-SIS), 
Robust Lasso Freund-Sure Independence Screening (RLF-SIS), Elastic Net Freund- Sure Independence 
Screening (ENF-SIS), Elastic Net- Sure Independence Screening (EN-SIS), LASSO Freund-Iterative 
Sure Independence Screening (LF-ISIS), Robust Lasso Freund- Iterative Sure Independence Screening 
(RLF-ISIS), Elastic Net-Iterative (EN-ISIS), and Elastic Net Freund-Iterative (ENF-ISIS). 
 
LASSO 
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The data were examined by the Least Absolute Shrinkage and Selection Operator (LASSO) with the goal 
to execute cross-validation analysis using the L1 norm penalty function in order to find key variables. [43, 
33]. In light of their favorable qualities for picking variables and regularization, shrinkage approaches are 
gaining appeal in biosystems during the massive data age. By boosting log-partial likelihood and 
adjusting the tuning value to manage punishment parameter, the LASSO approach calculates 
coefficients. Lasso’s overall expression is easily expressed in the following way: 
 
Assume that (1 , ) , 1,...,i ix y i N=  represents a sample of N  randomly distributed vectors that are 

Independent and Identically Distributed (IID). 1 p
ix R∈  where iy R∈  indicates the matching response 

vector and  1, 2( ,..., )i i i ipx x x x=  denotes the row vector of observations regarding the p-explanatory 

variables of the thi  unit of sample. Then the general form of LASSO estimator is as: 
 

                    2

1 1

1ˆ arg min ( )
p

pN

LASSO i i j
R i j

y x
Nβ

β β λ β
∈ = =

 
= − + 

 
∑ ∑  

 
 where λ  is represents the punishment parameter as well as the Lagrange multiplier. The matrix from 
of the above equation can be written like this: 

                                                                
2

2 1
1 1

1ˆ arg min
p

pN

LASSO
b R i j

Y X
N

β β λ β
∈ = =

 
= − + 

 
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Where Y points to the column vectors ( 1)n× of the output findings, X  represents the matrix ( )n p×  

containing the relevant variables found of interest, and 
1

. ,
2

.  denotes the L1, L2 vector norms 

respectively. 
 
Elastic Net  
Even while LASSO works well for a variety of variable selection issues, it becomes ineffective when there 
are significantly more covariates (p) than there are samples [8]. Where the number of predictor variables 
selected cannot exceed the sample size limit. Furthermore, there exist strong relationships among 
various sets of variables. An upgraded version of LASSO was originally suggested by [49] for handling 
strong correlations: the Elastic Net (EN) approach. To increase accuracy in forecasting, the EN employs 
compensation periods L1-LASSO and L2-right, automatically recognizes the variables, and carries out 
continual shrinking. This method functions similarly to a stretchy fishing net, preserving all the larger fish 
(important covariates) while eliminating unimportant factors. Here is how the Elastic Net Estimator is 
defined. 

                                2
1 2 1 2

1
( , , )

p

j j
j

J β λ λ λ β λ β
=

 = + ∑  

 
The equation involves the Lasso penalty (the first part of the above equation) for sparse variables, and 
the Ridge penalty (the second part of the above equation) for highly correlated features, promoting the 
average computation. Specifically, any linear model, particularly the regression or classification 
approaches, can be utilized with the elastic net penalty [40].  
 

                                                            2 2 2
2 1 2

1 1 1

1ˆ (1 )arg min ( )
p

p pN
elasticnet

i i j j
R i j j

y x
Nβ

β λ β λ β λ β
∈ = = =

 
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 
∑ ∑ ∑  

 
The elastic net’s parameters, λ1 and λ2, require an ideal ratio rather than a single parameter, often 
resulting in a parameter sum of both. The elastic-net penalty is used to minimize the regression loss 
function in order to get the elastic-net coefficient estimate. 

                                                                                                2

1
(1 )

p

j j
j

α β α β κ
=

 + − ≤ ∑  
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whereκ  denotes the extra α parameter, which is the total of 1λ   and 2λ  . 
 

Sure Independence Screening (SIS) 
For data with high dimension, SIS is a two-stage method for choosing significant covariates [39, 18, 37, 
55]. There are two stages to this technique, which are as follows: Phase one: The initial screening phase 
where the primary effects are analyzed in a rough way using marginal utilities. The second step is the 
selection stage, where a penalized regression with LASSO penalty is used for both estimating 
parameters and pick variables. The steps of SIS are as follows: 
 
1. Let’s begin by say the data collection{( , ), 1,..., }i ix y i n=  has a sample size of andn x R∈ .  

The covariate-specific marginal utility , 1, 2,...,iX i p=  can be computed as follows.  

