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Abstract The graph can represent the molecule structure and the 𝜋𝜋-electron energy derives the 
concept of graph energy. The graph also can be related to the groups or rings as its vertex set. The 
non-commutative graph is a type of graph whose construction is determined by the structure of a 
group. This paper focuses on the energy of the non-commuting graph for dihedral groups using the 
Szeged and Padmakar-Ivan matrices. Both matrices are constructed based on the distance between 
two vertices in the graph. The eigenvalues of these matrices lead to the formulation of the graph's 
energy values. Interestingly, the energies obtained are equal to twice the spectral radius and are 
hyperenergetic. 
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Introduction 
 
The non-commuting graph on a finite group 𝐺𝐺, denoted by 𝛤𝛤𝐺𝐺, with the set of non-central elements of 
𝐺𝐺 as the vertex set of 𝛤𝛤𝐺𝐺. Two vertices 𝑣𝑣𝑝𝑝 ≠ 𝑣𝑣𝑞𝑞 of 𝛤𝛤𝐺𝐺 are adjacent whenever 𝑣𝑣𝑝𝑝𝑣𝑣𝑞𝑞 ≠ 𝑣𝑣𝑞𝑞𝑣𝑣𝑝𝑝 [1]. Alimon, et 
al. [3] have discussed the Szeged index of this graph for the dihedral group, 𝐷𝐷2𝑛𝑛. The Szeged index 
definition was originally defined by Gutman & Dobrynin [8] in 1998. Fath-Tabar, et al. [6] introduced the 
Szeged matrix of a graph in 2010. Later, Habibi and Ashrafi [9] continued the lines to define the revised 
Szeged matrix of a graph. Furthermore, the graph matrix was extended to the Padmakar-Ivan matrix 
[12]. 
 
Initially, the connection between the graph and algebra is represented by the adjacency matrix. Gutman 
[7] introduced the energy of a graph based on the eigenvalues of this matrix in 1978. The interesting 
results on the energy value were given by [5] and [13] who described the values as neither an odd 
number nor the square root of an odd number. Such authors investigated their research on the energy 
of 𝛤𝛤𝐺𝐺 for the dihedral group, 𝐷𝐷2𝑛𝑛, such as the Seidel Laplacian and Seidel signless Laplacian energy [19], 
and Sombor energy [21]. In addition, 𝐷𝐷2𝑛𝑛 group is also a research topic in building power graphs as has 
been done by Rana et al. [15] and another research by Romdhini et al. [18] who discuss the spectral 
perspectives. Likewise, Sehgal et al. [23] discussed the coprime graph of 𝐷𝐷2𝑛𝑛. 
  
The applications of graph energy can be found in Sun et al [24] to analyze and compare the protein 
sequences, satellite communication [2], and decision-making theory [20,22]. Moreover, other 
applications are reported for recognizing patterns and faces [4], identifying objects [25], analyzing images 
[26], and international transfer of cancer patients [16].   
 
Motivated by this, the authors investigate the Szeged and Padmakar-Ivan matrices of 𝛤𝛤𝐺𝐺 for 𝐷𝐷2𝑛𝑛 and 
observe the characteristic polynomial, spectrum, and energy. The methodology consists of constructing 
the Szeged and Padmakar-Ivan matrices of 𝛤𝛤𝐺𝐺, analyzing the spectrum and spectral radius of 𝛤𝛤𝐺𝐺, and 
computing calculating the Szeged and Padmakar-Ivan energies. 
 
Preliminaries 
 
This research focuses on the dihedral group of order 2𝑛𝑛, where 𝑛𝑛 ≥ 3, 𝐷𝐷2𝑛𝑛 = 〈𝑎𝑎, 𝑏𝑏 ∶  𝑎𝑎𝑛𝑛 = 𝑏𝑏2 = 𝑒𝑒, 𝑏𝑏𝑏𝑏𝑏𝑏 =
𝑎𝑎−1〉. For further discussion, we denote 𝛤𝛤𝐷𝐷2𝑛𝑛 as the non-commuting graph for 𝐷𝐷2𝑛𝑛. The following result 
gives the isomorphism of 𝛤𝛤𝐷𝐷2𝑛𝑛 with some common types of graphs. 
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Theorem 2.1. [14] Let 𝐾𝐾𝑛𝑛 is a complete graph on 𝑛𝑛 vertices, then 
 

𝛤𝛤𝐷𝐷2𝑛𝑛 ≅ �
𝐾𝐾𝑛𝑛,                for odd 𝑛𝑛

𝐾𝐾𝑛𝑛 −
𝑛𝑛
2𝐾𝐾2, for even 𝑛𝑛. 

 
The graph 𝛤𝛤𝐷𝐷2𝑛𝑛 is associated with the Szeged and Padmakar-Ivan matrices. We first consider Definition 
2.1 for defining the Szeged and Padmakar-Ivan matrices definition in the next two consecutive 
definitions. 
 
Definition 2.1. [8] For 𝑒𝑒 = (𝑣𝑣𝑝𝑝𝑣𝑣𝑞𝑞) ∈ 𝛤𝛤𝐷𝐷2𝑛𝑛, 
 

𝑛𝑛1�𝑒𝑒�𝛤𝛤𝐷𝐷2𝑛𝑛� = ��𝑥𝑥�𝑥𝑥 ∈ 𝛤𝛤𝐷𝐷2𝑛𝑛 ,𝑑𝑑�𝑥𝑥, 𝑣𝑣𝑝𝑝�𝛤𝛤𝐷𝐷2𝑛𝑛� < 𝑑𝑑�𝑥𝑥,𝑣𝑣𝑞𝑞�𝛤𝛤𝐷𝐷2𝑛𝑛���, 
𝑛𝑛2�𝑒𝑒�𝛤𝛤𝐷𝐷2𝑛𝑛� = ��𝑣𝑣�𝑥𝑥 ∈ 𝛤𝛤𝐷𝐷2𝑛𝑛,𝑑𝑑�𝑥𝑥, 𝑣𝑣𝑝𝑝�𝛤𝛤𝐷𝐷2𝑛𝑛� > 𝑑𝑑�𝑥𝑥, 𝑣𝑣𝑞𝑞�𝛤𝛤𝐷𝐷2𝑛𝑛���. 

 
Definition 2.2. [6] The Szeged (𝑆𝑆) matrix of 𝛤𝛤𝐷𝐷2𝑛𝑛, 𝑆𝑆(𝛤𝛤𝐷𝐷2𝑛𝑛) = �𝑠𝑠𝑝𝑝𝑝𝑝� in which (𝑝𝑝,𝑞𝑞) −th entry is  
 

𝑠𝑠𝑝𝑝𝑝𝑝 = �𝑛𝑛1(𝑒𝑒�𝛤𝛤𝐷𝐷2𝑛𝑛) ∙ 𝑛𝑛2(𝑒𝑒�𝛤𝛤𝐷𝐷2𝑛𝑛),    if 𝑒𝑒 = (𝑣𝑣𝑝𝑝𝑣𝑣𝑞𝑞) ∈ 𝛤𝛤𝐷𝐷2𝑛𝑛)
0,                                            otherwise.                    

