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Abstract The problem that is considered in this paper is developed from the migration of the 
coastline over time in sedimentary ocean basins that may be considered as a moving boundary 
problem with a variable latent heat transfer equation as a governing equation if one of the 
boundaries is unknown, with boundary and initial conditions are given. This model discusses the 
shoreline movement within sedimentary basins. The main objective of the paper is to use fuzzy 
logic to formulate this problem when modelling sand particles migration in saltwater by utilizing 
fuzzy numbers whenever replacing some of the problem's parameters. In reality, the proposed 
model is more general than the nonfuzzy or crisp models. By employing the variational iteration 
method, the approximate numerical solution of the proposed problem has been found, and 
computer software written in Mathematica 11 have been used to obtain the results. 
Keywords: Fuzzy variational iteration method, moving boundary value problem, fuzzy sediment 
transport, fuzzy shoreline problem. 

 

 
Introduction 
 
The shoreline problem is a widely studied phenomenon that involves the movement of the seashore 
within a basin due to the accumulation of sediment in an oceanic environment. This complex problem is 
often referred to as the "Stefan-Neumann problem" and is characterized by a variable latent heat [1,2]. 
It is an important area of research as it is influenced by various factors such as sea level changes, Earth's 
crust subsidence, and sediment flow alterations. To better understand and model this phenomenon, 
researchers often utilize classical diffusion transport models [3–5], which have proven to be a 
dependable approach for studying sediment transport in fluvial depositional systems. 
 
The Stefan problem, in particular, is a nonlinear problem with analytical solution so difficult to be 
evaluated. Stefan's problem has been solved using a variety of approximation methods [5,6], such as 
the analytical solution of this problem, which is an extreme state of the coastline model is evaluated in 
2004 by Voller et al. [5]. In addition, Voller et al. in 2006 [7] discussed a novel moving boundary problem 
related to shoreline movement in a sedimentary basin, which was solved using the enthalpy method. 
The Adomian decomposition approximation approach was considered by Rajeev et al. in 2013 [8] to 
solve movable boundary value problems in the river-deltaic sedimentary proceeding with a space and 
time fractional order derivatives. Furthermore, as an approach of solving Stefan problem with variable 
latent heat problems, Rajeev in 2014 [3] also used the homotopy perturbation method (HPM).  
 
In 1965, Zadeh presented the concept of fuzzy set theory for the first time as a result of parameters 
appeared in most real life problems, which are frequently subjected to considerable uncertainty, and to 
those problems with parameters estimation are typically made using experimental data [9,10]. In relation 
to mathematical topics, Chang and Zadeh were the original developers of the concept of the fuzzy 
derivative in 1972. For the sake of considering fuzzy differential equations for both ordinary and partial, 
the Hukuhara derivative was eventually used to establish fuzzy derivatives and fuzzy differentiability [11]. 
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For interval-valued functions, Stefanini and Bede [12,13] extended the Hukuhara difference and 
differentiability, in which several definitions of differentiability are considered, as well as the relation 
between them and some properties. Also, there has been a significant amount of study in this topic since 
Buckley and Feuring [14], are the first whom proposed fuzzy-valued partial differential equations. Thus, 
as a consequence to the above, the analytic, numerical and approximate methods for solving fuzzy 
differential equations appears to be crucial, which motivate the researchers in recent times to solve some 
analytical and real life problems using different semi-analytical techniques, such as the “Homotopy 
Perturbation Method (HPM)” [3], and the “Variational Iteration Method (VIM)” [15]. Additionally, the study 
of heat, wave, and Poisson equations with ambiguous parameters is also covered by Awasthi et al. when 
studying the threat to the health of individuals [16]. Recently, a study comparing fuzzy solutions to the 
fuzzy heat equation using both the fuzzy Adomian decomposition method (ADM) and the fuzzy 
variational iteration method (FVIM) is presented by Osman et al. [17]. Melliani et al. [18] used the 
variational iteration approach to find the fuzzy solution of fuzzy heat-like equations. Allahviranloo et al. 
[19] stated and verified the existence and uniqueness theorem of the solution of fuzzy heat equation with 
partial derivatives based on the definition of generalized Hukuhara differentiability and obtained the 
analytical solutions of their considered fuzzy partial differential equations. 
 
In today's advanced age of science and technology, numerous challenges in engineering and applied 
science have been effectively expressed and mathematically formulated using differential equations, 
accompanied with initial and/or boundary conditions known as initial-boundary value problems. A range 
of detailed theories and methods has been presented to tackle these initial-boundary value problems 
when the initial and/or boundary conditions are treated as crisp values [21,22]. However, in practice, in 
most instances, initial or boundary values are not clearly defined; rather, they are often vague. 
Consequently, fuzzy differential equations play a significant role in representing many real-world 
problems [20–22]. Some researchers have utilized fuzzy differential equations to model and analyze 
several typical initial and boundary value problems in physics and engineering [23,24]. 
 
The main theme of this article is to formulate a fluvial sedimentary problem using fuzzy logic. This 
process entails introducing a fuzzy parameter, represented as a fuzzy number, into the governing 
equation, followed by considering the resulting problem as a fuzzy moving boundary value problem. We 
solve the problem using the FVIM, which is based on the concept of generalized Hukuhara partial 
differentiability and the alpha-level set concept. 
 
Preliminaries 
 
In the present section, we will concentrate with the fundamental concepts and basic notations that will 
be utilized throughout the present work. 
 
Let ℝ𝑓𝑓 be the set of all fuzzy subsets of ℝ𝑛𝑛, then a fuzzy set 𝑁𝑁� with membership function 𝜇𝜇𝑁𝑁�:ℝ𝑛𝑛 ⟶ [0,1]  
is said to be fuzzy number if 𝑁𝑁� satisfy the following [24,25]: 
 
(i) 𝑁𝑁� is fuzzy convex set; 
(ii) 𝑁𝑁� is normal, i.e., there exists 𝑥𝑥0 ∈ ℝ, in which 𝜇𝜇𝑁𝑁�(𝑥𝑥0) = 1; 
(iii) 𝑁𝑁� is upper semi-continuous; 
(iv) The closure of {𝑥𝑥 ∈ ℝ𝑛𝑛: 𝜇𝜇𝑁𝑁�(𝑥𝑥) > 0} is compact. 
 
