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Abstract Compositional data usually refers to data on the individual components that make up a 
whole. Such data are common in many fields, especially in chemistry, biology, geology, and other 
scientific and engineering fields. However, in many real-life situations, a large number of missing 
values are often collected. The complexity of compositional data with missing values makes 
traditional estimation methods seem overwhelming. Therefore, how to effectively perform 
statistical inference on compositional data with missing values has attracted the attention of many 
scholars in recent years. The logarithmic scale transformation provides a possibility for 
compositional data, but this transformation has limited requirements on the components of the 
compositional data, such as not including or missing fixes and constraints. Therefore, it is of great 
significance to explore a new estimation method for composition data theoretically. In this paper, a 
compositional data imputation method based on the adaptive group least absolute shrinkage and 
selection operator (AGLasso) is proposed. AGLasso is able to adapt imputation methods to 
different data distributions and patterns based on the characteristics of the data. While traditional 
methods may result in lost or biased information, AGLasso attempts to impute while preserving 
data integrity. Through data analysis, the imputation effect of compositional data containing 
missing values is compared under different missing rates and correlation coefficients, and a 
comparative study is conducted with the Lasso imputation method, the adaptive Lasso imputation 
method and the group Lasso imputation method. The results show that adaptive group Lasso is 
superior to the other three interpolation methods. In domains such as healthcare data, where data 
quality has a huge impact on decision making, AGLasso can help improve data integrity and 
usability. And in the future, Generative Adversarial Network (GAN)-based imputation methods and 
novel deep learning methods using techniques such as self-encoders are expected to show more 
power in dealing with missing values. 
Keywords: Compositional data, imputation method, machine learning, adaptive group lasso. 

 

 
Introduction 
 
Compositional data is data consisting of components (or constituents), where each component 
represents a part of the whole and the sum of all components constitutes the whole. This type of data is 
usually expressed as relative proportions or percentages rather than absolute quantities [36]. However, 
most statistical analysis methods are based on complete data, and the log-ratio transformation will not 
be implemented when there are missing values in the data set, so the treatment of missing values in 
high-dimensional compositional data is of great significance [8].  
 
For the problem of imputation of missing values in high dimensional compositional data, common 
approaches include, mean or median imputation: for each missing component, imputation is performed 
using the mean or median value that has been observed for that component. The k-nearest neighbor 
imputation method utilizes the idea of k-nearest neighbors to find samples that are similar to the pattern 
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of the missing component and then interpolates using the component values of those samples [44]. 
Model imputation methods utilize information from other component and non-component data to build 
an appropriate model and then use that model to interpolate the missing values [3][4]. When choosing 
an imputation method, the nature of the data, the relationships between the components, the information 
available, and the assumptions of the interpolation method need to be considered. The choice of 
imputation method may also involve model complexity and computational complexity. In practice, it is 
often necessary to experiment and compare methods on a case-by-case basis to find the most 
appropriate method for the data set [19]. 
 
Missing data refers to instances where certain observations in a dataset are absent or not recorded. 
These gaps may arise due to technical issues, oversights during data collection, or intentional data 
deletion. Based on the mechanism of the missingness, missing data is generally categorized into three 
types: Missing Completely at Random (MCAR), where the missingness is unrelated to any variables; 
Missing at Random (MAR), where the missingness is related to some observed variables; and Missing 
Not at Random (MNAR), where the missingness is related to the unobserved values themselves. 
Understanding the type of missing data is crucial for selecting the appropriate handling method. In 
practice, common imputation methods are single imputation [31], multiple imputation [33], etc., these 
imputation methods have more or less shortcomings [1]. For example, mean imputation [29], in practice, 
easy to underestimate the variance and the accuracy of regression interpolation strongly depends on 
the quality of auxiliary information. Therefore. The selection of the missing value treatment method is 
particularly important. If they are not handled properly, the results of the statistical analysis will have a 
serious negative impact [9]. 

 
In imputation methods, high-dimensional data often contain a lot of redundancy and noise, which 
increases the complexity and computational cost of the imputation model. For statistical analysis of high-
dimensional data, it is usually necessary to consider the variable selection strategy for dimensionality 
reduction, and some previously proposed dimensionality reduction methods, such as clustering, partial 
least squares. The processing results of principal component regression, ridge regression, and tree-
based integration methods are not ideal [15]. Through dimensionality reduction techniques, the data 
dimensionality can be reduced and the most informative features can be extracted, thus simplifying the 
interpolation process and improving the accuracy and efficiency of the imputation. This process not only 
reduces the computational burden, but also reduces the risk of model overfitting. 
 
The problem is the dimensionality reduction technique for high-dimensional compositional data. Due to 
the existence of these characteristics of high-dimensional data: dimensional catastrophe, overfitting 
computational complexity, feature selection, data sparsity, etc., which makes it difficult to analyze and 
process high-dimensional data. In this case, the processing methods that have been successfully applied 
to data in low-dimensional space are no longer adapted to high-dimensional data, which has led to the 
creation of some new methods for high-dimensional data [38]. Data dimensionality reduction is a 
particularly effective method for solving the difficulties of analyzing and processing high-dimensional 
data, and has been widely applied in the fields of data compression, data mining, machine learning, 
pattern recognition, and visualization of data. 
 
Lasso stands for "Least absolute shrinkage and selection operator." It is a statistical method used for 
variable selection and regularization in linear regression models [41]. Lasso adds a penalty term to the 
ordinary least squares (OLS) objective function, which includes the sum of squared residuals. The 
penalty term is proportional to the absolute values of the regression coefficients. This paper employs the 
Adaptive Group Lasso algorithm to address the imputation problem in high-dimensional compositional 
data with missing values. The Adaptive Group Lasso (AGLasso) algorithm is a variable selection method 
that effectively addresses the limitations of traditional imputation methods in terms of estimation accuracy 
and computational speed. AGLasso is an extension of the standard Lasso and Group Lasso methods. It 
was designed to address some of the limitations inherent in these earlier techniques, particularly in the 
context of handling grouped variables and achieving more accurate variable selection. It introduces an 
adaptive weighting mechanism that assigns different penalties to different groups based on their 
importance. This is typically achieved by using weights inversely proportional to some initial estimates 
of the coefficients, which can more effectively differentiate between relevant and irrelevant groups of 
variables. This leads to better variable selection, particularly in high-dimensional settings where many 
variables are present but only a few are truly influential. On one hand, compared to the model parameters 
of traditional imputation methods, Adaptive Group Lasso can simultaneously perform parameter 
estimation and variable selection, thus enhancing the accuracy of imputation estimates. On the other 
hand, Adaptive Group Lasso is an extension of Group Lasso and Adaptive Lasso, combining the 
advantages of both [16]. 
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To enhance the computational speed of Adaptive Group Lasso, we transform it into a two-step Group 
Lasso solution. This algorithm not only relaxes the assumptions of the model but also significantly 
improves the solving speed of Group Lasso, providing great convenience for handling high-dimensional 
data. In this study, we compare this method with Adaptive Lasso, Group Lasso, and Lasso, validating 
the superiority of the new method in terms of missing rates and correlation coefficients [27]. 
 