 

 
Definition 2.3. [12] The Padmakar-Ivan (𝑃𝑃𝑃𝑃) matrix of 𝛤𝛤𝐷𝐷2𝑛𝑛, 𝑃𝑃𝑃𝑃(𝛤𝛤𝐷𝐷2𝑛𝑛) = �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� in which (𝑝𝑝, 𝑞𝑞) −th entry is  
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �𝑛𝑛1�𝑒𝑒�𝛤𝛤𝐷𝐷2𝑛𝑛� + 𝑛𝑛2(𝑒𝑒�𝛤𝛤𝐷𝐷2𝑛𝑛),    if 𝑒𝑒 = (𝑣𝑣𝑝𝑝𝑣𝑣𝑞𝑞) ∈ 𝛤𝛤𝐷𝐷2𝑛𝑛)
0,                                               otherwise.                   

 

 
The formula of Szeged and Padmakar-Ivan energies of 𝛤𝛤𝐷𝐷2𝑛𝑛 are 𝐸𝐸𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� = ∑ |𝜆𝜆𝑖𝑖|𝑚𝑚

𝑖𝑖=1  and 𝐸𝐸𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛� =
∑ |𝜇𝜇𝑖𝑖|𝑚𝑚
𝑖𝑖=1  [7], where 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑚𝑚 and 𝜇𝜇1, 𝜇𝜇2,⋯ , 𝜇𝜇𝑚𝑚 are the eigenvalues of 𝑆𝑆(𝛤𝛤𝐷𝐷2𝑛𝑛) and 𝑃𝑃𝑃𝑃(𝛤𝛤𝐷𝐷2𝑛𝑛), respectively. 

In this case, 𝑚𝑚 = 2𝑛𝑛 − 1 for odd 𝑛𝑛 and 𝑚𝑚 = 2𝑛𝑛 − 2 for even 𝑛𝑛. The spectrum of 𝛤𝛤𝐷𝐷2𝑛𝑛, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛�, is 
�𝜆𝜆1
𝑘𝑘1 , 𝜆𝜆2

𝑘𝑘2 , … , 𝜆𝜆𝑚𝑚
𝑘𝑘𝑚𝑚� or �𝜇𝜇1

𝑘𝑘1 ,𝜇𝜇2
𝑘𝑘2 , … , 𝜇𝜇𝑚𝑚

𝑘𝑘𝑚𝑚� associated with 𝑆𝑆(𝛤𝛤𝐷𝐷2𝑛𝑛) or 𝑃𝑃𝑃𝑃(𝛤𝛤𝐷𝐷2𝑛𝑛), respectively, where 𝑘𝑘1, 𝑘𝑘2, … , 𝑘𝑘𝑚𝑚 
are their respective multiplicities. The spectral radius of 𝛤𝛤𝐷𝐷2𝑛𝑛 is 𝜌𝜌𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� = 𝑚𝑚𝑚𝑚𝑚𝑚�|𝜆𝜆|: 𝜆𝜆 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛�� or 
𝜌𝜌𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛� = 𝑚𝑚𝑚𝑚𝑚𝑚�|𝜇𝜇|:𝜇𝜇 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛�� [10]. Moreover, 𝛤𝛤𝐷𝐷2𝑛𝑛 can be stated as hyperenergetic if the energy 
is more than 4(𝑛𝑛 − 1) for odd 𝑛𝑛 or more than 4(𝑛𝑛 − 1) − 2 for even 𝑛𝑛 [11]. 
 
The following lemma and proposition are from previous results that are used in formulating the 
characteristic polynomial of 𝛤𝛤𝐷𝐷2𝑛𝑛. 
 
Lemma 2.1. [14] For real numbers 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 and 𝑑𝑑, and an 𝑛𝑛 × 𝑛𝑛 matrix 𝐽𝐽𝑛𝑛 in which all entries are 1, then  
 

�
(𝜆𝜆 + 𝑎𝑎)𝐼𝐼𝑛𝑛1 − 𝑎𝑎𝐽𝐽𝑛𝑛1 −𝑐𝑐𝐽𝐽𝑛𝑛1×𝑛𝑛2

−𝑑𝑑𝐽𝐽𝑛𝑛2×𝑛𝑛1 (𝜆𝜆 + 𝑏𝑏)𝐼𝐼𝑛𝑛2 − 𝑏𝑏𝐽𝐽𝑛𝑛2
�

(𝑛𝑛1+𝑛𝑛2)×(𝑛𝑛1+𝑛𝑛2)
 

 
can be simplified as  
 

(𝜆𝜆 + 𝑎𝑎)𝑛𝑛1−1(𝜆𝜆 + 𝑏𝑏)𝑛𝑛2−1�(𝜆𝜆 − (𝑛𝑛1 − 1)𝑎𝑎)(𝜆𝜆 − (𝑛𝑛2 − 1)𝑏𝑏) − 𝑛𝑛1𝑛𝑛2𝑐𝑐𝑐𝑐�, 
 
where 1 ≤ 𝑛𝑛1,𝑛𝑛2 ≤ 𝑛𝑛 and 𝑛𝑛1 + 𝑛𝑛2 = 𝑛𝑛. 
 
Theorem 2.2. [17] If 𝑟𝑟, 𝑠𝑠, 𝑡𝑡 are real numbers, and even number 𝑛𝑛, then the characteristic polynomial of 
an (2𝑛𝑛 − 2) × (2𝑛𝑛 − 2) matrix 
 

𝑀𝑀 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 ⋯ 0 𝑠𝑠 ⋯ 𝑠𝑠 𝑠𝑠 ⋯ 𝑠𝑠
⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 ⋯ 0 𝑠𝑠 ⋯ 𝑠𝑠 𝑠𝑠 ⋯ 𝑠𝑠
𝑠𝑠 ⋯ 𝑠𝑠 0 ⋯ 𝑡𝑡 0 ⋯ 𝑡𝑡
⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝑠𝑠 ⋯ 𝑠𝑠 𝑡𝑡 ⋯ 0 𝑡𝑡 ⋯ 0
𝑠𝑠 ⋯ 𝑠𝑠 0 ⋯ 𝑡𝑡 0 ⋯ 𝑡𝑡
⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝑠𝑠 ⋯ 𝑠𝑠 𝑡𝑡 ⋯ 0 𝑡𝑡 ⋯ 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

0𝑛𝑛−2 𝑠𝑠𝐽𝐽(𝑛𝑛−2)×𝑛𝑛2
𝑠𝑠𝐽𝐽(𝑛𝑛−2)×𝑛𝑛2

𝑠𝑠𝐽𝐽𝑛𝑛
2×(𝑛𝑛−2) 𝑡𝑡(𝐽𝐽 − 𝐼𝐼)𝐽𝐽𝑛𝑛

2
𝑡𝑡(𝐽𝐽 − 𝐼𝐼)𝐽𝐽𝑛𝑛

2
𝑠𝑠𝐽𝐽𝑛𝑛
2×(𝑛𝑛−2) 𝑡𝑡(𝐽𝐽 − 𝐼𝐼)𝐽𝐽𝑛𝑛

2
𝑡𝑡(𝐽𝐽 − 𝐼𝐼)𝐽𝐽𝑛𝑛

2⎦
⎥
⎥
⎥
⎤
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can be simplified in an expression as 
 

𝑃𝑃𝑀𝑀(𝜆𝜆) = (𝜆𝜆)
3𝑛𝑛−6
2 (𝜆𝜆 + 2𝑡𝑡)

𝑛𝑛
2−1(𝜆𝜆2 − (𝑛𝑛 − 2)𝑡𝑡𝑡𝑡 − 𝑛𝑛(𝑛𝑛 − 2)𝑠𝑠2). 