Commonly, ℝ𝑓𝑓 will be used to refer to the space of all fuzzy numbers. 
 
For 0 ≤ 𝛼𝛼 ≤ 1, the 𝛼𝛼-level set corresponding to the fuzzy number 𝑁𝑁� is defined by [𝑁𝑁�]𝛼𝛼 = {𝑥𝑥 ∈ ℝ𝑛𝑛: 𝜇𝜇𝑁𝑁�(𝑥𝑥) ≥
𝛼𝛼}. Then from (i)-(iv), it follows that the 𝛼𝛼-level set [𝑁𝑁�]α is the closed interval [𝑁𝑁(𝛼𝛼), 𝑁𝑁(𝛼𝛼)] as a subset of 
ℝ𝑛𝑛, for all 𝛼𝛼 ∈ [0,1]. 
 
A fuzzy number in ℝ𝑓𝑓 that will be specified by an ordered triple (𝑎𝑎, 𝑏𝑏, 𝑐𝑐), 𝑎𝑎 ≤ 𝑏𝑏 ≤ 𝑐𝑐 is known as a triangular 
fuzzy number and is denoted by  𝑁𝑁� = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐), which is also characterized using 𝛼𝛼-level set as [𝑁𝑁�]α =
[𝑁𝑁(𝛼𝛼), 𝑁𝑁(𝛼𝛼)] = [𝑎𝑎 + (𝑏𝑏 − 𝑎𝑎)𝛼𝛼, 𝑐𝑐 − (𝑐𝑐 − 𝑏𝑏)𝛼𝛼], for all 𝛼𝛼 ∈ [0,1]. 
 
Remark 1, [26]. Assuming that 𝑀𝑀� = [𝑀𝑀(𝛼𝛼),𝑀𝑀(𝛼𝛼)] and [𝑁𝑁�]α = [𝑁𝑁(𝛼𝛼), 𝑁𝑁(𝛼𝛼)] as an arbitrary two fuzzy 
numbers, then based on interval analysis and arithmetic, the following algebraic operations are carried 
out between them: 
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1. If ℎ is any real number, then: 

ℎ𝑀𝑀� = �
[ℎ𝑀𝑀(𝛼𝛼), ℎ𝑀𝑀(𝛼𝛼)], if ℎ ≥ 0
[ℎ𝑀𝑀(𝛼𝛼), ℎ𝑀𝑀(𝛼𝛼)], if ℎ < 0

  

2. 𝑀𝑀� −𝑁𝑁� = [𝑀𝑀(𝛼𝛼) − 𝑁𝑁(𝛼𝛼),𝑀𝑀(𝛼𝛼) − 𝑁𝑁(𝛼𝛼)]. 
3. 𝑀𝑀�𝑁𝑁� = [min 𝑑𝑑(𝛼𝛼), max 𝑑𝑑(𝛼𝛼)], where: 

𝑑𝑑(𝛼𝛼) = �𝑀𝑀(𝛼𝛼)𝑁𝑁(𝛼𝛼),𝑀𝑀(𝛼𝛼)𝑁𝑁(𝛼𝛼),𝑀𝑀(𝛼𝛼)𝑁𝑁(𝛼𝛼),𝑀𝑀(𝛼𝛼)𝑁𝑁(𝛼𝛼)�  
4. 𝑀𝑀�

𝑁𝑁�
= [min 𝑑𝑑(𝛼𝛼), max 𝑑𝑑(𝛼𝛼)], where: 
𝑑𝑑(𝛼𝛼) = �𝑀𝑀(𝛼𝛼)𝑁𝑁(𝛼𝛼),𝑀𝑀(𝛼𝛼)𝑁𝑁𝛼𝛼),𝑀𝑀(𝛼𝛼)𝑁𝑁(𝛼𝛼),𝑀𝑀(𝛼𝛼)𝑁𝑁(𝛼𝛼)�  

 
Definition 1, [27]. Let 𝑀𝑀�,𝑁𝑁� ∈  ℝ𝑓𝑓 and if there exist 𝑅𝑅� ∈ ℝ𝑓𝑓, such that 𝑁𝑁� = 𝑀𝑀� + 𝑅𝑅�, then 𝑅𝑅� is called the 
Hukuhara difference of 𝑁𝑁� and 𝑀𝑀� , which is denoted by 𝑁𝑁� ⊖𝑀𝑀�. 
 
As in fuzzy numbers, the 𝛼𝛼-level representation of fuzzy-real valued function 𝑓𝑓: [𝑎𝑎, 𝑏𝑏] ⟶ ℝ𝑓𝑓 is expressed 
also by the closed interval 𝑓𝑓(𝑥𝑥; 𝛼𝛼) = [𝑓𝑓(𝑥𝑥; 𝛼𝛼), 𝑓𝑓(𝑥𝑥; 𝛼𝛼)], for all 𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏], 𝛼𝛼 ∈ [0,1]. 
 
As a continuation of Hukuhara basic concepts, the generalized Hukuhara differentiation is almost the 
generic type of fuzzy differentiation for interval valued functions. Hukuhara presented the concept of 
fuzzy function derivative (abbreviated as H-derivative) in 1976, which is later became a starting point for 
studying fuzzy differential equations. Hukuhara derivative possibly considered like a generalization of 
the nonfuzzy or crisp derivative, as it is seen in the next definition: 
 
Definition 2, [28]. The generalized derivative of a fuzzy-real valued function 𝑓𝑓: (𝑎𝑎, 𝑏𝑏) ⟶ ℝ𝑓𝑓 at a point 𝑥𝑥0 
is given by: 
 
𝑓𝑓𝑔𝑔𝑔𝑔′ (𝑥𝑥0) = lim

ℎ→0
 𝑓𝑓

(𝑥𝑥0+ℎ)⊖𝑔𝑔𝑔𝑔𝑓𝑓(𝑥𝑥0)
ℎ

  
 
If 𝑓𝑓𝑔𝑔𝑔𝑔' (𝑥𝑥0) ∈ ℝ𝑓𝑓, then we say that 𝑓𝑓 is generalized Hukuhara differentiable (gH-differentiable for short) at 
𝑥𝑥0, which is also written using interval 𝛼𝛼-levels as: 
 
𝑓𝑓𝑔𝑔𝑔𝑔′ (𝑥𝑥0; 𝛼𝛼) = �𝑓𝑓𝑔𝑔𝑔𝑔′ (𝑥𝑥0; 𝛼𝛼), 𝑓𝑓𝑔𝑔𝑔𝑔

′
(𝑥𝑥0; 𝛼𝛼)�.  