AGLasso further considers the correlation of variable groups on the basis of Adaptive Lasso. By 
weighting the variable groups, it is able to deal with the intrinsic structure and correlation in the data, and 
is suitable for interpolation tasks where there is significant correlation between variables in high-
dimensional data. The new AGLasso estimation method was compared with ALasso, GLasso and Lasso 
imputation methods for compositional data with missing values. The performance of the proposed model 
is quantitatively evaluated using MSE, MADE, RMSE and NRMSE. In the AGLasso method, the 
minimum 3.12% and maximum 12.68% percentage improvement in MSE values; the minimum 5.70% 
and maximum 18.27% percentage improvement in MADE values; the minimum 6.22% and maximum 
26.60% percentage improvement in RMSE values; the minimum 4.27% and maximum 14.83% 
percentage improvement in NRMSE values. Based on the results, it can be concluded that the AGLasso 
imputation method outperforms some existing methods in prediction accuracy and variable selection. 
Therefore, this paper not only identifies a solution for imputation problems in compositional data that 
ensures estimation accuracy while achieving faster computational speed but also expands the 
application scope of AGLasso. It enriches the application of Lasso theory in the field of imputation 
problems. Combining AGLasso with deep learning can significantly enhance missing value imputation. 
Deep learning's capabilities in feature extraction and nonlinear modeling can optimize the adaptive 
weights of AGLASSO, thereby improving imputation accuracy. This integration not only addresses 
complex data patterns but also tackles high-dimensional data challenges, extending applications to fields 
such as medical imaging and financial data. 
 
The model evaluations used in this study are Mean Squaree Error (MSE), Mean Aitchison Distance Error 
(MADE), Root Mean Square Error (RMSE) and Normalized Root Mean Square Error (NRMSE). 
Evaluation model metrics are needed to determine the quality and accuracy of the model. The purpose 
of filling in missing values in compositional data is to make the filled-in data as close as possible to the 
actual complete data. This closeness is reflected in the true value versus the filled value. Therefore, we 
can judge the estimation effect of this series of filling methods by the degree of this proximity. 
 
Materials and Methods 
 
The origin of the Adaptive Group Lasso (AGLasso) imputation method can be traced back to the Lasso 
imputation method, and its development has undergone a series of improvements and extensions from 
the Lasso imputation method to the Adaptive Lasso (ALasso) imputation method, then to the Group 
Lasso (GLasso) imputation method, and finally to the Adaptive Group Lasso imputation method.  
 
Lasso Imputation Method 
The origin of The Lasso method was initially proposed by Tibshirani [34]. Its main idea is to introduce a 
penalty term on top of the least squares estimation by enforcing the sum of the absolute values of the 
parameters to be less than a constant, thereby minimizing the sum of squared residuals. The Lasso 
algorithm for solving the imputation problem for datasets containing missing values can be expressed 
as follows [6]: 
 

𝛽̂𝛽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝜆𝜆) = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚�‖𝑌𝑌 − 𝑋𝑋𝛽𝛽‖22 + 𝜆𝜆��𝛽𝛽𝑗𝑗�
𝑝𝑝

𝑗𝑗=1

�                                                                                                               (1) 

 
where the regularization parameter 𝜆𝜆 > 0 is a norm for the vector 𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2,⋯ , 𝑥𝑥𝑖𝑖𝑖𝑖)𝑇𝑇 , (𝑖𝑖 = 1,2,⋯ ,𝑛𝑛)is 
the 𝑖𝑖-th 𝑝𝑝 × 1explanatory variable, and the vector 𝑌𝑌 = (𝑦𝑦1,𝑦𝑦2,⋯ ,𝑦𝑦𝑛𝑛)𝑇𝑇 is a a vector of 𝑛𝑛 × 1 explained 
variable, 𝑋𝑋 = (𝑥𝑥1,𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛)𝑇𝑇 is the matrix of 𝑛𝑛 × 𝑝𝑝 explanatory variables, and 𝛽𝛽 = (𝛽𝛽1 ,𝛽𝛽2,⋯ ,𝛽𝛽𝑝𝑝)𝑇𝑇 is the 
coefficients vector of the 𝑝𝑝 × 1 explanatory variables [14].  

 
According to Equation (1), it can be observed that the main idea of the Lasso method is to introduce a 
penalty term on top of the least squares estimation. This penalty term compresses some model 
coefficients, driving certain coefficients to be zero, ultimately achieving variable selection. By 
incorporating this penalty term, Lasso enhances the sparsity of the model, making it advantageous for 
handling high-dimensional linear regression problems [35]. 
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The selection of the penalty parameter 𝜆𝜆 is a crucial step in Lasso estimation. A larger penalty parameter 
leads to greater punishment on coefficients, making them more likely to be compressed to zero. 
Consequently, the entire model becomes more sparse, which may result in overlooking some important 
variables, causing the model to exhibit significant bias. When the regularization parameter 𝜆𝜆 is too small, 
retaining too many explanatory variables may lead to a highly redundant model. This can diminish the 
model's explanatory power and increase the risk of overfitting. 

 
Therefore, selecting an appropriate penalty parameter is essential. A commonly used approach is cross-
validation, which involves randomly dividing the original sample into a training set and a validation set. 
Initially, the model is trained using the training set, and its performance is then evaluated on the validation 
set. This process is repeated, and the model with the optimal performance is selected. In this study, K-
fold cross-validation is employed. 
 