                            
0

0,

1min ( )
j

m i m mL L y x
nβ β

β β= +∑  

where a generic loss function is represented by L (.,.). More obviously, compute the p  marginal 
utilities by fitting p bivariate models, such as the generalized linear model (GLM). 
 

2. The partial likelihood of every parameter is maximized as follows to determine the utility. 

                    
( )

max( log{ exp( )})
m

i

m im m i im m
i I i I j R y

U x x
β

δ β δ β
= = ∈

= −∑ ∑ ∑  

 where  ( )iR y is the risk set prior to the event iy . imx  is the thm  factor amongst the p component, 

and iδ  denotes censoring indicator. Sort the covariates in ascending order based on this marginal 

utility. Accordingly, based on the characteristic or variable’s marginal importance, the lowest U  is 
the crucial covariate. 
 

3. Sort the predictors in chronological order based on these marginal utility. Accordingly, the most 
influential predictors are the least jL  , which depends on the feature or variable’s marginal utility. 

 
4. Introduce the initial d  characteristics. log ,d n n=    is a common formula,  where .    

denotes the floor function. Thus, A% referred to as a subset of pre-approved factors. 
 

5. Estimating the model parameters of the regression with penalties represents the last stage in the 
SIS process, as the subsequent illustrates.  

* *
1 *0

0 0 ,
( , ) 1

1ˆ ˆ( , ) arg min ( , ) (
d

m

n

m ji M M
R i j M

L i x
nβ β

β β β β λ β
+∈ = ∈

= = + +∑ ∑  

where the sub-vector yielded i px R∈  through d p<<  pre-approved variables *M  is denoted by 

the notation *, di M
x R∈ . The LASSO penalty is denoted by ( )jλ β [18] explain the rationale 

behind the method’s name (SIS). The mentioned algorithm’s initial sorting step has a good chance 
of choosing all significant predictors when d is large enough. In the second step, choosing variables 
is achieved by the penalizing regression of LASSO, which also assesses the primary influences of 
the rest covariates. 
 

ISIS 
A significant flaw in the SIS approach is that factors will not be identified in the later round if they are 
ignored in the initial one. To put it another way, if a predictor is simultaneously uncorrelated yet has a 
larger peripheral association to the outcome over certain significant factors in the portion, or if a marker 
is marginally unconnected but jointly connected with the outcome [16, 39]. Iterative Sure Independence 
Screening (ISIS), which was introduced by [16], is an ongoing SIS technique designed to strengthen SIS 
and address the aforementioned issues. According to [18, 15, 3, 55-59], the processes of the ISIS 
technique have been summarized as below: 
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1. All of the statistically significant factors are recovered having a likelihood of one utilizing the SIS 
approach. Yet, the iterative sure independence screening (ISIS) strategy is employed when multiple 
important factors are only weakly uncorrelated by the answer [5, 3]. 
2. Regression parameter estimates 1iβ  are obtained by the iterative SIS using a penalty-based picking 

of features phase after an index list 1̂I  is chosen using the Sure independence screening approach. The 

estimate 1M̂  in 1̂I  is changed depending on the positive components of 1îβ . 
The covariate m conditional usefulness, provided the fact that M does not contain the covariate, is 
outlined below: 

                             
1, 1

1
`̀

1, 1

`̀ `̀

`̀
1 `̀ `̀

( ) ( )

(
max

log( exp( ))

i

m M
i

i i

T
i i m M Mn

n
m M T T

I i jm m M M
j R y j R y

x x
U

x xβ β

δ β β

δ β β=
∈ ∈

 +
 

=  − + 
 

∑ ∑ ∑
 

 
3. We employ the 2nd SIS step during this ISIS phase by using the subsequent formula to determine 
every factor’s marginal usefulness. 

 
4. To find the model’s coefficients, we minimize the aforementioned equation using penalized 

regression. The following is the result of applying a penalized regression technique: an average model 
that is extremely similar to the original model 
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Newer subset 2`̀M   of the chosen factors are produced by the values of 
1 2`̀ `̀M Iβ ∪  which are greater 

than zero. 
 