 
Furthermore, 𝑓𝑓 is said to be (i)-gH-differentiable at 𝑥𝑥0 if: 
 
𝑓𝑓𝑖𝑖,𝑔𝑔𝑔𝑔′ (𝑥𝑥0; 𝛼𝛼) = �𝑓𝑓′(𝑥𝑥0; 𝛼𝛼), 𝑓𝑓

′
(𝑥𝑥0; 𝛼𝛼)� ,  0 ≤ 𝛼𝛼 ≤ 1,  

 
and that 𝑓𝑓 is (ii)-gH-differentiable at 𝑥𝑥0 if 
 
𝑓𝑓𝑖𝑖𝑖𝑖.𝑔𝑔𝑔𝑔′ (𝑥𝑥0; 𝛼𝛼) = �𝑓𝑓

′
(𝑥𝑥0; 𝛼𝛼), 𝑓𝑓′(𝑥𝑥0; 𝛼𝛼)� ,  0 ≤ 𝛼𝛼 ≤ 1.  

 
As in crisp calculus, ordinary derivatives of fuzzy functions using Hukuhara differentiability is generalized 
for partial derivatives, as it is presented in the next definitions:  
 
Definition 3, [19]. Let (𝑥𝑥0, 𝑦𝑦0) ∈ 𝔻𝔻 ⊂ ℝ𝑛𝑛, then the first generalized Hukuhara partial derivative 
(abbreviated for simplicity as p-gH-derivative) of a fuzzy-valued function 𝑓𝑓(x,y):𝔻𝔻 ⟶ ℝ𝑓𝑓 at (𝑥𝑥0, 𝑦𝑦0) with 
respect to the variable 𝑥𝑥 is denoted by 𝜕𝜕𝑥𝑥𝑔𝑔𝑔𝑔𝑓𝑓(𝑥𝑥0, 𝑦𝑦0) and is given by: 
 
𝜕𝜕𝑥𝑥𝑔𝑔𝑔𝑔𝑓𝑓(𝑥𝑥0, 𝑦𝑦0) = lim

ℎ→0
 𝑓𝑓

(𝑥𝑥0+ℎ,𝑦𝑦0)⊖𝑔𝑔𝑔𝑔𝑓𝑓(𝑥𝑥0,𝑦𝑦0)
ℎ

  
 
While the partial derivative with respect to 𝑦𝑦 at (𝑥𝑥0, 𝑦𝑦0) is denoted by 𝜕𝜕𝑦𝑦𝑔𝑔𝑔𝑔𝑓𝑓(𝑥𝑥0, 𝑦𝑦0), and given by: 
 
𝜕𝜕𝑦𝑦𝑔𝑔𝑔𝑔𝑓𝑓(𝑥𝑥0, 𝑦𝑦0) = lim

𝑘𝑘→0
 𝑓𝑓

(𝑥𝑥0,𝑦𝑦0+𝑘𝑘)⊖𝑔𝑔𝑔𝑔𝑓𝑓(𝑥𝑥0,𝑦𝑦0)
𝑘𝑘

  
 
provided that 𝜕𝜕𝑥𝑥𝑔𝑔𝑔𝑔𝑓𝑓(𝑥𝑥0, 𝑦𝑦0) and 𝜕𝜕𝑦𝑦𝑔𝑔𝑔𝑔𝑓𝑓(𝑥𝑥0, 𝑦𝑦0) belongs to ℝ𝑓𝑓. 
 
Similarly, the closed interval 𝛼𝛼-level sets of the p-gH-derivatives are defined as in ordinary derivatives.  
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Formulation of Fuzzy Fluvio-Deltaic Sedimentary 
Problem 
 
This problem is the model obtained when analysing the propagation of shorelines in a sediment sea 
basin based on sediment flow and the earth's crust break down, as well as, the change in sea level under 
the suppositions of a fixed sea level at 𝑧𝑧 = 0 and constant line flow, in addition with landslide subsidence, 
[3,29]. 
 
Additionally, the absence of landslide subsidence is accompanied by a smoothly sloping basement 𝑏𝑏 <
𝑎𝑎, with the basement slope is denoted by 𝑏𝑏 and the off-shore sediment wedge slope is denoted by 𝑎𝑎, [7]. 
Figure 1 illustrate the basin without tectonic subsidence or sea level change is presented and hence a 
mathematical model is required for approximating several contemporary continental edges. 
 

 
 

Figure 1. Schematic basin’s cross sectional without changes in sea level or tectonic subsidence [7] 
 
 
Because the nature of sands diffusion problem in water is similar to the nature of the heat diffusion 
problem, then the variable latent heat equation will be considered as the governing equation. 
Consequently, the sedimentation process' dynamics turn into a shifting boundary value problem, which 
is best represented by the following governing equation as the heat flow equation, [4,5]: 
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑣𝑣 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

,     𝑠𝑠(𝑡𝑡), 0 < 𝑥𝑥 <  𝑡𝑡 ≥ 0 (1) 
 
with the initial and boundary conditions: 
 
𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

|𝑥𝑥=0 = −𝑞𝑞(𝑡𝑡) (2) 
𝑢𝑢(𝑠𝑠, 𝑡𝑡) = 0  (3) 
 
where 𝑞𝑞(𝑡𝑡) is the sediment line flow that depends on time 𝑡𝑡, 𝑠𝑠(𝑡𝑡) is the movable boundary interface, and 
𝑢𝑢(𝑥𝑥, 𝑡𝑡) is the elevation of sediment higher than the datum, and the diffusivity 𝑣𝑣 is determined by the 
properties of the sediment grains, as well as, the average water line-discharge along the fluvial surface. 
Some extra conditions on the moving interface are implemented to fix this problem and make it solvable, 
including: 
 
−𝑣𝑣 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
|𝑥𝑥=𝑠𝑠(𝑡𝑡) = 𝛾𝛾𝛾𝛾 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
  (4) 

𝑠𝑠(0) = 0  (5) 
 
where 𝛾𝛾 is a constant depending on 𝑎𝑎 and 𝑏𝑏. 
 