Since Tibshirani first introduced Lasso in 1996, the method has established a theoretical foundation for 
handling missing data by incorporating 𝐿𝐿1 norm constraints for variable selection and regularization. In 
2006, Chen and Ibrahim [7] were the first to apply Lasso directly to missing data, exploring its 
effectiveness in variable selection. Zou [45] later advanced the method by introducing adaptive Lasso, 
which enhances its capability to handle complex data by applying varying penalties to different 
coefficients. In 2010, Suvrit Sra and colleagues [10][23] proposed a Lasso-based matrix completion 
method, particularly suited for addressing missing values in large-scale datasets. In 2012, Wainwright 
and Loh [21] extended Lasso’s applicability to high-dimensional data by studying methods for missing 
data imputation in such contexts. In 2013, Simon and Friedman [32] introduced Adaptive Group LASSO, 
merging Group LASSO and Adaptive LASSO principles to enable more flexible variable selection. In 
2018, Zhao and Rocha [43] applied Adaptive Group LASSO to missing data for the first time, developing 
an algorithm that effectively addresses complex missing patterns in high-dimensional datasets. Moving 
into the 2020s, Lasso was further refined by integrating deep learning techniques, such as autoencoders 
[28], significantly improving interpolation performance under complex missing data patterns. 
 
Adaptive Lasso Imputation Method 
The Lasso method has a drawback in that it applies the same level of compression to all coefficients, 
making it prone to excessive shrinkage for coefficients with larger absolute values. This can lead to 
overly sparse results. Recognizing this issue, an improvement to the Lasso method, introducing the 
Adaptive Lasso imputation method [20]. 

 
The Adaptive Lasso method, proposed by [18], is an improvement upon the Lasso method. In the Lasso 
method, each coefficient experiences the same level of shrinkage. On the other hand, the Adaptive 
Lasso method introduces weighting to the coefficients in the penalty term. This results in varying degrees 
of compression for different coefficients, where larger coefficients receive a smaller penalty, and smaller 
coefficients receive a larger penalty. This adaptive adjustment of penalties for different coefficients helps 
achieve consistent estimation results. The expression for the Adaptive Lasso method is as follows [30]: 
 

   𝛽̂𝛽𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜆𝜆) = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚�‖𝑌𝑌 − 𝑋𝑋𝑋𝑋‖22 + 𝜆𝜆𝑛𝑛�𝜔𝜔�𝑗𝑗�𝛽𝛽𝑗𝑗�
𝑝𝑝

𝑗𝑗=1

�                                                                                                  (2) 

 
where 𝜆𝜆𝑛𝑛  is the adjustment parameter used to balance the penalty term and empirical risk.𝜔𝜔� =
1 �𝛽̂𝛽�𝑣𝑣, 𝑣𝑣 > 0⁄  is the adaptive penalty weight, which works by making the penalty less for the more 
important variables. The penalty term expression is 𝜆𝜆𝑛𝑛 ∑ 𝜔𝜔�𝑗𝑗�𝛽𝛽𝑗𝑗�

𝑝𝑝
𝑗𝑗=1 , the regression coefficient 𝛽𝛽 obtained 

with 𝐿𝐿1 parametric will have less non-zero components and get more sparse solutions, so 𝐿𝐿1 parametric 
number can be used for feature selection [37]. 
 
Group Lasso Imputation Method 
The Group Lasso method is another significant improvement upon the Lasso method [24]. Unlike the 
Lasso method, the Group Lasso method groups coefficients together and performs variable selection 
based on the level of each group. Consider the following generalized linear regression model with 𝐿𝐿 
factors: 
   𝑌𝑌

= �𝑋𝑋𝑙𝑙𝛽𝛽𝑙𝑙 + 𝜀𝜀
𝐿𝐿

𝑙𝑙=1

                                                                                                                                                                           (3) 
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where 𝛽𝛽𝑙𝑙 is a 𝑝𝑝𝑙𝑙-dimensional coefficients corresponding to the 𝑙𝑙-th factor. According to Group Lasso's 
"integer-in-integer-out" property, if a group is selected, then all coefficients in the group have non-zero 
estimates, and therefore the corresponding variable type is considered significant, otherwise all 
coefficients of the variables included in that variable type are zero. Extending the Lasso method to groups 
gives rise to Group Lasso: 
 

 𝛽̂𝛽𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝜆𝜆) = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚��𝑌𝑌 −�𝑋𝑋𝑙𝑙𝛽𝛽𝑙𝑙

𝐿𝐿

𝑙𝑙=1

�
2

2

+ 𝜆𝜆�‖𝛽𝛽𝑙𝑙‖2

𝐿𝐿

𝑙𝑙=1

�                                                                                               (4) 

 
Adaptive Group Lasso Imputation Method 
The Adaptive Group Lasso method (AGLasso), employed in this study, is a further extension of the Group 
Lasso method, integrating the advantages of the Adaptive Lasso method [25]. While the Group Lasso 
method applies the same weight to each group of coefficients, leading to uniform shrinkage for each 
group, it may result in excessive compression for group vectors with larger norms. The Adaptive Group 
Lasso method addresses this issue by incorporating the benefits of the Adaptive Lasso method. It 
introduces weighting to each group of coefficients in the penalty term, ensuring varying degrees of 
shrinkage for each group. This allows for a milder penalty on group vectors with larger norms and a 
stronger penalty on group vectors with smaller norms. By performing variable selection at the group level 
and adaptively adjusting the compression for each group, it enhances the accuracy of variable selection, 
the following Adaptive Group Lasso (AGLasso) method [11]: 
 

𝛽̂𝛽𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜆𝜆) = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚��𝑌𝑌 −�𝑋𝑋𝑙𝑙𝛽𝛽𝑙𝑙

𝐿𝐿

𝑙𝑙=1

�
2

2

+ �𝜆𝜆𝑙𝑙‖𝛽𝛽𝑙𝑙‖2

𝐿𝐿

𝑙𝑙=1

�                                                                                            (5) 

 
where 𝜆𝜆𝑙𝑙 = 𝜆𝜆�𝛽̂𝛽𝑙𝑙�

−𝑣𝑣,𝛽̂𝛽𝑙𝑙 is the consistent estimator without penalty term. Considering that this paper is a 
high-dimensional linear regression model, the traditional least-squares method can not get the 
corresponding results [36].  
 

Let 𝑋𝑋 = �

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛

� = (𝑥𝑥(1) 𝑥𝑥(2) ⋯ 𝑥𝑥(𝐷𝐷)) = �

𝑥𝑥11 𝑥𝑥12 ⋯ 𝑥𝑥1𝐷𝐷
𝑥𝑥21 𝑥𝑥22 ⋯ 𝑥𝑥2𝐷𝐷
⋮ ⋮ ⋱ ⋮
𝑥𝑥𝑛𝑛1 𝑥𝑥𝑛𝑛2 ⋯ 𝑥𝑥𝑛𝑛𝑛𝑛

�                                                           (6) 

be the compositional data matrix. The compositional data with missing values, an iterative algorithm via 
Adaptive Group Lasso imputation method can be summarized as follows [40]. 
 