 
Szeged Energy of 𝜞𝜞𝑫𝑫𝟐𝟐𝟐𝟐 
 
Let us start with the characteristic polynomial of 𝛤𝛤𝐷𝐷2𝑛𝑛 corresponds to the Szeged matrix. 
 
Theorem 3.1. In 𝛤𝛤𝐷𝐷2𝑛𝑛, then  
 
(1) for odd 𝑛𝑛, 𝑃𝑃 𝑆𝑆(𝛤𝛤𝐷𝐷2𝑛𝑛)(𝜆𝜆) = (𝜆𝜆)𝑛𝑛−2(𝜆𝜆 + 1)𝑛𝑛−1(𝜆𝜆2 + (1 − 𝑛𝑛)𝜆𝜆 + 𝑛𝑛(1 − 𝑛𝑛)3), 

(2) for even 𝑛𝑛, 𝑃𝑃 𝑆𝑆(𝛤𝛤𝐷𝐷2𝑛𝑛)(𝜆𝜆) = (𝜆𝜆)
3𝑛𝑛−6
2 (𝜆𝜆 + 8)

𝑛𝑛
2
−1(𝜆𝜆2 − 4(𝑛𝑛 − 2)𝜆𝜆 − 4𝑛𝑛(𝑛𝑛 − 2)3). 

 
Proof. 
 
(1) Let 𝑛𝑛 is odd and suppose 𝐺𝐺1 = {𝑎𝑎, 𝑎𝑎2,⋯ ,𝑎𝑎𝑛𝑛−1} and 𝐺𝐺2 = �𝑎𝑎𝑖𝑖𝑏𝑏: 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛�. If 𝑒𝑒 = 𝑢𝑢𝑢𝑢 is an edge of 𝛤𝛤𝐷𝐷2𝑛𝑛 , 

then the entries of the Szeged matrix of 𝛤𝛤𝐷𝐷2𝑛𝑛, 𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛�, are described as follows: 
 
(i) From Theorem 2.1, there is no edge between 𝑎𝑎, 𝑎𝑎2,⋯ ,𝑎𝑎𝑛𝑛−1 in 𝛤𝛤𝐷𝐷2𝑛𝑛 which means for 𝑢𝑢, 𝑣𝑣 ∈ 𝐺𝐺1, the 

entries of 𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� are zero.  
(ii) For 𝑢𝑢 ∈ 𝐺𝐺1 and 𝑣𝑣 ∈ 𝐺𝐺2, or vice versa, then 𝑛𝑛1�𝑒𝑒�𝛤𝛤𝐷𝐷2𝑛𝑛� = 1 and 𝑛𝑛2�𝑒𝑒�𝛤𝛤𝐷𝐷2𝑛𝑛� = 𝑛𝑛 − 1. Consequently, 

the entries of 𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� are 1 ∙ (𝑛𝑛 − 1) = 𝑛𝑛 − 1. 
(iii) For 𝑢𝑢, 𝑣𝑣 ∈ 𝐺𝐺2, then 𝑛𝑛1�𝑒𝑒�𝛤𝛤𝐷𝐷2𝑛𝑛� = 1 and 𝑛𝑛2�𝑒𝑒�𝛤𝛤𝐷𝐷2𝑛𝑛� = 1. Hence the entries of 𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� are 1 ∙ 1 = 1. 
 
Therefore, 𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� is a (2𝑛𝑛 − 1) × (2𝑛𝑛 − 1) matrix as follows: 
 

𝑆𝑆(𝛤𝛤𝐷𝐷2𝑛𝑛) =

𝑎𝑎
𝑎𝑎2
⋮

𝑎𝑎𝑛𝑛−1

𝑏𝑏
𝑎𝑎𝑎𝑎
⋮

𝑎𝑎𝑛𝑛−1𝑏𝑏

     𝑎𝑎       𝑎𝑎2   ⋯  𝑎𝑎𝑛𝑛−1  𝑏𝑏       𝑎𝑎𝑎𝑎    ⋯ 𝑎𝑎𝑛𝑛−1𝑏𝑏

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 ⋯ 0 𝑛𝑛 − 1 𝑛𝑛 − 1 ⋯ 𝑛𝑛 − 1
0 0 ⋯ 0 𝑛𝑛 − 1 𝑛𝑛 − 1 ⋯ 𝑛𝑛 − 1
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 𝑛𝑛 − 1 𝑛𝑛 − 1 ⋯ 𝑛𝑛 − 1

𝑛𝑛 − 1 𝑛𝑛 − 1 ⋯ 𝑛𝑛 − 1 0 1 ⋯ 1
𝑛𝑛 − 1 𝑛𝑛 − 1 ⋯ 𝑛𝑛 − 1 1 0 ⋯ 1
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝑛𝑛 − 1 𝑛𝑛 − 1 ⋯ 𝑛𝑛 − 1 1 1 ⋯ 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

 
Then, the Szeged matrix of 𝛤𝛤𝐷𝐷2𝑛𝑛 can be expressed as  
 

𝑆𝑆(𝛤𝛤𝐷𝐷2𝑛𝑛) = �
0𝑛𝑛−1 (𝑛𝑛 − 1)𝐽𝐽(𝑛𝑛−1)×𝑛𝑛

(𝑛𝑛 − 1)𝐽𝐽𝑛𝑛×(𝑛𝑛−1) (𝐽𝐽 − 𝐼𝐼)𝑛𝑛
�, 

 
and the determinant below is the characteristic polynomial for 𝑆𝑆(𝛤𝛤𝐷𝐷2𝑛𝑛), 
 

𝑃𝑃𝑆𝑆(𝛤𝛤𝐷𝐷2𝑛𝑛)(𝜆𝜆) = �
𝜆𝜆𝐼𝐼𝑛𝑛−1 (1 − 𝑛𝑛)𝐽𝐽(𝑛𝑛−1)×𝑛𝑛

 (1 − 𝑛𝑛)𝐽𝐽𝑛𝑛×(𝑛𝑛−1) (𝜆𝜆 + 1)𝐼𝐼𝑛𝑛 − 𝐽𝐽𝑛𝑛
�. 