Now, for the reason of introducing this work, it is notable that in most real-life considerations, imprecise 
or vague notions in the problem formulation may be highly appeared, which is due to the inaccurate 
formulation, or data reading or noise, etc. Thus, if we suppose the diffusivity constant 𝑣𝑣 of the sands in 
the water to be approximately equal certain value, and hence it will be imprecise, i.e., 𝑣𝑣 taken to by fuzzy 
number (denoted by  𝑣𝑣�), then the model with this uncertainty will transform the nature of the all problem 
into fuzzy logic. Therefore, the appearance of the fuzzy number 𝑣𝑣�, will affect on the solution and the 
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moving interface of the deltaic sedimentary moving boundary value problem (1)-(5) also to be fuzzy 
functions. Thus, the formulation of the fuzzy version of the fluvio-deltaic sedimentary problem will be 
written as: 
 
𝜕𝜕𝑢𝑢�
𝜕𝜕𝜕𝜕

= 𝑣𝑣� 𝜕𝜕
2𝑢𝑢�
𝜕𝜕𝑥𝑥2

,   0 < 𝑥𝑥 < 𝑠̃𝑠(𝑡𝑡), 𝑡𝑡 ≥ 0 (6) 
 
with fuzzy initial and boundary conditions: 
 
𝑣𝑣� 𝜕𝜕𝑢𝑢�
𝜕𝜕𝜕𝜕

|𝑥𝑥=0 = −𝑞𝑞(𝑡𝑡)  (7) 
𝑢𝑢�(𝑠̃𝑠, 𝑡𝑡) = 0  (8) 
− 𝑣𝑣� 𝜕𝜕𝑢𝑢�

𝜕𝜕𝜕𝜕
�
𝑥𝑥=𝑠̃𝑠(𝑡𝑡)

= 𝛾𝛾𝑠̃𝑠 𝑑𝑑𝑠̃𝑠
𝑑𝑑𝑑𝑑

  (9) 

𝑠̃𝑠(0) = 0  (10) 

 
Analysis of the Fuzzy Fluvio-Deltaic Sedimentary 
Problem 
 
Our focus in this section is on analysing the fuzzy fluvio-deltaic sedimentary problem with p-𝑔𝑔𝑔𝑔-
differentiability using 𝛼𝛼-level sets, which will be carried based on assuming  𝑢𝑢�(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) =
[𝑢𝑢(𝑥𝑥, 𝑡𝑡; 𝛼𝛼), 𝑢𝑢(𝑥𝑥, 𝑡𝑡; 𝛼𝛼)], 𝑠̃𝑠(𝑡𝑡; 𝛼𝛼) = [𝑠𝑠(𝑡𝑡; 𝛼𝛼), 𝑠𝑠(𝑡𝑡; 𝛼𝛼)]. Then substituting in the governing partial differential 
equation (6), we get: 
 
min �𝑣𝑣 𝜕𝜕2

𝜕𝜕𝑥𝑥2
𝑢𝑢(𝑥𝑥, 𝑡𝑡), 𝑣𝑣 𝜕𝜕2

𝜕𝜕𝑥𝑥2
𝑢𝑢(𝑥𝑥, 𝑡𝑡)� = 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑢𝑢(𝑥𝑥, 𝑡𝑡)

max �𝑣𝑣 𝜕𝜕2

𝜕𝜕𝑥𝑥2
𝑢𝑢(𝑥𝑥, 𝑡𝑡), 𝑣𝑣 𝜕𝜕2

𝜕𝜕𝑥𝑥2
𝑢𝑢(𝑥𝑥, 𝑡𝑡)� = 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑢𝑢(𝑥𝑥, 𝑡𝑡)

� (11) 

 
and also substituting in the boundary condition Eq. (9), we get:  
 
min �𝛾𝛾𝑠𝑠(𝑡𝑡) 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑠𝑠(𝑡𝑡), 𝛾𝛾 𝑠𝑠(𝑡𝑡) 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑠𝑠(𝑡𝑡)� = −𝑣𝑣 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑢𝑢�𝑠𝑠, 𝑡𝑡�

max �𝛾𝛾𝑠𝑠(𝑡𝑡) 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑠𝑠(𝑡𝑡), 𝛾𝛾 𝑠𝑠(𝑡𝑡) 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑠𝑠(𝑡𝑡)� = −𝑣𝑣 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑢𝑢(𝑠𝑠, 𝑡𝑡)

�. (12) 

 
Thus, two cases related to Eqs. (11) and two cases related to Eqs. (12) must be considered, depending 
on the p-gH-derivative of the lower and upper solutions. These two cases are: 
 
Case (i): If 𝜕𝜕

2

𝜕𝜕𝑥𝑥2
𝑢𝑢(𝑥𝑥, 𝑡𝑡) ≤ 𝜕𝜕2

𝜕𝜕𝑥𝑥2
𝑢𝑢(𝑥𝑥, 𝑡𝑡), then the possible partial differential equations resulted from system 

(11) are: 
 
𝑣𝑣 𝜕𝜕2

𝜕𝜕𝑥𝑥2
𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑢𝑢(𝑥𝑥, 𝑡𝑡)

𝑣𝑣 𝜕𝜕2

𝜕𝜕𝑥𝑥2
𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑢𝑢(𝑥𝑥, 𝑡𝑡)

� (13) 

 
with lower and upper initial and boundary conditions related to Eqs. (7), (8) and (10). 
 