Step 1: Isometric logarithmic ratio transformation  
Let 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖) = 𝑧𝑧𝑖𝑖 = (𝑧𝑧𝑖𝑖1, 𝑧𝑧𝑖𝑖2,⋯ , 𝑧𝑧𝑖𝑖𝑖𝑖)𝑇𝑇 , (𝑝𝑝 = 𝐷𝐷 − 1; 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛), the compositional data in simplex space are 
transformed into real numbers in Euclidean space, the transformation here is called isometric log-ratio 
transformations (𝑖𝑖𝑖𝑖𝑖𝑖): 

𝑧𝑧𝑖𝑖 = �
𝐷𝐷 − 𝑖𝑖

𝐷𝐷 − 𝑖𝑖 + 1 𝑙𝑙𝑙𝑙
�∏ 𝑥𝑥𝑙𝑙𝐷𝐷

𝑙𝑙=𝑖𝑖+1
𝐷𝐷−𝑖𝑖

𝑥𝑥𝑖𝑖
 , 𝑖𝑖

= 1,2,⋯ ,𝑑𝑑.                                                                                                                                              (7) 
Step 2: Feature grouping 
According to China's resident income data classification policy, features are divided into L groups, and 
features within each group are considered to have similar properties or belong to the same category. 
Step 3: Setting the initial value 
Set 𝑙𝑙 = 1,𝑛𝑛 = 1,𝐴𝐴𝑛𝑛 = ∅.  
Use the k-nearest neighbor imputation algorithm to initially replace missing values. Sort the variables 
based on the number of missing values in the original data:𝑁𝑁(𝑧𝑧1) ≥ 𝑁𝑁(𝑧𝑧2) ≥ ⋯ ≥ 𝑁𝑁(𝑧𝑧𝑝𝑝), where𝑁𝑁(𝑧𝑧𝑗𝑗) 
represents the number of missing cells in the variable 𝑧𝑧𝑗𝑗.  
Step 4: Estimated values of regression coefficients 
For a given 𝜆𝜆𝑙𝑙=, original missing cells 𝑀𝑀𝑙𝑙= are interpolated and the estimated values of regression 
coefficients are obtained from the observed cells 𝑂𝑂𝑙𝑙 in the variable 𝑧𝑧𝑙𝑙, and replace missing parts 𝑧̂𝑧𝑙𝑙

𝑀𝑀𝑙𝑙 =
𝑧𝑧−𝑙𝑙
𝑂𝑂𝑙𝑙𝛽̂𝛽∗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  using the estimated regression coefficients: 

𝛽̂𝛽∗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜆𝜆) = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑧𝑧𝑙𝑙
𝑀𝑀𝑙𝑙 − ∑ 𝑧𝑧−𝑙𝑙

𝑂𝑂𝑙𝑙𝛽𝛽𝑙𝑙𝐿𝐿
𝑙𝑙=1  

 
�
2

2
+ ∑ 𝜆𝜆𝑙𝑙𝜔𝜔�𝑙𝑙|𝛽𝛽𝑙𝑙|𝐿𝐿

𝑙𝑙=1 �                                                                              (8)  
Step 5: Let 𝑙𝑙 = 𝑙𝑙 + 1,𝑛𝑛 = 𝑛𝑛 + 1, update 𝐴𝐴𝑛𝑛. 
Step 6: We repeat Step (1)-(5) until we have traversed all variables. 
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Step 7: Repeat Step (4)-(6) until the missing parts are stabilized,  
Let ∑ (𝑧̂𝑧𝑙𝑙

𝑀𝑀𝑙𝑙 − 𝑧̃𝑧𝑙𝑙
𝑀𝑀𝑙𝑙)2 < 𝛿𝛿𝑖𝑖  

 
=, for all 𝑖𝑖 ∈ 𝑀𝑀𝑙𝑙=, for a small constant 𝛿𝛿=, where 𝑧̂𝑧𝑙𝑙

𝑀𝑀𝑙𝑙= is the estimated value of the 
current iteration and 𝑧̃𝑧𝑙𝑙

𝑀𝑀𝑙𝑙 is the 𝑖𝑖-th estimated value of the previous iteration. 
Step 8: Result analysis and comparison 
We will present the criteria for evaluating the predictive accuracy of the model in the next subsection. 
The framework structure of the imputation method for compositional data with missing values is shown 
in Figure 1. 
 
Pseudocode. The algorithm for AGLASSO imputation method. 
Input: transformation 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖) = 𝑧𝑧𝑖𝑖 = (𝑧𝑧𝑖𝑖1, 𝑧𝑧𝑖𝑖2,⋯ , 𝑧𝑧𝑖𝑖𝑖𝑖), 𝑥𝑥𝑖𝑖𝜖𝜖𝑆𝑆𝐷𝐷, 𝑧𝑧𝑖𝑖𝜖𝜖𝑅𝑅𝑝𝑝, 𝑝𝑝 = 1,2,⋯ ,𝐷𝐷 − 1=, 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛=, 
features are divided into 𝐿𝐿 𝜖𝜖 {1,2,⋯ , 𝑝𝑝} groups.  
Initialization: Sort the variables 𝑁𝑁(𝑧𝑧1) ≥ 𝑁𝑁(𝑧𝑧2) ≥ ⋯ ≥ 𝑁𝑁(𝑧𝑧𝑝𝑝),=set 𝑙𝑙 = 1,𝑛𝑛 = 1,𝐴𝐴𝑛𝑛 = ∅,𝐴𝐴𝑛𝑛 = {𝑗𝑗: 𝛽̂𝛽𝑗𝑗 ≠
0}, 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝.  