 
Based on Lemma 2.1, with 𝑎𝑎 = 0, 𝑏𝑏 = 1, 𝑐𝑐 = 𝑑𝑑 = 1 − 𝑛𝑛, 𝑛𝑛1 = 𝑛𝑛 − 1, and 𝑛𝑛2 = 𝑛𝑛, therefore 
 

𝑃𝑃𝑆𝑆(𝛤𝛤𝐷𝐷2𝑛𝑛)(𝜆𝜆) = (𝜆𝜆)𝑛𝑛−2(𝜆𝜆 + 1)𝑛𝑛−1(𝜆𝜆2 + (1 − 𝑛𝑛)𝜆𝜆 + 𝑛𝑛(1 − 𝑛𝑛)3). 
 
(2)  Let 𝑛𝑛 is odd and suppose 𝐺𝐺1 = �𝑎𝑎, 𝑎𝑎2,⋯ , 𝑎𝑎

𝑛𝑛
2
−1,𝑎𝑎

𝑛𝑛
2
+1,⋯ , 𝑎𝑎𝑛𝑛� and 𝐺𝐺2 = �𝑎𝑎𝑖𝑖𝑏𝑏: 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛�. If 𝑒𝑒 = 𝑢𝑢𝑢𝑢 is an 

edge of 𝛤𝛤𝐷𝐷2𝑛𝑛 , then the entries of the Szeged matrix of 𝛤𝛤𝐷𝐷2𝑛𝑛, 𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛�, are described as follows: 
 

(i) From Theorem 2.1, there is no edge between 𝑎𝑎, 𝑎𝑎2,⋯ ,𝑎𝑎
𝑛𝑛
2
−1, 𝑎𝑎

𝑛𝑛
2
+1,⋯ , 𝑎𝑎𝑛𝑛 in 𝛤𝛤𝐷𝐷2𝑛𝑛 which means for 

𝑢𝑢,𝑣𝑣 ∈ 𝐺𝐺1, the entries of 𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� are zero.  
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(ii) For 𝑢𝑢 ∈ 𝐺𝐺1 and 𝑣𝑣 ∈ 𝐺𝐺2, or vice versa, then 𝑛𝑛1�𝑒𝑒�𝛤𝛤𝐷𝐷2𝑛𝑛� = 2 and 𝑛𝑛2�𝑒𝑒�𝛤𝛤𝐷𝐷2𝑛𝑛� = 𝑛𝑛 − 2. Consequently, 
the entries of 𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� are 2 ∙ (𝑛𝑛 − 2) = 2(𝑛𝑛 − 2). 

(iii) For 𝑢𝑢, 𝑣𝑣 ∈ 𝐺𝐺2, then 𝑛𝑛1�𝑒𝑒�𝛤𝛤𝐷𝐷2𝑛𝑛� = 2 and 𝑛𝑛2�𝑒𝑒�𝛤𝛤𝐷𝐷2𝑛𝑛� = 2. Hence the entries of 𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� are 2 ∙ 2 = 4, 
except for 𝑎𝑎𝑖𝑖𝑏𝑏, 𝑎𝑎

𝑛𝑛
2
+𝑖𝑖𝑏𝑏 ∈ 𝐺𝐺2 which are zero since there is no edge between those two vertices. 

 
Therefore, 𝑆𝑆(𝛤𝛤𝐷𝐷2𝑛𝑛) is 𝑎𝑎 (2𝑛𝑛 − 2) × (2𝑛𝑛 − 2) matrix as follows 
 

𝑎𝑎
⋮

𝑎𝑎
𝑛𝑛
2
−1

𝑎𝑎
𝑛𝑛
2
+1

⋮
𝑎𝑎𝑛𝑛−1
𝑏𝑏
⋮

𝑎𝑎
𝑛𝑛
2
−1𝑏𝑏
𝑎𝑎
𝑛𝑛
2𝑏𝑏
⋮

𝑎𝑎𝑛𝑛−1𝑏𝑏

     𝑎𝑎       ⋯    𝑎𝑎
𝑛𝑛
2
−1         𝑎𝑎

𝑛𝑛
2
+1   ⋯    𝑎𝑎𝑛𝑛−1            𝑏𝑏       ⋯   𝑎𝑎

𝑛𝑛
2
−1𝑏𝑏       𝑎𝑎

𝑛𝑛
2𝑏𝑏     ⋯   𝑎𝑎𝑛𝑛−1𝑏𝑏

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 ⋯ 0 0 ⋯ 0 2(𝑛𝑛 − 2) ⋯ 2(𝑛𝑛 − 2) 2(𝑛𝑛 − 2) ⋯ 2(𝑛𝑛 − 2)
⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 ⋯ 0 0 ⋯ 0 2(𝑛𝑛 − 2) ⋯ 2(𝑛𝑛 − 2) 2(𝑛𝑛 − 2) ⋯ 2(𝑛𝑛 − 2)
0 ⋯ 0 0 ⋯ 0 2(𝑛𝑛 − 2) ⋯ 2(𝑛𝑛 − 2) 2(𝑛𝑛 − 2) ⋯ 2(𝑛𝑛 − 2)
⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 ⋯ 0 0 ⋯ 0 2(𝑛𝑛 − 2) ⋯ 2(𝑛𝑛 − 2) 2(𝑛𝑛 − 2) ⋯ 2(𝑛𝑛 − 2)

2(𝑛𝑛 − 2) ⋯ 2(𝑛𝑛 − 2) 2(𝑛𝑛 − 2) ⋯ 2(𝑛𝑛 − 2) 0 ⋯ 4 0 ⋯ 4
⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

2(𝑛𝑛 − 2) ⋯ 2(𝑛𝑛 − 2) 2(𝑛𝑛 − 2) ⋯ 2(𝑛𝑛 − 2) 4 ⋯ 0 4 ⋯ 0
2(𝑛𝑛 − 2) ⋯ 2(𝑛𝑛 − 2) 2(𝑛𝑛 − 2) ⋯ 2(𝑛𝑛 − 2) 0 ⋯ 4 0 ⋯ 4

⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
2(𝑛𝑛 − 2) ⋯ 2(𝑛𝑛 − 2) 2(𝑛𝑛 − 2) ⋯ 2(𝑛𝑛 − 2) 4 ⋯ 0 4 ⋯ 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

 
In other words, 𝑆𝑆-matrix of 𝛤𝛤𝐷𝐷2𝑛𝑛can be written as  
 

𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� =

⎣
⎢
⎢
⎡

0𝑛𝑛−2 2(𝑛𝑛 − 2)𝐽𝐽(𝑛𝑛−2)×𝑛𝑛
2

2(𝑛𝑛 − 2)𝐽𝐽(𝑛𝑛−2)×𝑛𝑛
2

2(𝑛𝑛 − 2)𝐽𝐽𝑛𝑛
2

×(𝑛𝑛−2) 4(𝐽𝐽 − 𝐼𝐼)𝑛𝑛
2

4(𝐽𝐽 − 𝐼𝐼)𝑛𝑛
2

2(𝑛𝑛 − 2)𝐽𝐽𝑛𝑛
2

×(𝑛𝑛−2) 4(𝐽𝐽 − 𝐼𝐼)𝑛𝑛
2

4(𝐽𝐽 − 𝐼𝐼)𝑛𝑛
2 ⎦

⎥
⎥
⎤
. 