Case (ii): If 𝜕𝜕

2

𝜕𝜕𝑥𝑥2
𝑢𝑢(𝑥𝑥, 𝑡𝑡) > 𝜕𝜕2

𝜕𝜕𝑥𝑥2
𝑢𝑢(𝑥𝑥, 𝑡𝑡), then the partial differential equations are reduced to: 

 
𝑣𝑣 𝜕𝜕2

𝜕𝜕𝑥𝑥2
𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑢𝑢(𝑥𝑥, 𝑡𝑡)

𝑣𝑣 𝜕𝜕2

𝜕𝜕𝑥𝑥2
𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑢𝑢(𝑥𝑥, 𝑡𝑡)

  (14) 

 
and also with lower and upper initial and boundary conditions related to Eqs. (7), (8) and (10). 
 
Now, with the additional requirements on the moving interface of Eqs. (12), two cases for the moving 
boundary are also must be carried out, which are: 
 
Case (i): If 𝑠𝑠′(𝑡𝑡) ≤ 𝑠̅𝑠′(𝑡𝑡) then the possible partial differential equations resulted from system (12) are: 
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𝛾𝛾𝑠𝑠(𝑡𝑡) 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑠𝑠(𝑡𝑡) = −𝑣𝑣 � 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑢𝑢�𝑠𝑠(𝑡𝑡), 𝑡𝑡��

𝛾𝛾𝑠𝑠(𝑡𝑡) 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑠𝑠(𝑡𝑡) = −𝑣𝑣 � 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑢𝑢(𝑠𝑠(𝑡𝑡), 𝑡𝑡)�

� (15) 

 
with lower and upper initial and boundary conditions related to Eqs. (7), (8) and (10). 
 
Case (ii): If 𝑠𝑠′(𝑡𝑡) ≥ 𝑠̅𝑠′(𝑡𝑡) then the partial differential equations are reduced to: 
 
𝛾𝛾𝑠𝑠(𝑡𝑡) 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑠𝑠(𝑡𝑡) = −𝑣𝑣 � 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑢𝑢(𝑠𝑠(𝑡𝑡), 𝑡𝑡)�

𝛾𝛾𝑠𝑠(𝑡𝑡) 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑠𝑠(𝑡𝑡) = −𝑣𝑣 � 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑢𝑢�𝑠𝑠(𝑡𝑡), 𝑡𝑡��

� (16) 

 
with lower and upper initial and boundary conditions related to Eqs. (7), (8) and (10). 
 
Formulation of the Problem using Fuzzy Variational 
Iteration Method 
 
According to the FVIM [15], for solving the operator form fuzzy partial differential equation 𝐿𝐿𝑢𝑢�(𝑥𝑥, 𝑡𝑡) +
𝑁𝑁𝑢𝑢�(𝑥𝑥, 𝑡𝑡) = 𝑔𝑔(𝑥𝑥, 𝑡𝑡), which starts by considering the correction functional in the 𝑥𝑥-direction as follows: 
 
𝑢𝑢�𝑛𝑛+1(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢�𝑛𝑛(𝑥𝑥, 𝑡𝑡) + ∫  𝑥𝑥0 𝜆𝜆(𝑤𝑤)�𝐿𝐿�𝑢𝑢�𝑛𝑛(𝑤𝑤, 𝑡𝑡) + 𝑁𝑁�𝑢̃𝑢𝑛𝑛∗ (𝑤𝑤, 𝑡𝑡)� − 𝑔𝑔(𝑥𝑥, 𝑡𝑡)�𝑑𝑑𝑑𝑑  (17) 
 
where 𝜆𝜆 is the general Lagrange multiplier, which is determined optimally through employing the 
variational theory, the subscript 𝑛𝑛 denotes the 𝑛𝑛th approximate solution of 𝑢𝑢�  and 𝑢̃𝑢𝑛𝑛∗  is considered as a 
restricted fuzzy variation, i.e., its first variational with respect to 𝑥𝑥 equals zero, 𝐿𝐿 and 𝑁𝑁 are respectively 
the corresponding linear and nonlinear operators related to the governing fuzzy governing differential 
equation. 
 
Remark 2. In order to find the subsequent approximate solutions using Eq. (17), we must first evaluate 
the value of the Lagrange multiplier 𝜆𝜆, which will be best founded by applying integration by parts. Then 
the successive fuzzy approximations 𝑢𝑢�𝑛𝑛(𝑥𝑥, 𝑡𝑡), 𝑛𝑛 = 0,1, …; of the solution [𝑢𝑢�(𝑥𝑥, 𝑡𝑡)]𝛼𝛼 = [𝑢𝑢(𝑥𝑥, 𝑡𝑡; 𝛼𝛼), 𝑢𝑢�(𝑥𝑥, 𝑡𝑡; 𝛼𝛼)] 
will be actually evaluated upon using the obtained Lagrange multiplier and starting the iterations with 
selective initial fuzzy function [𝑢𝑢�0(𝑥𝑥, 𝑡𝑡)]𝛼𝛼 = [𝑢𝑢0(𝑥𝑥, 𝑡𝑡; 𝛼𝛼), 𝑢𝑢0(𝑥𝑥, 𝑡𝑡; 𝛼𝛼)] as an initial guess. The zeroth 
approximation 𝑢𝑢�0 may be selected to be any function that just satisfies at least the fuzzy initial and 
boundary conditions with 𝜆𝜆 is predetermined, then several approximations 𝑢𝑢�𝑛𝑛(𝑥𝑥, 𝑡𝑡), 𝑛𝑛 = 1,2, …; follows 
immediately, and consequently, an approximation to the exact solution may be archived, since it may be 
proved in the FVIM that lim

𝑛𝑛→∞
 𝑢𝑢�𝑛𝑛(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢�(𝑥𝑥, 𝑡𝑡). 