Define  𝛽̂𝛽∗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜆𝜆) = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑧𝑧𝑙𝑙
𝑀𝑀𝑙𝑙 − ∑ 𝑧𝑧−𝑙𝑙

𝑂𝑂𝑙𝑙𝛽𝛽𝑙𝑙𝐿𝐿
𝑙𝑙=1  

 
�
2

2
+ ∑ 𝜆𝜆𝑙𝑙𝜔𝜔�𝑙𝑙|𝛽𝛽𝑙𝑙|𝐿𝐿

𝑙𝑙=1 � ,𝑀𝑀𝑙𝑙 ⊂ {1,2,⋯ ,𝑛𝑛}= is the missing 
cells, 𝑂𝑂𝑙𝑙 ⊂ {1,2,⋯ ,𝑛𝑛}\𝑀𝑀𝑙𝑙 is the observed cells.    
for 𝑙𝑙 = 1to L do 

  𝑧̂𝑧𝑙𝑙
𝑀𝑀𝑙𝑙 = 𝑧𝑧−𝑙𝑙

𝑂𝑂𝑙𝑙𝛽𝛽�
∗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

  
for 𝑖𝑖𝑖𝑖{1,2,⋯ ,𝑛𝑛} do 

     𝑧̃𝑧𝑙𝑙
𝑀𝑀𝑙𝑙 ←  𝑧̂𝑧𝑙𝑙

𝑀𝑀𝑙𝑙 
end for 

end for  
Let 𝑙𝑙 = 𝑙𝑙 + 1,𝑛𝑛 = 𝑛𝑛 + 1, update 𝐴𝐴𝑛𝑛. 
until  ∑ (𝑧̂𝑧𝑙𝑙

𝑀𝑀𝑙𝑙 − 𝑧̃𝑧𝑙𝑙
𝑀𝑀𝑙𝑙)2 < 𝛿𝛿𝑖𝑖  

 
. 

Output:  𝛽̂𝛽𝑙𝑙∗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝛽̂𝛽𝑙𝑙∗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴/𝜔𝜔�𝑙𝑙. 
 

 

 
 

Figure 1. Flow chart for the imputation method for compositional data with missing values 
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Model Selection Criteria 
 

MSE is a commonly used metric to measure the average squared difference between the actual values 
and the interpolated values of a model and it defines is given by [39]: 
 
 𝑀𝑀𝑀𝑀𝑀𝑀

=
1
𝑛𝑛𝐻𝐻

� (𝑥𝑥�𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖)2
(𝑖𝑖,𝑗𝑗)∈𝐻𝐻

                                                                                                                                                            (9) 

 
where 𝑥𝑥�𝑖𝑖𝑖𝑖is the imputed value of 𝑥𝑥𝑖𝑖𝑖𝑖, 𝑥𝑥𝑖𝑖𝑖𝑖 is the ture value.𝐻𝐻 = {(𝑖𝑖, 𝑗𝑗): 𝑖𝑖 ∈ (1,2,⋯ ,𝑛𝑛); 𝑗𝑗 ∈ 𝑀𝑀𝑖𝑖} is the set of 
column indicators, which represents all rows containing missing values. 𝑀𝑀𝑖𝑖 ⊂ {1,2,⋯ ,𝐷𝐷} represents the 
set of missing column indices in 𝑥𝑥𝑖𝑖. 𝑛𝑛𝐻𝐻 = |𝐻𝐻| denotes the number of missing values in the compositional 
data matrix 𝑋𝑋 = (𝑥𝑥𝑖𝑖𝑖𝑖)𝑛𝑛×𝐷𝐷  

. 
 

MADE is defined as the mean Aitchison distance between the imputed compositional data 𝑥𝑥�𝑖𝑖 and the 
true compositional data 𝑥𝑥𝑖𝑖: 
 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

=
1
𝑛𝑛𝑀𝑀

�𝑑𝑑𝐴𝐴(𝑥𝑥�𝑖𝑖 , 𝑥𝑥𝑖𝑖)
𝑖𝑖∈𝑀𝑀

                                                                                                                                                                 (10) 

 
Where 𝑑𝑑𝐴𝐴(𝑥𝑥�𝑖𝑖 ,𝑥𝑥𝑖𝑖) is the Aitchison distance of the imputed value 𝑥𝑥�𝑖𝑖𝑖𝑖 and the ture value 𝑥𝑥𝑖𝑖𝑖𝑖. 𝑛𝑛𝑀𝑀 denotes the 
number rows of missing values in the compositional data matrix 𝑋𝑋 = (𝑥𝑥𝑖𝑖𝑖𝑖)𝑛𝑛×𝐷𝐷  

.      
 
RMSE is used to assess the accuracy of interpolated models, especially in regression analysis, and it 
defines is given by [17]: 
 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √𝑀𝑀𝑀𝑀𝑀𝑀

= �
1
𝑛𝑛𝐻𝐻

� (𝑥𝑥�𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖)2
(𝑖𝑖,𝑗𝑗)∈𝐻𝐻

                                                                                                                                                       (11) 

 
NRMSE is a variant of RMSE that provides a normalized measure of prediction error. NRMSE is 
calculated by [5]: 
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
√𝑀𝑀𝑀𝑀𝑀𝑀
𝑆𝑆𝑆𝑆

=
� 1
𝑛𝑛𝐻𝐻

∑ (𝑥𝑥�𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖)2(𝑖𝑖,𝑗𝑗)∈𝐻𝐻      

1
𝑛𝑛𝐻𝐻 − 1∑ (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥̅𝑥)2(𝑖𝑖,𝑗𝑗)∈𝐻𝐻

                                                                                                                                              (12) 

 

where 𝑥̅𝑥 = 1
𝑛𝑛𝐻𝐻
∑ 𝑥𝑥𝑖𝑖𝑖𝑖  

(𝑖𝑖,𝑗𝑗)∈𝐻𝐻 is the mean value of missing parts in the compositional data matrix 𝑋𝑋 = (𝑥𝑥𝑖𝑖𝑖𝑖)𝑛𝑛×𝐷𝐷  
. 

SD is the standard deviation of missing parts in the compositional data matrix 𝑋𝑋 = (𝑥𝑥𝑖𝑖𝑖𝑖)𝑛𝑛×𝐷𝐷  
. 

 
Experimental Setup 
 
To further validate the effectiveness of the proposed model in the study, we employed the following 
methods: AGLasso, ALasso, GLasso, and Lasso will be evaluated based on different parameters and 
experimental setups. 
 

Experimental Tools and Procedures 
The experimental tools include operating software such as R and Python. The specific steps in the 
experiment are as follows: 
 
1. Generate random numbers with certain compositional data characteristics to create a dataset A. 
2. Randomly remove some data from the generated complete random numbers to form a missing data 
set with different missing rates. 
3. Apply imputation methods to the compositional data with missing values to obtain a complete dataset 
B. 
4. Compare the differences between dataset A and dataset B, calculate the MSE, MADE, RMSE, 
NRMSE for both datasets, and analyze the final imputation effectiveness of the methods used. 