 
Based on Theorem 2.2 with 𝑠𝑠 = 2(𝑛𝑛 − 2) and 𝑡𝑡 = 4, we get  
 

𝑃𝑃𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛�(𝜆𝜆) = (𝜆𝜆)
3𝑛𝑛−6
2 (𝜆𝜆 + 8)

𝑛𝑛
2
−1(𝜆𝜆2 − 4(𝑛𝑛 − 2)𝜆𝜆 − 4𝑛𝑛(𝑛𝑛 − 2)3). 

     □ 
 
In the next results, we prove the 𝑆𝑆-spectral radius, 𝜌𝜌𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛�, and 𝑆𝑆-energy of 𝛤𝛤𝐷𝐷2𝑛𝑛.  
 
Theorem 3.2. In 𝛤𝛤𝐷𝐷2𝑛𝑛  
 
(1) 𝜌𝜌𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� = 𝑛𝑛(𝑛𝑛 − 1), for odd 𝑛𝑛, and 
(2) 𝜌𝜌𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� = 2𝑛𝑛(𝑛𝑛 − 2) for even 𝑛𝑛. 
 
Proof. 
 
(1) Based on Theorem 3.1 (1) when 𝑛𝑛 is odd, we have 𝑃𝑃𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛�(𝜆𝜆) which implies four eigenvalues of 𝛤𝛤𝐷𝐷2𝑛𝑛. 

Then we get 𝜆𝜆1 = 0 of multiplicity 𝑛𝑛 − 2, 𝜆𝜆2 = −1 of multiplicity 𝑛𝑛 − 1, 𝜆𝜆3 = 𝑛𝑛(𝑛𝑛 − 1) and 𝜆𝜆4 =
−(𝑛𝑛 − 1)2, each of multiplicity 1. Thus, the 𝑆𝑆 −spectrum of 𝛤𝛤𝐷𝐷2𝑛𝑛 is  

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� = {(𝑛𝑛(𝑛𝑛 − 1))1, (0)𝑛𝑛−2, (−1)𝑛𝑛−1 (−(𝑛𝑛 − 1)2)1}. 

 
Now for 𝑖𝑖 = 1,2,3,4, based on 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛�, the maximum of absolute eigenvalues |𝜆𝜆𝑖𝑖| is the 𝑆𝑆-spectral 
radius of 𝛤𝛤𝐷𝐷2𝑛𝑛, 
 

𝜌𝜌𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� = 𝑛𝑛(𝑛𝑛 − 1). 
 
(2) Performing  𝑃𝑃𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛�(𝜆𝜆) = 0 from Theorem 3.1 (2) for even 𝑛𝑛, we get the eigenvalues of 𝛤𝛤𝐷𝐷2𝑛𝑛, which 

are 𝜆𝜆1 = 0 of multiplicity 3𝑛𝑛−6
2

, 𝜆𝜆2 = −8 of multiplicity 𝑛𝑛
2
− 1 and the other two eigenvalues are 𝜆𝜆3 =

2𝑛𝑛(𝑛𝑛 − 2) and 𝜆𝜆4 = −2(𝑛𝑛 − 2)2 each of multiplicity 1. So that 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� = �(2𝑛𝑛(𝑛𝑛 − 2))1, (0)
3𝑛𝑛−6
2 , (−8)

𝑛𝑛
2
−1, (−2(𝑛𝑛 − 2)2)1�. 

 
From the spectrum mentioned above, we finally arrive at 
 

𝜌𝜌𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� = 2𝑛𝑛(𝑛𝑛 − 2). 
   □ 

 
The result of the Szeged energy of 𝛤𝛤𝐷𝐷2𝑛𝑛 is presented below. 
 
Theorem 3.3. In 𝛤𝛤𝐷𝐷2𝑛𝑛,  
 
(1) 𝐸𝐸𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� = 2𝑛𝑛(𝑛𝑛 − 1), for odd 𝑛𝑛,  
(2) 𝐸𝐸𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� = 4𝑛𝑛(𝑛𝑛 − 2), for even 𝑛𝑛. 
 
Proof. 
 
1.  From the eigenvalues of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝛤𝛤𝐺𝐺) in Theorem 3.2 (1) for odd 𝑛𝑛, we can obtain the 𝑆𝑆-energy of 𝛤𝛤𝐷𝐷2𝑛𝑛. 

Since 𝑛𝑛 ≥ 3 for 𝑛𝑛 ∈ ℕ and 𝑛𝑛 is odd, then  
 

𝐸𝐸𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� = (1)|𝑛𝑛(𝑛𝑛 − 1)| + (𝑛𝑛 − 2)|0| + (𝑛𝑛 − 1)|−1| + |−(𝑛𝑛 − 1)2| = 2𝑛𝑛(𝑛𝑛 − 1). 
 
2. For even 𝑛𝑛, it follows from Theorem 3.2 (2), the 𝑆𝑆-energy is presented below 
 

𝐸𝐸𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� = (1)|2𝑛𝑛(𝑛𝑛 − 2)| + �3𝑛𝑛−6
2
� |0| + �𝑛𝑛

2
− 1� |−8| + |−2(𝑛𝑛 − 2)2| = 4𝑛𝑛(𝑛𝑛 − 2).  

□ 
 
Padmakar-Ivan Energy of 𝜞𝜞𝑫𝑫𝟐𝟐𝟐𝟐 
 
This section focuses on the Padmakar-Ivan matrix of 𝛤𝛤𝐷𝐷2𝑛𝑛. 
 
Theorem 3.4. In 𝛤𝛤𝐷𝐷2𝑛𝑛, then  
 
(1) for odd 𝑛𝑛, 𝑃𝑃𝑃𝑃𝑃𝑃(𝛤𝛤𝐷𝐷2𝑛𝑛)(𝜆𝜆) = (𝜆𝜆)𝑛𝑛−2(𝜆𝜆 + 2)𝑛𝑛−1(𝜆𝜆2 + 2(1 − 𝑛𝑛)𝜆𝜆 + (1 − 𝑛𝑛)𝑛𝑛3), 
(2) for even 𝑛𝑛, 𝑃𝑃𝑃𝑃𝑃𝑃(𝛤𝛤𝐷𝐷2𝑛𝑛)(𝜆𝜆) = (𝜆𝜆)2𝑛𝑛−4(𝜆𝜆2 + 𝑛𝑛(𝑛𝑛 − 2)(3𝑛𝑛2 − 16𝑛𝑛 + 16)2). 
 