 
Now, consider the linear interval problem related to Eq. (6): 
 
𝑣𝑣�𝑢𝑢�𝑥𝑥𝑥𝑥 = 𝑢𝑢�𝑡𝑡 or 𝑢𝑢�𝑥𝑥𝑥𝑥 = 𝑓𝑓(𝑥𝑥, 𝑡𝑡, 𝑢𝑢�, 𝑢𝑢�𝑡𝑡) 
 
which may be written equivalently in terms of lower and upper solutions after transforming throughout 
using the 𝛼𝛼-level sets by letting 𝑢𝑢� = [𝑢𝑢(𝑥𝑥, 𝑡𝑡; 𝛼𝛼), 𝑢𝑢(𝑥𝑥, 𝑡𝑡; 𝛼𝛼)], and hence: 
 
𝑣𝑣(𝛼𝛼) 𝑢𝑢𝑥𝑥𝑥𝑥(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑓𝑓(𝑥𝑥, 𝑡𝑡, 𝑢𝑢𝑡𝑡(𝑥𝑥, 𝑡𝑡; 𝛼𝛼), 𝑢𝑢𝑡𝑡(𝑥𝑥, 𝑡𝑡; 𝛼𝛼)), and. 
𝑣̅𝑣(𝛼𝛼)𝑢𝑢�𝑥𝑥𝑥𝑥(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑓𝑓(𝑥𝑥, 𝑡𝑡, 𝑢𝑢𝑡𝑡(𝑥𝑥, 𝑡𝑡; 𝛼𝛼), 𝑢𝑢𝑡𝑡(𝑥𝑥, 𝑡𝑡; 𝛼𝛼))  
 
Therefore, upon using FVIM, the correction functional related to Eq. (6) for the upper and lower solutions 
of 𝑢𝑢�  will be read for all 𝑛𝑛 = 0,1, . . . ; as follows: 
 
𝑢𝑢𝑛𝑛+1(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑢𝑢𝑛𝑛(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) + ∫ 𝜆𝜆(𝑤𝑤, 𝑡𝑡) �𝑣𝑣(𝛼𝛼) 𝜕𝜕2

𝜕𝜕𝑤𝑤2 𝑢𝑢𝑛𝑛(𝑤𝑤, 𝑡𝑡; 𝛼𝛼) −𝑥𝑥
0

𝑓𝑓(𝑤𝑤, 𝑡𝑡, 𝑢𝑢𝑛𝑛(𝑤𝑤, 𝑡𝑡; 𝛼𝛼), 𝑢𝑢𝑛𝑛(𝑤𝑤, 𝑡𝑡; 𝛼𝛼), 𝑢𝑢𝑛𝑛𝑡𝑡(𝑤𝑤, 𝑡𝑡; 𝛼𝛼), 𝑢𝑢𝑛𝑛𝑡𝑡(𝑤𝑤, 𝑡𝑡; 𝛼𝛼)) � 𝑑𝑑𝑑𝑑  (18) 

𝑢𝑢𝑛𝑛+1(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑢𝑢𝑛𝑛(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) + ∫ 𝜆𝜆(𝑤𝑤, 𝑡𝑡) �𝑣𝑣(𝛼𝛼) 𝜕𝜕2

𝜕𝜕𝑤𝑤2 𝑢𝑢𝑛𝑛(𝑤𝑤, 𝑡𝑡; 𝛼𝛼) −𝑥𝑥
0

𝑓𝑓(𝑤𝑤, 𝑡𝑡, 𝑢𝑢𝑛𝑛(𝑤𝑤, 𝑡𝑡; 𝛼𝛼), 𝑢𝑢𝑛𝑛(𝑤𝑤, 𝑡𝑡; 𝛼𝛼), 𝑢𝑢𝑛𝑛𝑡𝑡(𝑤𝑤, 𝑡𝑡; 𝛼𝛼), 𝑢𝑢𝑛𝑛𝑡𝑡(𝑤𝑤, 𝑡𝑡; 𝛼𝛼)) � 𝑑𝑑𝑑𝑑  (19) 
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From the classical theory of the VIM for the second order partial differential equations, the value of the 
general Lagrange multiplier is found to be: 
 
𝜆𝜆(𝑤𝑤, 𝑡𝑡) = 𝑤𝑤 − 𝑥𝑥 (20) 
 
Hence, when beginning with initial approximate solutions 𝑢𝑢0(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑢𝑢0 and 𝑢𝑢0(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑢𝑢0, and by 
substituting the general Lagrange multiplier value given in Eq. (20) back into Eqs. (18) and (19), we get 
respectively the following iterated correction functionals using the VIM: 
 
𝑢𝑢𝑛𝑛+1(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑢𝑢𝑛𝑛(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) + ∫ (𝑤𝑤 − 𝑥𝑥) �𝑣𝑣(𝛼𝛼) 𝜕𝜕2

𝜕𝜕𝑤𝑤2 𝑢𝑢𝑛𝑛(𝑤𝑤, 𝑡𝑡; 𝛼𝛼) −𝑥𝑥
0

𝑓𝑓(𝑤𝑤, 𝑡𝑡, 𝑢𝑢𝑛𝑛(𝑤𝑤, 𝑡𝑡; 𝛼𝛼), 𝑢𝑢𝑛𝑛(𝑤𝑤, 𝑡𝑡; 𝛼𝛼), 𝑢𝑢𝑛𝑛𝑡𝑡(𝑤𝑤, 𝑡𝑡; 𝛼𝛼), 𝑢𝑢𝑛𝑛𝑡𝑡(𝑤𝑤, 𝑡𝑡; 𝛼𝛼)) � 𝑑𝑑𝑑𝑑 (21) 

𝑢𝑢𝑛𝑛+1(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑢𝑢𝑛𝑛(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) + ∫ (𝑤𝑤 − 𝑥𝑥) �𝑣𝑣(𝛼𝛼) 𝜕𝜕2

𝜕𝜕𝑤𝑤2 𝑢𝑢𝑛𝑛(𝑤𝑤, 𝑡𝑡; 𝛼𝛼) −𝑥𝑥
0

𝑓𝑓(𝑤𝑤, 𝑡𝑡, 𝑢𝑢𝑛𝑛(𝑤𝑤, 𝑡𝑡; 𝛼𝛼), 𝑢𝑢𝑛𝑛(𝑤𝑤, 𝑡𝑡; 𝛼𝛼), 𝑢𝑢𝑛𝑛𝑡𝑡(𝑤𝑤, 𝑡𝑡; 𝛼𝛼), 𝑢𝑢𝑛𝑛𝑡𝑡(𝑤𝑤, 𝑡𝑡; 𝛼𝛼)) � 𝑑𝑑𝑑𝑑  (22) 
 
where 𝑛𝑛 = 0,1, . .. 
 