5. Lastly, we carry out phases three and four unless we get to the set or d’s stated set i.e.,  
 

                                              1( )`̀ `̀j jM M −=  
 

Robust Lasso Freund Model with SIS (RLF-SIS) 
According to [25], the robust Cox regression using Lasso regression is expressed as follows. 

 

                             0
1 1 1

( ( ) ( ) exp( )) ( )
p pn

T
i j j

t i i
y t h t x pρ β λ β

= = =

− +∑ ∑∑                                    (4) 

 

where ,( )j lpλ β  is the penalty function, k is the tuning constant, and ρ (.) denotes the Huber loss 

function [27] as defined by [19]. The breakdown point (BP) and efficiency features are used as indicators 
to assess how effective penalized robust approaches are. While there exists a high ratio of contamination 
among the data, the BP serves as an index of an estimator’s robustness. Since the least squares 
estimator’s BP is as low as 1/n, an OLS estimator may prove to be worthless based on even one outlier 
observation. 
 
Equation 4 is used to combine the Cox model, the SIS approach’s operation, and the baseline hazard 
function for Freund’s to create equation 5. 
 

                              0
1 1 1

( ( ) ( ) exp( )) ( )
p pn

T
i LASSO SIS

t i i
y t Fh t x pρ β λ β−

= = =

− +∑ ∑∑                    (5) 

, 0where ( ) is thepenalty function and baseline hazard function for Freund's.j lp Fhλ β  
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Robust Lasso Freund Model with ISIS (RLF-ISIS) 
Likewise, equation 6 is generated in the following manner whenever the Cox regression model, the 
Freund’s baseline hazard function, and the ISIS approach are integrated. 
 

                               0
1 1 1

( ( ) ( ) exp( )) ( )
p pn

T
i LASSO ISIS

t i i
y t Fh t x pρ β λ β−

= = =

− +∑ ∑∑                   (6) 

 
Efficiency features and the breakdown point (BP) are employed as metrics to assess the efficacy of 
robust penalized techniques. A measure of an estimator’s robustness in cases where the contamination 
ratio of the data is high is called the BP [54]. 
 
LASSO-SIS with Cox-Freund Model (LF-SIS) 
For the analysis of right-censored survivor data, the most popular paradigm is Cox’s proportional hazards 
model [7]. It uses an independent distribution of the lifespan with a predetermined hazard function. 
  

                                      0( ) ( ) exp( )Ty t h t x β=                                                (7) 
 
In Equation (7), the patient’s risk at each given time is represented by y(t), a fixed-length p vector, with 
the communal baseline hazard by ho(t). The PL function of Cox model is 
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β
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∈
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When PL is maximized to yield the standard Cox’s estimator β, where Ri is the failure indicator at that 
moment. Let ( )pλ β  be a penalty function that is non-differentiable at zero [2]. Take into account the 
discounted PL estimator. 
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 ( )
p

i j
pλ β λ β

=

= ∑ represents the lasso penalty that Tibshirani (1997) used to fit the Cox regression 

model. Consequently, formula 8 takes on the following form when the Cox PH function and Freund 
baseline hazard function are integrated with the SIS approach activated. 

              0 ,
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LASSO-ISIS with Cox-Freund Model (LF-ISIS) 
When the ISIS approach is activated along with the Freund baseline hazard function and Cox PH 
function, the formula (9) becomes: 
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Where, ( )
p

i j
pλ β λ β

=

= ∑ to fit a lasso penalized Cox regression model 
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The Elastic Net-SIS with Cox-Freund Model (ENF-SIS) 
Here is how the EN estimator is defined, 
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Again, the cox model’s partial likelihood function is [1,2] 
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A scaled log partial likelihood is maximized when the PL is maximized. 
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For simplicity, by scale with a factor of 2/n. Now, using Lagrange’s equation, the issue is as follows: 
 

      
             (10) 

 
Thus, the following is what would happen to equation (10) if Freund’s model with Cox-EN was taken 
into account: 
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The Elastic Net-ISIS with Cox-Freund Model (ENF-ISIS) 
The formula in the instance of the ISIS methodology 
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Performance Evaluation Criteria 
The anticipating model's accuracy has been evaluated using the coefficient of determination (R2), mean 
squared error (MSE), sum of squares error (SSE), and root mean squared error (RMSE). Regression 
tasks, which often use evaluation measures like MSE, SSE, RMSE, and R-squared, are therefore the 
focus of our research [65,47].  
 