 

e-ISSN 2289-599X | DOI: https://doi.org/10.11113/mjfas.v20n3.3331 1558 

Tian et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 21 (2025) 1551-1565 

Experiment Explanation 
In order to conduct appropriate data simulation, this thesis simulates standardized data when 
establishing datasets. The term "data standardization" refers to scaling data proportionally to fall within 
a specific small range, also known as the exponentiation of statistical data. It mainly involves two aspects: 
data homogenization and dimensionless processing. Data homogenization addresses issues with 
different types of data. Directly summing up indicators of different natures cannot accurately reflect the 
comprehensive results of different forces. It is necessary to first consider changing the nature of inverse 
indicator data so that all indicators tend to the same trend in influencing the evaluation scheme. 
Dimensionless processing mainly addresses the comparability of data [2]. 
 
The reason for standardizing the data is that different variables often have different units and magnitudes. 
In normal data analysis, if there is a significant difference in the degree of difference between original 
data indicators, it is easy to highlight the role of indicators with higher absolute values in comprehensive 
analysis. Therefore, removing the unit constraints of the data, transforming it into dimensionless pure 
numerical values, makes it convenient for indicators with different units or magnitudes to be compared 
and weighted, which is a common measure in data processing. For the convenience of software 
programming and effect comparison, this paper uniformly adopts simulated data that has been 
standardized for research purposes. 

 
Under the missing completely at random (MCAR) mechanism, the performance of the proposed method 
under different missing rate and correlation levels is studied [12][13]. 

 

Data Collection 
The rabbit dataset is provided (https://www.ebiacuk/ena/browser/view/PRJEB46755), with accession 
number PRJEB46755. The simulated datasets were analyzed in the supplementary material in reference, 
it can be downloaded in the supplementary material in reference [26]. The original data contained 89 
samples and 3,937 components (microbial genes). The highest correlation is equal to 0.9991, 
corresponding to gene No.856. The relative abundance of this gene is ranked 201st. The minimum 
variance of the log-transformed relative abundance of the components is equal to 0.00117, which also 
corresponds to gene No.856. 
 
In order to simply show the imputation effect of the Adaptive Lasso method, only the 120 genes of rabbit 
dataset 89 × 3937 with the largest empirical variance were used for model inference. The sample size 
of this dataset is 𝑛𝑛 = 89, and the number of random variables is 𝐷𝐷 =120. Figure 2 shows a histogram of 
the Procrustes correlations for all 3937 reference genes of the components (microbial genes), and total 
log-ratio variance is 0.1601, calculated based on the isometric logarithmic ratio (𝑖𝑖𝑖𝑖𝑖𝑖) of  3937 microbial 
genes. Among the 3937 genes, this gene ranks 201st in relative abundance.  
 

 
 
Figure 2. Histograms of Procrustes correlations for each group of all genes in the rabbit dataset 
calculated using different reference components 

https://www.ebiacuk/ena/browser/view/PRJEB46755
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The experimental environment was set up on a Windows 10 operating system with 8GB of RAM and a 
CPU clock speed of 2.4GHz. Table 1 displays the parameters involved in each experiment. 

 
Table 1. Parameters for the proposed imputation method 
 

Parameter Explanation Parameter Value 
Data volume  𝑛𝑛 = 89 

Data dimension 𝐷𝐷 = 120 
Number of group  𝐿𝐿 = 5 

Compositional data in Simplex space 𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛)𝑇𝑇 
 Compositional data transformed to Real numbers in Euclidean space 

by isometric logarithmic ratio  (𝑖𝑖𝑖𝑖𝑖𝑖) 𝑍𝑍 = 𝑖𝑖𝑖𝑖𝑖𝑖(𝑋𝑋) 

Number of missing cells in the 𝑗𝑗-th variable 𝑁𝑁(𝑧𝑧𝑗𝑗) 
Coefficients vector of the explanatory variables 𝛽𝛽 = (𝛽𝛽1 ,𝛽𝛽2,⋯ ,𝛽𝛽𝑝𝑝)𝑇𝑇 

Imputed value of parameter 𝛽𝛽  𝛽̂𝛽 
Tuning parameter of Lasso 𝜆𝜆 

 Adjustment parameter of ALasso and AGLasso 𝜆𝜆𝑛𝑛 
Tuning parameter of GLasso 𝜆𝜆𝑙𝑙 = 𝜆𝜆�𝛽̂𝛽𝑙𝑙�

−𝑣𝑣, 𝑣𝑣 > 0 
Adaptive penalty weight of ALasso and AGLasso 𝜔𝜔� = 1 �𝛽̂𝛽�𝑣𝑣,𝑣𝑣 > 0⁄   

 
Results and Discussion 

 
First, real data matrix 𝑍𝑍 = (𝑧𝑧𝑖𝑖𝑖𝑖)𝑛𝑛×𝑝𝑝 is generated from multivariate normal distribution 𝑍𝑍 = 𝑁𝑁𝑝𝑝(𝜃𝜃,𝛴𝛴𝑟𝑟) and 
then compositional data matrix  𝑋𝑋 = (𝑥𝑥𝑖𝑖𝑖𝑖)𝑛𝑛×𝐷𝐷 =is obtained by inverse transformation of isometric 
logarithmic transformation 𝑖𝑖𝑖𝑖𝑖𝑖−1. To describe the varying degrees of correlation between the components, 
we set 𝜃𝜃 = (0,0,⋯ ,0)1×𝐷𝐷,𝛴𝛴𝑟𝑟 = 𝑟𝑟11𝑇𝑇 + (1 − 𝑟𝑟)𝐼𝐼,= where 𝐼𝐼𝑇𝑇 = (1,1,⋯ ,1)1×𝐷𝐷=, and correlation coefficients 
𝑟𝑟 = 0.35, 0.55, 0.75, 0.95= and different missing rates 5%, 10%, 20%, 30%, 40%, and set the missing 
pattern is MCAR (Missing Completely At Random). 

 
The Imputation Results of Different Missing Rates 
We use the Lasso imputation methods for the optimal  parameter 𝜆𝜆 = 0.05, the imputation method based 
on the ALasso, GLasso and AGLasso for the optimal pair (𝑣𝑣, 𝜆𝜆𝑛𝑛) = (1,0.5). Since 𝑛𝑛 < 𝐷𝐷=, i.e., high-
dimensional compositional data with missing values, here we compare AGLasso, ALasso, GLasso, and 
Lasso imputation effects, and the results of different missing rates are shown in Table 2. 