Applying the iterations (21) and (22) for systems (13) and (14) will give approximate solutions convergent 
to exact solutions for increasing solution iteration [18]. 
 
In the next, we will consider the analysis of the fuzzy fluvio-deltaic sedimentary equations utilizing p-gH-
differentiability with 𝛼𝛼-level sets. The FVIM will be used to answer the two situations connected to fuzzy 
logic. 
 
Case (i): Based on Eq. (13), the general FVIM using Eq. (21) and Eq. (22): 
 
𝑢𝑢𝑛𝑛+1(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑢𝑢𝑛𝑛(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) + ∫ (𝑤𝑤 − 𝑥𝑥) �𝑣𝑣 𝜕𝜕2

𝜕𝜕𝑤𝑤2 𝑢𝑢𝑛𝑛(𝑤𝑤, 𝑡𝑡; 𝛼𝛼) − 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑢𝑢𝑛𝑛(𝑥𝑥, 𝑡𝑡; 𝛼𝛼)�𝑥𝑥

0 𝑑𝑑𝑑𝑑  (23) 

𝑢𝑢𝑛𝑛+1(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑢𝑢𝑛𝑛(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) + ∫ (𝑤𝑤 − 𝑥𝑥) �𝑣𝑣 𝜕𝜕2

𝜕𝜕𝑤𝑤2 𝑢𝑢𝑛𝑛(𝑤𝑤, 𝑡𝑡; 𝛼𝛼) − 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑢𝑢𝑛𝑛(𝑥𝑥, 𝑡𝑡; 𝛼𝛼)�𝑥𝑥

0 𝑑𝑑𝑑𝑑  (24) 
 
With lower and upper initial and boundary conditions in addition to condition on the moving interface, 
where 𝑛𝑛 = 0,1, …, 𝛼𝛼 ∈ [0,1]  
 
Case (ii): By using Eq. (14), with the same approach followed in case (i), the general FVIM arrangements 
will be: 
 
𝑢𝑢𝑛𝑛+1(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑢𝑢𝑛𝑛(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) + ∫ (𝑤𝑤 − 𝑥𝑥) �𝑣𝑣 𝜕𝜕2

𝜕𝜕𝑤𝑤2 𝑢𝑢𝑛𝑛(𝑤𝑤, 𝑡𝑡; 𝛼𝛼) − 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑢𝑢𝑛𝑛(𝑥𝑥, 𝑡𝑡; 𝛼𝛼)�𝑥𝑥

0 𝑑𝑑𝑑𝑑  (25) 

𝑢𝑢𝑛𝑛+1(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑢𝑢𝑛𝑛(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) + ∫ (𝑤𝑤 − 𝑥𝑥) �𝑣𝑣 𝜕𝜕2

𝜕𝜕𝑤𝑤2 𝑢𝑢𝑛𝑛(𝑤𝑤, 𝑡𝑡; 𝛼𝛼) − 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑢𝑢𝑛𝑛(𝑥𝑥, 𝑡𝑡; 𝛼𝛼)�𝑥𝑥

0 𝑑𝑑𝑑𝑑  (26) 
 
Similar progress as presented above for cases (i) and (ii) when evaluating the approximate solution 𝑢𝑢�𝑛𝑛, 
 𝑛𝑛 = 1,2, …; we can find the approximate solution of the moving boundary using the FVIM based on the 
following two cases: 
 
Case (i): By using Eqs. (15), the general FVIM will be: 
 
𝑠𝑠𝑛𝑛+1(𝑡𝑡; 𝛼𝛼) = 𝑠𝑠𝑛𝑛(𝑡𝑡; 𝛼𝛼) − ∫  𝑡𝑡0 �𝛾𝛾𝑠𝑠𝑛𝑛(𝑤𝑤; 𝛼𝛼) 𝑑𝑑𝑠𝑠𝑛𝑛(𝑤𝑤;𝛼𝛼)

𝑑𝑑𝑑𝑑
+ 𝑣𝑣 𝜕𝜕𝑢𝑢(𝑥𝑥,𝑤𝑤;𝛼𝛼)

𝜕𝜕𝜕𝜕
�
𝑥𝑥=𝑠𝑠𝑛𝑛(𝑤𝑤;𝛼𝛼)

� 𝑑𝑑𝑑𝑑  (27) 

𝑠𝑠𝑛𝑛+1(𝑡𝑡; 𝛼𝛼) = 𝑠𝑠𝑛𝑛(𝑡𝑡; 𝛼𝛼) − ∫  𝑡𝑡0 �𝛾𝛾𝑠𝑠𝑛𝑛(𝑤𝑤; 𝛼𝛼) 𝑑𝑑𝑠𝑠𝑛𝑛(𝑤𝑤;𝛼𝛼)
𝑑𝑑𝑑𝑑

+ 𝑣𝑣 𝜕𝜕𝑢𝑢(𝑥𝑥,𝑤𝑤;𝛼𝛼)
𝜕𝜕𝜕𝜕

�
𝑥𝑥=𝑠𝑠𝑛𝑛(𝑤𝑤;𝛼𝛼)

� 𝑑𝑑𝑑𝑑  (28) 

 
Case (ii): By using Eqs. (16), the general VIM will be: 
 
𝑠𝑠𝑛𝑛+1(𝑡𝑡; 𝛼𝛼) = 𝑠𝑠𝑛𝑛(𝑡𝑡; 𝛼𝛼) − ∫  𝑡𝑡0 �𝛾𝛾𝑠𝑠𝑛𝑛(𝑤𝑤; 𝛼𝛼) 𝑑𝑑𝑠𝑠𝑛𝑛(𝑤𝑤;𝛼𝛼)