Mean Squared Error (MSE) 
The statistical instrument employed in forecasting to assess the regression line's correctness called the 
mean squared error, or MSE. It measures the distances from points to the regression line, excluding 
negative signals, and gives more weight to larger differences. The calculative formula of MSE is as 
follows: 
 

2

1

1 ˆ( )
n

i i
i

MSE Y Y
n =

= −∑  

 

Where, Y  is the thi true value, Ŷ denotes the thi estimated value, and n  represents the overall count 
of dataset.  An MSE score which is nearer to zero indicates that the model is more in line with the data 
[47, 10]. 
 
Sum of Squares Error (SSE) 
The Sum of Squares for Error (SSE) measures variation residuals in regression models, with a lower 
SSE indicating better data description and more stable predictive capacity [10]. 
 

2

1

1 ( )
n

i
i

SSE X X
n =

= −∑  

 
In this case, iX  denotes thi  observation’s value, and n  is the overall count of dataset.   
 
Root Mean Squared Error (RMSE) 
An indicator called Root Mean Squared Error (RMSE) is utilized in both machine learning and 
statistics to determine how accurate an algorithm for prediction is. It examines the disparity between 
anticipated and true values; greater forecasting accuracy is demonstrated by lower values. 
Considerably significant divergence between the residual and the actual truth is apparent by a higher 
RMSE. Squaring the MSE results yields the computed value of RMSE. It deals with the aberrations 
from the real value and evaluates the overall extent of the errors. A zero value of the RMSE implies 
the model fits the data perfectly. The calculative formula can be written as follows [65]: 
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i i
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n =
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Coefficient of Determination (R2) 
A goodness-of-fit metric for models based on the percentage of explained variation is the coefficient 

of determination. 2R  is commonly understood to indicate the percentage of the dependent variable’s 
variation that can be accounted for by variations in the determinants. 
 

2
2
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ˆ( )
1 1

( )
y ySSRR

SST y y
−

= − = −
−

∑
∑

 

 
R2 has two possible values: 0 is the least and 1 is the largest. To put it in simple terms, a model’s R2 will 
approach 1, the more successful it is at predicting outcomes [47, 14]. 
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Software 
All the analysis was performed in R language version 4.3.2. 
 
Results and Discussion 
 
Performance Evaluation 
Since LASSO and EN are the two fundamental methods for feature selection, the study initially used 
them for RCC data and simultaneously assessed the effectiveness of each method. Table 2 shows the 
performance of LASSO and EN. When compared with LASSO, EN’s MSE, SSE, and RMSE values are 
significantly smaller (LASSO: MSE=726.33, SSE=53748.6, RMSE=26.950; EN: MSE=587.67, 
SSE=43487.5, RMSE = 24.241). This is evident from the fact that when the data dimension increases, 
LASSO performs poorly [49]. Furthermore, as genes are typically interrelated, the collection includes 
4224 differentially expressed genes. As a result, the dataset may exhibit multicollinearity. The previous 
study [25] showed that, the efficacy of LASSO is adversely affected by highly linked relationships among 
the real set of factors along with unimportant ones. EN is the solution of such situation [49]. To increase 
accuracy in forecasting, the EN applies penalized periods L1-Lasso and L2-right, recognizes the 
variables, and carries out continual shrinking. Consequently, EN outperformed LASSO in this instance. 
Interestingly, the EN and LASSO coefficients of determination are almost identical, at 0.53 and 0.54, 
respectively. In other words, the data set accounts for around 54% of the variation in the dependent 
variable. For a further 44% of the data, there are still unanswered questions [31, 14]. However, this 
coefficient of determination values suggests that none of these methods are appropriate for this particular 
dataset.  
 

Table 2. Performance of LASSO and EN as feature selection technique 
 

No. Methods NGS MSE SSE RMSE R2 PVS 
 

1 LASSO 23 726.33 53748.6 26.950 0.54 0.54% 
 

2 EN 92 587.67 43487.5 24.241 0.53 2.17% 
 

 
 

The study took into consideration SIS in LASSO Freund, Robust LASSO Freund, Elastic Net, and Elastic 
Net Freund since it believes that the dataset contains multicollinearity. Table 3 additionally evaluates and 
displays the effectiveness of the strategies that have been suggested and taken into consideration. 
Combining LASSO with Freund and SIS (LF-SIS) raised the number of chosen genes from 23 to 41. In 
addition, LF-SIS has better values for all other indexes than LASSO, including MSE, SSE, RMSE, and 
R2 (LASSO: MSE=726.33, SSE=53748.6, RMSE=26.950, and R2 = 0.54; LF-SIS: MSE= 712.630, SSE= 
52734.6, RMSE= 26.695, and R2 = 0.673). Even yet, the coefficient of determination value, R2 = 0.673., 
showed a significant improvement. However, 33% of the dataset’s volatility cannot be explained by the 
predictors [22,65]. Consequently, for this dataset, LF-SIS might not be the best option when it comes to 
variable selection. 
 