 
Table 2. Comparison results of different missing rates with all imputation method on the rabbit dataset 

 

MissingRate Method Model Evaluation Value 
MSE MADE RMSE NRMSE 

5% 

AGLasso 2.36 3.02 0.15 0.10 
ALasso 2.58 3.55 0.37 0.27 
GLasso 3.25 5.32 0.52 0.35 
Lasso 5.10 6.85 0.69 0.51 

10% 

AGLasso 2.88 3.31 0.21 0.21 
ALasso 3.02 3.69 0.36 0.36 
GLasso 3.54 4.58 0.59 0.58 
Lasso 3.97 5.90 0.94 0.74 

20% 

AGLasso 4.01 3.87 0.29 0.26 
ALasso 4.68 4.52 0.52 0.65 
GLasso 6.21 6.37 0.71 0.52 
Lasso 7.52 8.09 1.08 0.89 

30% 

AGLasso 3.54 4.78 0.44 0.45 
ALasso 4.36 5.21 0.68 0.78 
GLasso 5.78 6.80 0.94 0.96 
Lasso 8.54 7.51 1.55 1.80 

40% 

AGLasso 4.21 4.30 0.67 0.63 
ALasso 6.32 5.28 0.98 0.81 
GLasso 7.25 6.21 1.25 1.52 
Lasso 12.01 9.77 2.54 1.66 
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Table 2 makes it obvious that the values of the statistical indicators of each variable after filling using the 
AGLASSO method are the closest to the corresponding results of the complete dataset, with ALASSO 
and GLASSO being the second most effective and Lasso being the least effective. It can be observed 
that the fluctuation of deviation from the corresponding results of the complete data set is not significant, 
in the case of low missing rate (less than 20%); since this paper mainly compares the advantages and 
disadvantages of the effects of each filling method, the advantages and disadvantages of the filling 
effects of multiple filling itself will not be discussed. 
 
When the missing rate rises to 20%, the effect of using ALasso is closest to the result of the complete 
data set. At this point, the results of Lasso are also satisfactory, but they are much worse than the results 
when the missing rate is 5%. Obviously, as the missing rate increases, this relatively simple and primitive 
filling method can no longer meet the needs. The effect of AGLasso and GLasso is not much different, 
and the corresponding statistics of the complete data set are still close to each other. When the missing 
rate are 30% and 40%, the effect of AGLasso is closest to the standard result, the effect of ALasso and 
GLasso are second, the drawback of Lasso has been exposed, and the rest of the filling effects are not 
very satisfactory.  
 
At various missing rates, the RMSE of Lasso imputation is the highest. This is primarily because Lasso 
imputation does not consider the impact of explanatory variables on the missing data in the regression 
model when the dependent variable data is missing. It only considers the observed dependent variable 
and utilizes only the observed values for imputation, resulting in the poorest imputation. On the other 
hand, at various missing rates, the NRMSE obtained from GLasso imputation and ALasso imputation is 
very close. That is, the imputed values closely match the true values, and both alternately serve as 
optimal imputations. The NRMSE obtained from Lasso imputation is slightly worse than that from ALasso 
imputation and GLasso imputation, but significantly better than Lasso imputations. 
 
The Imputation Results of Different Correlation Coefficients 
For different correlation coefficients, we compare all imputation methods to experimental results. Similar 
as we consider correlation coefficients 𝑟𝑟 = (0.35, 0.55, 0.75, 0.95), when missing rate is 30%. We also 
use the Lasso imputation methods for the optimal parameter 𝜆𝜆 = 0.05, the imputation method based on 
the ALasso, GLasso and AGLasso for the optimal pair  (𝑣𝑣, 𝜆𝜆𝑛𝑛) = (1,0.5). The imputation results of 
different correlation coefficients are showed in Table 3.   
 

Table 3. Comparison results of different correlation coefficients with all imputation method on the rabbit dataset 
 

Correlation 
Coefficients  Method 

Model Evaluation Value 

MSE MADE RMSE NRMS
E 

𝑟𝑟 = 0.35 

AGLasso 5.01 5.63 0.64 0.54 
ALasso 5.66 6.79 0.85 0.77 
GLasso 6.52 7.41 1.04 0.86 
Lasso 7.25 8.20 1.28 1.20 

𝑟𝑟 = 0.55 

AGLasso 5.36 6.21 0.77 0.69 
ALasso 5.90 8.67 0.95 0.82 
GLasso 6.32 9.18 1.48 1.44 
Lasso 8.27 10.25 2.66 2.54 

𝑟𝑟 = 0.75 

AGLasso 8.21 6.54 0.85 0.79 
ALasso 10.25 8.24 1.02 1.27 
GLasso 12.04 9.57 3.28 3.54 
Lasso 15.18 11.48 6.24 6.57 

𝑟𝑟 = 0.95 

AGLasso 9.21 7.21 0.84 1.75 
ALasso 10.58 8.94 1.95 3.08 
GLasso 14.76 10.24 3.22 5.21 
Lasso 18.45 19.52 9.84 8.54 

 
 

As showed in Table 3 the estimator of the AGLasso has preferable performance out-performs the other 
competitive methods in almost all settings, since the reference components has considered the linear 
correlation between the variables and is always included in the selected model. The ALasso estimator 
performs better than GLasso, moreover when the correlation 𝑟𝑟 = 0.55, the value of  NRMSE based on 
the ALasso method are slightly smaller than the GLasso and Lasso method, whose error suddenly 
increases when 𝑟𝑟 = 0.75. 
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Compared with the ALasso and Lasso method, we can also conclude that as the correlation and the 
dimensionality increase the higher correlation coefficient and dimensionality of variables, the ALasso 
method imputation effect is better, when 𝑟𝑟 = 0.95. This is reasonable because the ALasso method 
achieve model selection and dimension reduction estimator using penalty function, some regression 
coefficient directly can down to zero, achieving the purpose of variable selection, at the same time, it can 
reduce the dimension of data. 
 