Proof. 
 
(1) Let 𝑛𝑛 is odd, for the same reason as the proofing part of Theorem 3.1 (1), then the entries of the 

Padmakar-Ivan matrix of 𝛤𝛤𝐷𝐷2𝑛𝑛 are as the following: 
(2)  

i. For 𝑢𝑢, 𝑣𝑣 ∈ 𝐺𝐺1, the entries of 𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛� are zero;  
ii. For 𝑢𝑢 ∈ 𝐺𝐺1 and 𝑣𝑣 ∈ 𝐺𝐺2, or vice versa, then the entries of 𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛� are 1 + (𝑛𝑛 − 1) = 𝑛𝑛; 
iii. For 𝑢𝑢, 𝑣𝑣 ∈ 𝐺𝐺2, then the entries of 𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛� are 1 + 1 = 2. 

 
Therefore, 𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛� is a (2𝑛𝑛 − 1) × (2𝑛𝑛 − 1) matrix as follows 
 

 𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛� =

𝑎𝑎
𝑎𝑎2
⋮

𝑎𝑎𝑛𝑛−1

𝑏𝑏
𝑎𝑎𝑎𝑎
⋮

𝑎𝑎𝑛𝑛−1𝑏𝑏

      𝑎𝑎 𝑎𝑎2 ⋯ 𝑎𝑎𝑛𝑛−1 𝑏𝑏 𝑎𝑎𝑎𝑎 ⋯ 𝑎𝑎𝑛𝑛−1𝑏𝑏

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0  ⋯  0     𝑛𝑛 𝑛𝑛 ⋯   𝑛𝑛
0 0  ⋯  0     𝑛𝑛 𝑛𝑛 ⋯   𝑛𝑛
⋮ ⋮  ⋱  ⋮     ⋮ ⋮ ⋱   ⋮
0 0  ⋯  0     𝑛𝑛 𝑛𝑛 ⋯   𝑛𝑛
𝑛𝑛 𝑛𝑛  ⋯  𝑛𝑛    0 2 ⋯   2
𝑛𝑛 𝑛𝑛  ⋯  𝑛𝑛    2 0 ⋯   2
⋮ ⋮  ⋱  ⋮    ⋮ ⋮ ⋱   ⋮
𝑛𝑛 𝑛𝑛  ⋯  𝑛𝑛    2 2 ⋯   0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 
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Then, the Padmakar-Ivan matrix of 𝛤𝛤𝐷𝐷2𝑛𝑛 can be expressed as  
 

𝑃𝑃𝑃𝑃(𝛤𝛤𝐷𝐷2𝑛𝑛) = �
0𝑛𝑛−1 𝑛𝑛𝐽𝐽(𝑛𝑛−1)×𝑛𝑛

𝑛𝑛𝐽𝐽𝑛𝑛×(𝑛𝑛−1) 2(𝐽𝐽 − 𝐼𝐼)𝑛𝑛
�, 

 
and the determinant below is the characteristic polynomial for 𝑃𝑃𝑃𝑃(𝛤𝛤𝐷𝐷2𝑛𝑛), 
 

𝑃𝑃𝑃𝑃𝑃𝑃(𝛤𝛤𝐷𝐷2𝑛𝑛)(𝜆𝜆) = �
𝜆𝜆𝐼𝐼𝑛𝑛−1 𝑛𝑛𝐽𝐽(𝑛𝑛−1)×𝑛𝑛

 𝑛𝑛𝑛𝑛𝑛𝑛×(𝑛𝑛−1) (𝜆𝜆 + 2)𝐼𝐼𝑛𝑛 − 2𝐽𝐽𝑛𝑛
�. 

 
Based on Lemma 2.1, with 𝑎𝑎 = 0, 𝑏𝑏 = 2, 𝑐𝑐 = 𝑑𝑑 = 𝑛𝑛, 𝑛𝑛1 = 𝑛𝑛 − 1, and 𝑛𝑛2 = 𝑛𝑛, therefore 
 

𝑃𝑃𝑃𝑃𝑃𝑃(𝛤𝛤𝐷𝐷2𝑛𝑛)(𝜆𝜆) = (𝜆𝜆)𝑛𝑛−2(𝜆𝜆 + 2)𝑛𝑛−1(𝜆𝜆2 + 2(1 − 𝑛𝑛)𝜆𝜆 + (1 − 𝑛𝑛)𝑛𝑛3). 
 
(3) For even 𝑛𝑛 and by the same reason as the proofing part of Theorem 3.1 (2), then the entries of the 

Padmakar-Ivan matrix of 𝛤𝛤𝐷𝐷2𝑛𝑛 are as the following: 
 
i. For 𝑢𝑢, 𝑣𝑣 ∈ 𝐺𝐺1, the entries of 𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛� are zero;  
ii. For 𝑢𝑢 ∈ 𝐺𝐺1 and 𝑣𝑣 ∈ 𝐺𝐺2, or vice versa, then the entries of 𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛� are 2 + (𝑛𝑛 − 2) = 𝑛𝑛; 
iii. For 𝑢𝑢, 𝑣𝑣 ∈ 𝐺𝐺2, then the entries of 𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛� are 2 + 2 = 4, except for 𝑎𝑎𝑖𝑖𝑏𝑏, 𝑎𝑎

𝑛𝑛
2
+𝑖𝑖𝑏𝑏 ∈ 𝐺𝐺2 which are zero 

since there is no edge between those two vertices. 
 

Therefore, 𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛� is a (2𝑛𝑛 − 2) × (2𝑛𝑛 − 2) matrix as follows 
 

𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛� =

𝑎𝑎
⋮

𝑎𝑎
𝑛𝑛
2
−1

𝑎𝑎
𝑛𝑛
2
+1

⋮
𝑎𝑎𝑛𝑛−1
𝑏𝑏
⋮

𝑎𝑎
𝑛𝑛
2
−1𝑏𝑏
𝑎𝑎
𝑛𝑛
2𝑏𝑏
⋮

𝑎𝑎𝑛𝑛−1𝑏𝑏

     𝑎𝑎 ⋯ 𝑎𝑎
𝑛𝑛
2
−1 𝑎𝑎

𝑛𝑛
2
+1 ⋯ 𝑎𝑎𝑛𝑛−1 𝑏𝑏 ⋯ 𝑎𝑎

𝑛𝑛
2
−1𝑏𝑏 𝑎𝑎

𝑛𝑛
2𝑏𝑏 ⋯ 𝑎𝑎𝑛𝑛−1𝑏𝑏

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 ⋯  0       0   ⋯   0    𝑛𝑛 ⋯   𝑛𝑛       𝑛𝑛   ⋯   𝑛𝑛
⋮ ⋱ ⋮       ⋮   ⋱   ⋮    ⋮ ⋱  ⋮       ⋮ ⋱   ⋮
0 ⋯ 0       0   ⋯   0    𝑛𝑛 ⋯  𝑛𝑛      𝑛𝑛 ⋯   𝑛𝑛
0 ⋯ 0       0   ⋯ 0    𝑛𝑛 ⋯  𝑛𝑛      𝑛𝑛 ⋯   𝑛𝑛
⋮ ⋱ ⋮       ⋮   ⋱ ⋮    ⋮ ⋱ ⋮      ⋮ ⋱   ⋮
0 ⋯ 0       0   ⋯ 0    𝑛𝑛 ⋯ 𝑛𝑛      𝑛𝑛 ⋯   𝑛𝑛
𝑛𝑛 ⋯ 𝑛𝑛      𝑛𝑛   ⋯ 𝑛𝑛    0 ⋯ 4     0 ⋯   4
⋮ ⋱ ⋮      ⋮   ⋱ ⋮    ⋮ ⋱ ⋮     ⋮ ⋱   ⋮
𝑛𝑛 ⋯ 𝑛𝑛      𝑛𝑛   ⋯ 𝑛𝑛    4 ⋯ 0     4 ⋯   0
𝑛𝑛 ⋯ 𝑛𝑛      𝑛𝑛   ⋯ 𝑛𝑛    0 ⋯ 4     0 ⋯   4
⋮ ⋱ ⋮       ⋮   ⋱ ⋮    ⋮ ⋱ ⋮     ⋮ ⋱   ⋮
𝑛𝑛 ⋯ 𝑛𝑛      𝑛𝑛   ⋯ 𝑛𝑛    4 ⋯ 0     4 ⋯   0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

 
The 𝑃𝑃𝑃𝑃-matrix of 𝛤𝛤𝐷𝐷2𝑛𝑛 can be written as  
 

𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛� =

⎣
⎢
⎢
⎡

0𝑛𝑛−2 𝑛𝑛𝐽𝐽(𝑛𝑛−2)×𝑛𝑛
2

𝑛𝑛𝐽𝐽(𝑛𝑛−2)×𝑛𝑛
2

𝑛𝑛𝐽𝐽𝑛𝑛
2

×(𝑛𝑛−2) 4(𝐽𝐽 − 𝐼𝐼)𝑛𝑛
2

4(𝐽𝐽 − 𝐼𝐼)𝑛𝑛
2

𝑛𝑛𝐽𝐽𝑛𝑛
2

×(𝑛𝑛−2) 4(𝐽𝐽 − 𝐼𝐼)𝑛𝑛
2

4(𝐽𝐽 − 𝐼𝐼)𝑛𝑛
2 ⎦
⎥
⎥
⎤
. 

 
Repeated application of Theorem 3.1, with 𝑠𝑠 = 𝑛𝑛 dan 𝑡𝑡 = 4, we get  
 

𝑃𝑃𝑃𝑃𝑃𝑃(𝛤𝛤𝐷𝐷2𝑛𝑛)(𝜆𝜆) = (𝜆𝜆)
3𝑛𝑛−6
2 (𝜆𝜆 + 8)

𝑛𝑛
2
−1(𝜆𝜆2 − 4(𝑛𝑛 − 2)𝜆𝜆 − 𝑛𝑛3(𝑛𝑛 − 2)). 

     □ 
 
The next theorem is the spectral radius of 𝛤𝛤𝐷𝐷2𝑛𝑛 associated with the Padmakar-Ivan matrix. 
 
Theorem 3.6. In 𝛤𝛤𝐷𝐷2𝑛𝑛  
 
(1) 𝜌𝜌𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛� = 𝑛𝑛 − 1 + �(𝑛𝑛 − 1)2 + 𝑛𝑛3(𝑛𝑛 − 1), for odd 𝑛𝑛, and 
(2) 𝜌𝜌𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛� = 2(𝑛𝑛 − 2) + �4(𝑛𝑛 − 2)2 + 𝑛𝑛3(𝑛𝑛 − 2), for even 𝑛𝑛. 
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Proof. 
 
(1) Based on Theorem 3.5 (1) when 𝑛𝑛 is odd, we have 𝑃𝑃𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛�(𝜆𝜆) which implies four eigenvalues of 𝛤𝛤𝐷𝐷2𝑛𝑛. 

Then we get 𝜆𝜆1 = 0 of multiplicity 𝑛𝑛 − 2, 𝜆𝜆2 = −2 of multiplicity 𝑛𝑛 − 1, 𝜆𝜆3,4 = 𝑛𝑛 − 1 ±
�(𝑛𝑛 − 1)2 + 𝑛𝑛3(𝑛𝑛 − 1) each of multiplicity 1. Thus, the 𝑃𝑃𝑃𝑃 −spectrum of 𝛤𝛤𝐷𝐷2𝑛𝑛 is  

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� = ��𝑛𝑛 − 1 + �(𝑛𝑛 − 1)2 + 𝑛𝑛3(𝑛𝑛 − 1)�

1
, (0)𝑛𝑛−2, (−2)𝑛𝑛−1 �𝑛𝑛 − 1 −�(𝑛𝑛 − 1)2 + 𝑛𝑛3(𝑛𝑛 − 1)�

1
�. 

 
Now for 𝑖𝑖 = 1,2,3,4, based on 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛�, the maximum of absolute eigenvalues |𝜆𝜆𝑖𝑖| is the 𝑃𝑃𝑃𝑃-spectral 
radius of 𝛤𝛤𝐷𝐷2𝑛𝑛, 

 
𝜌𝜌𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛� = 𝑛𝑛 − 1 + �(𝑛𝑛 − 1)2 + 𝑛𝑛3(𝑛𝑛 − 1). 

 
(2) Performing 𝑃𝑃𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛�(𝜆𝜆) = 0 from Theorem 3.5 (2) for even 𝑛𝑛, we get the eigenvalues of 𝛤𝛤𝐷𝐷2𝑛𝑛, which 

are 𝜆𝜆1 = 0 of multiplicity 3𝑛𝑛−6
2

, 𝜆𝜆2 = −8 of multiplicity 𝑛𝑛
2
− 1 and the other two eigenvalues are 𝜆𝜆3,4 =

2(𝑛𝑛 − 2) ± �4(𝑛𝑛 − 2)2 + 𝑛𝑛3(𝑛𝑛 − 2) each of multiplicity 1. So that 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� = ��2(𝑛𝑛 − 2) + �4(𝑛𝑛 − 2)2 + 𝑛𝑛3(𝑛𝑛 − 2)�
1

, (0)
3𝑛𝑛−6
2 , (−8)

𝑛𝑛
2
−1, �2(𝑛𝑛 − 2) −

�4(𝑛𝑛 − 2)2 + 𝑛𝑛3(𝑛𝑛 − 2)�
1
�. 