Table 3. Performance of LASSO, EN and Proposed methods (LF-SIS, RLF-SIS, EN-SIS and ENF-SIS) as a feature selection technique 
 

No. Methods NGS MSE SSE RMSE R2 PVS 
 

1 LASSO 23 726.33 53748.6 26.950 0.54 0.54% 
 

2 EN 92 587.67 43487.5 24.241 0.53 2.17% 
 

3 LF-SIS 41 712.630 52734.6 26.695 0.673 1% 
 

4 RLF-SIS 68 342.009 25308.7 18.493 0.710 1.6% 
 

5 EN-SIS 40 600.15 44410.88 24.497 0.67 0.946% 
 

6 ENF-SIS 85 429.98 318 18.69 20.736 0.68 2.012% 
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In addition, when integrating SIS with EN (EN-SIS) and with EN and Freund (ENF-SIS), ENF-SIS 
outperformed EN and EN-SIS (EN: MSE=587.67, SSE=43487.5, RMSE = 24.241, R2 = 0.53; EN-SIS: 
MSE=600.15, SSE=44410.88, RMSE = 24.497, R2 = 0.67; ENF-SIS: MSE=429.98, SSE=318 18.69, 
RMSE = 20.736, R2 = 0.68). Since the foundation of the SIS method is correlation learning, which makes 
use of the observed relationship among the predictor and responder.  Consequently, the accuracy of the 
suggested approaches (LF-SIS, EN-SIS, and ENF-SIS) improved when SIS was paired with LASSO and 
EN as opposed to using LASSO and EN alone. Again, since kidney is a parallel system, therefore it is 
necessary to keep in consideration that in the case of the parallel system, redundancy increases survival; 
hence, the failure of the system depends on the failure of each of its k components. Stated differently, 
the system continues to work even if one of its components fails. Furthermore, the Freund model is ideal 
for accurately illustrating such a scenario [21]. Because of this, the Freund model performed better when 
combined with SIS and EN (ENF-SIS outperformed). Additionally, the R2 coefficient of determination 
values Clearly improved after adding SIS and EN to Freund. Nevertheless, based on the values (R2), 
none of these methods is optimal for this dataset.  
 
The picture was drastically altered when Freund Robust LASSO was merged with SIS, named RLF-SIS. 
Comparing RLF-SIS to other techniques under consideration (LASSO, EN, LF-SIS, EN-SIS, ENF-SIS, 
Table 3), its MSE, SSE, and RMSE values are significantly lower (RLF-SIS: MSE=342.009, 
SSE=25308.7, RMSE = 18.493). Vitally, irrespective all of the approaches taken into consideration, the 
correlation coefficient of measurement is R2 = 0.710, resulting in is the highest. The improvement in 
every RLF-SIS performance index raises the possibility of an outlier in the data. Which is quite normal 
as noted by author [17].  According to the author, one to ten percent of a real dataset may contain outliers.  
 
A significant flaw in the SIS approach is that factors will not be identified in the later round if they are 
ignored in the initial one. To put it another way, if a predictor is simultaneously uncorrelated yet has a 
larger peripheral association to the outcome over certain significant factors in the portion, or if a marker 
is marginally unconnected but jointly connected with the outcome [16, 39]. Iterative Sure 
Independence’Screening (ISIS), which was introduced by [16], is an ongoing SIS technique designed to 
strengthen SIS and address the aforementioned issues. Thus, at this point in the study, ISSIS was 
combined with EN- (EN-ISIS), LASSO (LF-ISIS) and Freund (ENF-ISIS, RLF-ISIS). Table 4 evaluates 
and summarizes the efficacy of the suggested and fundamental approaches. After merging ISIS, every 
recommended approach—LF-ISIS, RLF-ISIS, EN-ISIS, and ENF-ISIS—performed better than the basic 
LASSO and EN, with the exception of EN-ISIS. Though the value of MSE, SSE and RMSE for all 
approaches are quite low but Out of the all-suggested approaches, the RLF-ISIS technique yielded the 
least amount of generated error (RLF-ISIS: MSE = 342.009, SSE: 25308.7, RMSE =18.493). Moreover, 
according to the R2 threshold, each method offers a credible approximation. Nevertheless, among the all 
options, the RLF-ISIS technique has the greatest R2 score (R2 = 0.71), meaning that 71% of the variation 
of the dependent variable has been accounted for in the data set. Given another 29 percent of the data 
remain unresolved for, the predicted outcome can be considered appropriate because it accurately 
covers the data [31, 14]. Once more, given that RLF-ISIS is superior to all other suggested approaches, 
it is advised that an outlier could exist in the dataset. Though, the score of R2 for RLF-ISIS is highest 
among all considered approaches yet the value cannot be considered as an excellent one [22]. 
Accordingly, RLF-ISIS might not be the best option, but in ultra-high dimensional survival data, it can be 
thought of as a variable selection technique. 