When comparing the imputation results of different correlation coefficient component data, the MSE and 
NRMSE obtained from the AGLasso, ALasso and GLasso imputation methods are significantly superior 
to those obtained from the Lasso methods. The RMSE values obtained from the GLasso and ALasso 
imputation methods are also notably better than those from Lasso. Therefore, this study concludes that 
the sample imputation effectiveness of the AGLasso method is significantly better than that of the other 
imputation methods. 
 
The results showed that removing certain variables reduced the accuracy of the model. Generally, in the 
use case of component data, the removed parameters in the model did not improve the accuracy of the 
model. [22] argued that if the MADE value after removing a parameter is equal to or less than that value, 
variable selection by grouping improves the interpolation effect of the model, which proves that AGLasso 
has an advantage over the other models in that it obtains the lowest error with a higher accuracy. 
 
The Imputation Results of Two Patterns 
Employ the all imputation method to impute missing values for missing rates and correlation coefficients. 
Conduct 100 experiments for each missing rate, calculate the value of MSE, MADE, RMSE, NRMSE, 
and present the results in Figure 3. 
 
As shown in Figure 3, it can be observed that all independent variables selected by the classical ALasso 
model are significant, indicating a high overall discriminative accuracy for this model. However, in the 
Lasso models, some independent variables are not significant, yet these models still achieve better 
discriminative accuracy. This suggests that the ALasso model is effective in selecting variables that 
better interpolate missing values. 
 
A comparison of the Lasso, ALasso, and AGLasso models reveals that, from theoretical foundations to 
final performance, the AGLasso model demonstrates superior imputation effectiveness. While the 
ALasso penalty function is more effective in machine learning under large sample conditions, the 
AGLasso penalty function, also belonging to machine learning, exhibits better performance when 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝 >
𝑛𝑛 . The ALasso function has weaker conditional requirements for harmonic parameters under this 
circumstance, which aligns with the sample size in this study. Consequently, the AGLasso model 
outperforms the ALasso model, with a notable difference in the judgment of MSE and RMSE. It is evident 
that, both being machine learning techniques, the AGLasso penalty function surpasses the Lasso 
function and is more suitable for research involving component data with missing values, we can draw 
the following conclusions: 
 
Overall, the ALasso imputed values are significantly smaller than the GLasso and Lasso imputed values 
and slightly larger than the AGLasso imputed values.  
 
At a missing rate of 20%, the MADE value of AGLasso imputation and the RMSE value of ALasso 
imputation at a 30% missing rate both fall between the MADE value of Lasso imputation and the RMSE 
value of ILSR imputation. In the case of a 30% missing rate, AGLasso and ALasso imputation yields the 
minimum NRMSE value. For a 5% missing rate, the MSE value of Lasso imputation, as well as the MADE 
value of GLasso imputation at a 40% missing rate, falls between the MSE value of Lasso imputation and 
the RMSE value of GLasso imputation. This is due to the proximity of the  𝛽̂𝛽 values between Lasso 
imputation, GLasso imputation. For example, when the RMSE values of the three methods are close, 
the NRMSE value of GLasso imputation is minimized. Therefore, when Lasso imputation and ALasso 
imputation values are relatively close, GLasso imputation is a novel choice. When GLasso imputation 
and Lasso imputation are close, but differ significantly from Lasso imputation, GLasso imputation 
becomes a novel choice. 
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Figure 3. The model selection criteria results of different missing rates and correlation coefficients with all imputation methods 
 
 
With the increase of missing rate and sample size, the estimated value of the Lasso is farther and farther 
from the true value, and MSE, MADE, RMSE, NRMSE becomes larger and larger, which shows that the 
mean imputation method is very poor and only applicable to the case of low missing rate. Lasso is very 
effective for regression coefficient estimation, but, as the missing rate increases, the estimated values 
of the scale parameter and the estimated values of the skewness parameter are farther and farther from 
the true value, and the values of NRMSE gradually increases, and the parameter estimation is poor. 
 
Comparing with GLasso, the parameter estimation effect is significantly improved after AGLasso and 
ALasso imputation method. The estimation of parameters after modified ALasso imputation method is 
very good, and the estimation of all parameters is more stable as the missing rate increases. The 
parameter estimation effect is better than that after ALasso imputation method, and it is the best overall 
effect of parameter estimation among all imputation methods. Especially, as the missing rate and sample 
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size increases, the above phenomenon is more obvious, which fully illustrates that the AGLasso 
imputation method is significant effect for the estimation of model parameters after imputation method of 
missing values. 
 
Conclusions and Discussion 
 
To impute missing values in the imputation model, a variable selection method was employed. Generally, 
with increasing missing rates, the imputed values from various imputation methods exhibit increased 
random fluctuations, indicating a deterioration in imputation effectiveness. This is attributed to the 
reduction in information reflected by the dataset as the missing rate increases, leading to a decrease in 
available information. 
 
Lasso imputation performed the poorest, AGLasso imputation excelled at high missing rates, and ALasso 
imputation performed best at low missing rates. GLasso imputation showed slightly larger MSE, MADE, 
RMSE, and NRMSE values, with ALasso imputation following closely. In scenarios with a certain 
correlation coefficient for compositional data, as the data's missing rate increases, the imputation 
effectiveness of Lasso and ALasso methods rapidly decreases, making the estimates not only non-
advantageous but even worse. 
 
AGLasso, ALasso, GLasso, and Lasso are all methods used for feature selection and sparse modeling, 
each with its strengths and weaknesses. In the data analysis context, AGLasso was chosen due to the 
existence of grouping structures in rabbit genomic data. It allows grouping of features and applies 
different regularization parameters to each group, better handling feature correlations and 
multicollinearity. Each group having its own regularization parameter means that features within each 
group can undergo sparsity or selection to varying extents, enhancing model flexibility. AGLasso aids in 
more accurately selecting features relevant to the target variable, avoiding issues of over-selection or 
missing important features. 
 
Unlike traditional Lasso, AGLasso considers the group structure among features, categorizing them into 
different groups and introducing adaptability with each group having its own regularization parameter. 
This means that the sparsity or selection extent of features within each group varies, contributing to a 
better fit to the data's characteristics. 
 
Overall, AGLasso imputation methods significantly outperformed other imputation methods in high-
dimensional compositional data, especially in scenarios with high missing data rates and strong 
correlations. AGLasso imputation demonstrated a clear advantage, yielding more significant imputation 
results.  
 
In future research on missing data processing will emphasize method innovation, addressing complex 
data scenarios, and validating practical applications. Interdisciplinary research collaboration and the 
application of cutting-edge technologies will drive advancements in this field. 
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