 
From the spectrum mentioned above, we finally arrive at 
 

𝜌𝜌𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛� = 2(𝑛𝑛 − 2) + �4(𝑛𝑛 − 2)2 + 𝑛𝑛3(𝑛𝑛 − 2). 
   □ 

 
Theorem 3.7. In 𝛤𝛤𝐷𝐷2𝑛𝑛,  
 
(1) 𝐸𝐸𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛� = 2�𝑛𝑛 − 1 + �(𝑛𝑛 − 1)2 + 𝑛𝑛3(𝑛𝑛 − 1)�, for odd 𝑛𝑛,  
(2) 𝐸𝐸𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛� = 2 �2(𝑛𝑛 − 2) + �4(𝑛𝑛 − 2)2 + 𝑛𝑛3(𝑛𝑛 − 2)�, for even 𝑛𝑛. 
 
Proof. 
 
(1) From the eigenvalues of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝛤𝛤𝐺𝐺) in Theorem 3.6 (1) for odd 𝑛𝑛, we can obtain the 𝑃𝑃𝑃𝑃-energy of 𝛤𝛤𝐷𝐷2𝑛𝑛. 

Since 𝑛𝑛 ≥ 3 for 𝑛𝑛 ∈ ℕ and 𝑛𝑛 is odd, then  
 

𝐸𝐸𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛� = (𝑛𝑛 − 2)|0| + (𝑛𝑛 − 1)|−2| + �𝑛𝑛 − 1 ± �(𝑛𝑛 − 1)2 + 𝑛𝑛3(𝑛𝑛 − 1)� 
  = 2�𝑛𝑛 − 1 + �(𝑛𝑛 − 1)2 + 𝑛𝑛3(𝑛𝑛 − 1)�. 
 

(2) For even 𝑛𝑛, it follows from Theorem 3.6 (2), the 𝑃𝑃𝑃𝑃-energy is presented below 
 

𝐸𝐸𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛� = (1) �2(𝑛𝑛 − 2) ± �4(𝑛𝑛 − 2)2 + 𝑛𝑛3(𝑛𝑛 − 2)� + �
3𝑛𝑛 − 6

2 � |0| + �
𝑛𝑛
2 − 1� |−8| 

  = 2 �2(𝑛𝑛 − 2) + �4(𝑛𝑛 − 2)2 + 𝑛𝑛3(𝑛𝑛 − 2)�.  
□ 

 
Discussions 
 
By examining the results of Theorems 3.2 and 3.3 and Theorems 3.5 and 3.6 we obtain the explicit fact 
that the obtained energies are twice their spectral radius of 𝛤𝛤𝐷𝐷2𝑛𝑛.  
 
Corollary 4.1. In 𝛤𝛤𝐷𝐷2𝑛𝑛, 𝐸𝐸𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� = 2 ∙ 𝜌𝜌𝑆𝑆�𝛤𝛤𝐷𝐷2𝑛𝑛� and 𝐸𝐸𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛� = 2 ∙ 𝜌𝜌𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷2𝑛𝑛�. 
 
The classification of  𝛤𝛤𝐷𝐷2𝑛𝑛 is presented below. 
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Corollary 4.2. 𝛤𝛤𝐷𝐷2𝑛𝑛 is hyperenergetic corresponds to the Szeged and Padmakar-Ivan matrices. 
 
Based on Theorems 3.3 and 3.6, we derive the following fact. 
 
Corollary 4.3. In 𝛤𝛤𝐷𝐷2𝑛𝑛, the Szeged energy is always an even integer. 
 
Corollary 4.4. In 𝛤𝛤𝐷𝐷2𝑛𝑛, the Padmakar-Ivan energy is never an odd integer. 
 
As the illustration, we provide one example for 𝐷𝐷8 as presented in Example 4.1.  
 
Example 4.1. Let 𝐷𝐷8 = {𝑒𝑒, 𝑎𝑎,  𝑎𝑎2,  𝑎𝑎3, 𝑏𝑏, 𝑎𝑎𝑎𝑎,  𝑎𝑎2𝑏𝑏,  𝑎𝑎3𝑏𝑏}. By excluding the center of 𝐷𝐷8, we have 6 vertices 
in 𝛤𝛤𝐷𝐷8. The non-commuting graph for 𝐷𝐷8 is as in Figure 1. 
 
 
 
 
 
 
 

 
 
   

 
       

 
Figure 1. Non-Commuting graph for 𝐷𝐷8 

 
 
The construction of the Szeged matrix of 𝛤𝛤𝐷𝐷8 is as the following 
 

𝑆𝑆�𝛤𝛤𝐷𝐷8� = 𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷8� =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 4 4 4 4
0 0 4 4 4 4
4 4 0 4 0 4
4 4 4 0 4 0
4 4 0 4 0 4
4 4 4 0 4 0⎦

⎥
⎥
⎥
⎥
⎤

= �
02 4 𝐽𝐽2 4 𝐽𝐽2

4 𝐽𝐽2 −4𝐼𝐼2 + 4𝐽𝐽2 −4𝐼𝐼2 + 4𝐽𝐽2
4 𝐽𝐽2 −4𝐼𝐼2 + 4𝐽𝐽2 −4𝐼𝐼2 + 4𝐽𝐽2

�. 

 
The characteristic formula of 𝑆𝑆�𝛤𝛤𝐷𝐷8� and 𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷8� are 
 

𝑃𝑃𝑆𝑆�𝛤𝛤𝐷𝐷8�(𝜆𝜆) = 𝑃𝑃𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷8�(𝜆𝜆) = (𝜆𝜆)3(𝜆𝜆 + 8)2(𝜆𝜆 − 16). 
 
By using Maple, we have confirmed that  

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝛤𝛤𝐷𝐷8� = �16(1), 0(3), −8(2)� and 𝜌𝜌𝑆𝑆�𝛤𝛤𝐷𝐷8� = 𝜌𝜌𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷8� = 16. 
 

Therefore, the Szeged and Padmakar-Ivan energies of 𝛤𝛤𝐷𝐷8 are as follows: 
 

𝐸𝐸𝑆𝑆�𝛤𝛤𝐷𝐷8� = 𝐸𝐸𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷8� = (1)|16| + (3)|0| + (2)|−8| = 32 = 2 ∙ 𝜌𝜌𝑆𝑆�𝛤𝛤𝐷𝐷8� = 2 ∙ 𝜌𝜌𝑃𝑃𝑃𝑃�𝛤𝛤𝐷𝐷8�. 

 
Conclusion 
 
Graphs can be defined in groups as demonstrated in this paper. They can also be associated with 
matrices based on certain definitions such as the Szeged and Padmakar-Ivan matrices. The eigenvalues 
of these matrices provide the concept of spectral graph theory. In this article, the formula of the spectral 
radius and energy of 𝛤𝛤𝐷𝐷2𝑛𝑛 associated with both matrices are determined. We also presented the obtained 
energies are always twice their spectral radius and are hyperenergetic. For further research, the 
discussion can be extended to the graph defined on rings including the prime ideal graph.  
 
 

𝑎𝑎 𝑎𝑎3 

𝑏𝑏 

𝑎𝑎2𝑏𝑏 

𝑎𝑎𝑎𝑎 

𝑎𝑎3𝑏𝑏 
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