 
Table 4. Performance of LASSO, EN and Proposed methods (LF-ISIS, RLF-ISIS, EN-ISIS and ENF- ISIS) as a feature selection technique 
 

No. Methods NGS MSE SSE RMSE R2 PVS 
 

1 LASSO 23 726.33 53748.6 26.950 0.54 0.54% 
 

2 EN 92 587.67 43487.5 24.241 0.53 2.17% 
 

3 LF-ISIS 38 429.982 31818.7 20.736 0.665 0.9% 
 

4 RLF-ISIS 
 

49 342.009 25308.7 18.493 0.710 1.2% 
 

5 EN-ISIS 35 652.81 52205.01 26.560 0.67 0.828% 
 

6 ENF-ISIS 69 429.98 31818.69 20.736 0.68 1.633% 
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Table 5 summarizes the study’s total results, which were gathered from all suggested and considered 
methods. Out of the all approaches, the RLF-ISIS and RLF-SIS technique yielded the least amount of 
error (MSE = 342.009, SSE: 25308.7, RMSE =18.493). From the RCC data, the ENF-ISIS method found 
69 worthy variables. As a result, the percentage of factors chosen for the RLF-ISIS and RLF-SIS 
procedures is 1.609% as well as 1.160%, accordingly, whereas the RLF-ISIS methodology selected 49 
key predictors. This is a result of the reasoning for expanding the SIS [18]. Furthermore, there are 
commonalities in the assessment parameters (MSE = 429.982, SSE = 31818.69, RMSE = 20.736, and 
R2 = 0.680) between the ENF-SIS, ENF-ISIS, and LF-ISIS approaches. The quantity of genes that are 
significant and discovered from the RCC data varies throughout the three methods, nonetheless.  
 
According to the R2 threshold, each method offers a credible approximation. Nevertheless, among the 
all options, the RLF-ISIS and RLF-SIS technique has the greatest R2 score (R2 = 0.71), meaning that 
71% of the variation of the dependent variable has been accounted for in the data set. They were 
succeeded by the ENF-ISIS and ENF-SIS method, with a value of R2 (R2 = 0.68), after which came the 
EN-SIS and EN-ISIS approach, that offers a value of R2 = 0.67. The least R2 coefficients have been 
produced by the EN and LASSO, with 0.53 and 0.54 respectively. Even after producing least error by the 
method RLF-ISIS and RLF-SIS, the R2 score still not higher enough [22, 47] to select these two methods 
as the best.  

 
Table 5. Performance of LASSO, EN and all Proposed methods (LF-SIS, LF-ISIS, RLF-SIS, RLF-ISIS, EN-SIS, EN-ISIS, ENF-SIS and 
ENF-ISIS) 

 
No. Methods NGS MSE SSE RMSE R2 PVS 

 
1 LASSO 23 726.33 53748.6 26.950 0.54 0.54% 

 
2 EN 92 587.67 43487.5 24.241 0.53 2.17% 

 
3 LF-SIS 41 712.630 52734.6 26.695 0.673 1% 

 
4 RLF-SIS 68 342.009 25308.7 18.493 0.710 1.6% 

 
5 EN-SIS 40 600.15 44410.88 24.497 0.67 0.946% 

 
6 ENF-SIS 85 429.98 318 18.69 20.736 0.68 2.012% 

 
7 LF-ISIS 38 429.982 31818.7 20.736 0.665 0.9% 

 
8 RLF-ISIS 

 
49 342.009 25308.7 18.493 0.710 1.2% 

 
9 EN-ISIS 35 652.81 52205.01 26.560 0.67 0.828% 

 
10 ENF-ISIS 69 429.98 31818.69 20.736 0.68 1.633% 

 
 
 
Despite the RLF-ISIS and RLF-SIS approaches providing the least amount of error, their respective R2 
scores are still insufficient to declare them the best. The possible reason could be the regression lines, 
as indicated by their relatively low R2 values, don’t fit the data very well because there are a lot of outliers. 
Although the RLF-ISIS and RLF-SIS strategy perform better than the other suggested approaches, as 
indicated by the validating model measures (MSE, SSE and RMSE), their lower R2 value suggests that 
these two methods may not be the best choice. However, in ultra-high dimensional survival data, they 
can be considered as variable selection technique. Thus, additional study is required to create a more 
sophisticated variable selection method in this context. 
 
Selected Genes by the Best Methods 
The two optimal method RLF-SIS and RLF-ISIS has led to the discovery of 68 and 49 genes that affect 
RCC patients directly as well as indirectly. The name of these selected gene is presented in Table 6.  
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Table 6. Selected Genes by the best Method 
 

Methods NSG Selected Genes 
 

RLF-SIS 68 X28, X96, X102, X134, X151, X161, X172, X210, X347, X388, X419, X421, X422, X429, X438, 
X482, X527, X610, X641, X672, X768, X779, X834, X854, X977, X995, X1029, X1082, X1115, 
X1188, X1241, X1302, X1428, X1525, X1571, X1601, X1656, X1656, X1709, X1758, 
X1830, X1842, X1882, X1948, X2048, X2174, X2233, X2295, X2467, X2511, X2734, X2784, 
X2850, X2915, X2975, X3197, X3218, X3353, X3369, X3418, X3451, X3685, X3760, X3803, 
X3914, X3918, X3975, X4039, X4212. 
 

RLF-ISIS 49 X28, X134, X161, X172, X315, X419, X421 X42, X466, X482, X527, X610, X689, X778, X854, X892, 
X977, X995, X1047, X1217, X1241, X1325, X1428, X152, X1601, X1656, X1728, X1830 X2048, 
X2074, X2295, X2467, X2511, X2734, X2784, X2850, X2975, X3218, X3353, X3451, X3666, 
X3685, X3803, X3918, X3947, X3975, X4039, X4154, X4212. 
 

 
 

Each of the genes chosen using the RLF-ISIS and RLF-SIS method influences the progression of RCC. 
For instance, the autosomal dominating sickness caused by the VHL syndromes in the planned RLF-
ISIS and RLF-SIS has a propensity for numerous neoplasms. The illnesses encompass intrinsic 
pancreas cancers, VHL, lymph node hemangioblastomas, renal cell carcinomas, pheochromocytomas, 
cysts, along with cystadenomas [37, 53, 72]. 
 
One important function of the AKR7A2(X689) gene is to shield organs such as the liver and kidneys from 
the harmful and cancer-causing effects of AFB1, a potent hepatocarcinogen [72]. The X977 gene 
influences movement and aggressiveness of endothelial cells alongside is linked to carcinogenesis. It 
might additionally have a role in angiogenesis. Furthermore, it contributes to viral infection, namely with 
the human cytomegalovirus [51]. The X4154 gene plays a major role in RCC and is implicated among 
both tumors that are benign and malignant [15, 37]. The X1241 gene initiates signaling which is in charge 
of cellular degeneration [60]. The X1525 gene is implicated under transcriptional control and is in charge 
of transcription regulating the expression of genes [44]. The gene X4212 is responsible for the 
transportation and regeneration of sphingolipids as well as cholesterol levels through the plasma 
membrane. 
 
The majority of investigators in the area of healthcare disorders have persistently disregarded both two-
component structures and have only used fundamental approaches of choosing variables. By suggesting 
a mixed approach rather than relying solely on one-component regression algorithms to identify 
important genes across two-component infrastructure, this study closed the gap. The accuracy of the 
study’s findings and their superiority over those of previous investigations are shown by comparing them 
with the findings of other scholars.  For example, [41] used a single component and no machine learning 
techniques to identify 32 genes associated with the development of kidney cancer thus showed the value 
of microarrays for carcinoma categorization that takes into account variations in the makeup of tissues 
amongst RCC varieties. Furthermore, [12] discovered 6 hub genes (SUCLG1, PCK2, GLDC, SLC12A1, 
ATP1A1, PDHA1) and saw a markedly shorter life expectancy period for RCC sufferers. Berglund et al. 
(2020) identified 9 genes (AURKA, AURKB, BIRC5, CCNE1, MKI67, MMP9, PLOD2, SAA1, and TOP2A) 
that exhibit distinct expression patterns. While the remaining genes were previously associated to various 
cancers, 6 of the validated genes—BIRC5, MK167, MMP9, PLOD2, and TOP2A—have historically been 
suspected of RCC.  
 
According to [24], the LASSO model was constructed and the support vector machine (SVM) technique 
was utilized to obtain 8 genes which are associated with the progression of early RCC. This study beat 
previous research in discovering important genes linked to RCC, where the RLF-ISIS strategy found 49 
RCC-relevant genes. The study employed a mixture of hybrid models and techniques for machine 
learning. The findings show that the suggested techniques can improve the capacity of choosing factors 
utilizing machine learning to successfully detect a certain number of significant predictors (genes) from 
ultra-high dimensional survival data. 
 
Box-Plot of Predictor Variables 
The study created some box-plots of predictors, which are shown in Figures 2, 3, and 4, to examine 
outliers in the dataset. The gene expressions of the genes X1-X160 are shown in Figure 2, the gene 
expressions of the predictor genes X161-260 are displayed in Figure 3, and the gene expression values 
of the genes X4000-X4224 are presented in Figure 4. Three figures are demonstrating the existence of 
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outliers in the dataset—which the prior analysis had suggested (lower R2 value). The ultra-high 
dimensional RCC dataset contains outliers, as this study confirms. One to ten percent of an actual 
dataset may contain outliers, according to author [17]. For instance, there are currently 28 specimens in 
the RNA-seq collection of triple negative breast cancer that have ambiguous labeling, making them 
outliers. [59].  Heterogeneity issues, such as samples drawn from several segments of the population, 
or mechanical problems with microarray research led to outliers [58]. For ultra-high-dimensional omics 
data, multiple feature selection techniques are available [60-64]. But there are no feature selection 
techniques available that take the issue of outliers as well as containing multiple compartments. Further 
study is needed to build an advanced hybrid feature selection technique in this particular setting. 
 

 
 

Figure 2. The gene expressions of the genes X1 to X160 
 
 

 
 

Figure 3. The expressions of the predictor genes X161 to X260 
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Figure 4. The gene expression values of the genes X4000 to X4224 
 
Conclusion 
 
Reliability of variable selection for actual clinical disease data is still one of the most difficult areas of 
biosystems study.  A few genes are significant and connected to the illness. Conversely, certain genetic 
factors are unconnected or just slightly affect the illness under investigation. It is crucial to determine the 
affecting gene and how it relates to that illness. The study proposed eight approaches (LF-SIS, RLF-SIS, 
EN-SIS, ENF-SIS, LF-ISIS, RLF-ISIS, EN-ISIS, ENF-SIS) and also considered 2 fundamental methods 
(EN and LASSO) as a variable selection procedure for ultra-high dimensional survival data. The 
performance of these all approaches is evaluated based on MSE, SSE, RMSE and R2 value. Although 
the RLF-ISIS and RLF-SIS methods yield the lowest error, their corresponding R2 values are not high 
enough to qualify them as the best. The explanation for this could be that there are too many outliers in 
the data, which makes the regression lines fit the data poorly. The box-plot of some selected predictive 
genes confirms the presence of outliers in the dataset. However, this study examines the recommended 
approaches' capacity to find features for ultra-high dimensional data sets using variable selection 
approaches. The research can be widened later on by implementing competitive risk theory to a 
sequential and parallel structure, which makes up the foundation for the majority of intricate mechanical 
systems seen in manufacturing facilities. Finally, it can be concluded that although RLF-ISIS and RLF-
SIS outperform other proposed approaches, they may, however, be regarded as a variable selection 
strategy but they might not be the optimal choice for ultra-high dimensional survival data with outliers. 
Outliers and multicollinearity of these genes create distorted or misleading results due to the behavior of 
genes among themselves. To date, there is still a gap in feature selection strategy for ultra-high-
dimensional survival data with outliers and multi-compartment system. To handle this particular scenario, 
further research is needed to develop an advanced hybrid feature selection approach, focusing on deep 
learning strategies. For example, deep neural network (deep learning) can be used which is a part of 
artificial intelligence and is able to identify mistakes or deficits in the outcome and fix them without human 
interaction.  
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