𝑑𝑑𝑑𝑑
+ 𝑣𝑣 𝜕𝜕𝑢𝑢(𝑥𝑥,𝑤𝑤;𝛼𝛼)

𝜕𝜕𝜕𝜕
�
𝑥𝑥=𝑠𝑠𝑛𝑛(𝑤𝑤;𝛼𝛼)

� 𝑑𝑑𝑑𝑑  (29) 

𝑠𝑠𝑛𝑛+1(𝑡𝑡; 𝛼𝛼) = 𝑠𝑠𝑛𝑛(𝑡𝑡; 𝛼𝛼) − ∫  𝑡𝑡0 �𝛾𝛾𝑠𝑠𝑛𝑛(𝑤𝑤; 𝛼𝛼) 𝑑𝑑𝑠𝑠𝑛𝑛(𝑤𝑤;𝛼𝛼)
𝑑𝑑𝑑𝑑

+ 𝑣𝑣 𝜕𝜕𝑢𝑢(𝑥𝑥,𝑤𝑤;𝛼𝛼)
𝜕𝜕𝜕𝜕

�
𝑥𝑥=𝑠𝑠𝑛𝑛(𝑤𝑤;𝛼𝛼)

� 𝑑𝑑𝑑𝑑  (30) 
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Approximate Solution of the Problem  
 
Recalling that in this problem, the fuzziness was achieved through introducing considering the parameter 
𝑣𝑣� to be fuzzy number, which will be assumed in this work as a triangular fuzzy number. Then with the 
reference to the triangular fuzzy number given earlier in this paper, one can rewrite the fuzzy number 𝑣𝑣� 
in terms of its 𝛼𝛼-levels as [𝑣𝑣�]𝛼𝛼 = [𝑣𝑣(𝛼𝛼), 𝑣̅𝑣(𝛼𝛼)], as follows: 
 
[𝑣𝑣�]𝛼𝛼 = [𝑎𝑎 − (𝑎𝑎 − 𝑏𝑏)𝛼𝛼, 𝑐𝑐 − (𝑏𝑏 − 𝑐𝑐)𝛼𝛼], where 𝛼𝛼 ∈ [0,1] (31) 
 
and starting with case (i) related to Eqs. (13), as follows: 
 
Case (i): By choosing the initial approximations of 𝑢𝑢�0(𝑥𝑥, 𝑡𝑡) and 𝑠̃𝑠0(𝑡𝑡) [3,7] as: 
 
𝑢𝑢�0(𝑥𝑥, 𝑡𝑡) = 𝑐̃𝑐(𝑠̃𝑠0(𝑡𝑡) − 𝑥𝑥), where 𝑐̃𝑐 = 𝑞𝑞�(𝑡𝑡)

𝑣𝑣�
 (32) 

𝑠̃𝑠0(𝑡𝑡) = 𝑎𝑎�0𝑡𝑡
1
2, where 𝑎𝑎�0 = �2𝑞𝑞�(𝑡𝑡)

𝛾𝛾�
�
1
2 (33) 

 
and calculating the values of 𝑐̃𝑐 according to the previously specified properties for fuzzy numbers by 
letting [𝑣𝑣�]𝛼𝛼 = [𝑣𝑣(𝛼𝛼), 𝑣𝑣(𝛼𝛼)]; [𝑞𝑞�(𝑡𝑡)]𝛼𝛼 = [𝑞𝑞(𝑡𝑡; 𝛼𝛼), 𝑞𝑞(𝑡𝑡; 𝛼𝛼)]. Hence: 
 
[𝑐̃𝑐]𝛼𝛼 = �𝑞𝑞�(𝑡𝑡)

𝑣𝑣�
�
𝛼𝛼

=
[𝑞𝑞,𝑞𝑞]

[𝑣𝑣,𝑣𝑣]
= �min �

 𝑞𝑞 

𝑣𝑣
,

 𝑞𝑞 

𝑣𝑣
,  𝑞𝑞 
𝑣𝑣

,  𝑞𝑞 
𝑣𝑣
� , max �

 𝑞𝑞 

𝑣𝑣
,

 𝑞𝑞 

𝑣𝑣
,  𝑞𝑞 
𝑣𝑣

,  𝑞𝑞 
𝑣𝑣
��  

 
and since 𝛼𝛼 ∈ [0,1], then [𝑐̃𝑐]𝛼𝛼 = �

 𝑞𝑞 

𝑣𝑣
,  𝑞𝑞 
𝑣𝑣
�, where 𝑐𝑐 =

  𝑞𝑞  

𝑣𝑣
 and 𝑐𝑐 =   𝑞𝑞  

𝑣𝑣
 (similarly, we can evaluate 𝑎𝑎0, 𝑎𝑎0).  

 
Thus, Eqs. (32) and (33) will respectively become with the lower cases of solution as follows: 
 
𝑢𝑢0(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑐𝑐�𝑠𝑠0(𝑡𝑡; 𝛼𝛼) − 𝑥𝑥�, 

=
𝑞𝑞�−𝑥𝑥+√𝑡𝑡�

2𝑞𝑞
𝛾𝛾
�

𝑣𝑣
  

 

where 𝑠𝑠0(𝑡𝑡; 𝛼𝛼) = 𝑎𝑎0√𝑡𝑡 and 𝑎𝑎0 = �
2𝑞𝑞

𝛾𝛾
. 

 
The first lower approximate solution resulted after applying Eq. (23) could be found as: 
 
𝑢𝑢1(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑢𝑢0(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) + ∫ (𝑤𝑤 − 𝑥𝑥) �𝑣𝑣 𝜕𝜕2

𝜕𝜕𝑤𝑤2 𝑢𝑢0(𝑤𝑤, 𝑡𝑡; 𝛼𝛼) − 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑢𝑢0(𝑥𝑥, 𝑡𝑡; 𝛼𝛼)�𝑥𝑥

0 𝑑𝑑𝑑𝑑  

=
𝑞𝑞�−𝑥𝑥+√𝑡𝑡�

2𝑞𝑞
𝛾𝛾
�

𝑣𝑣
+

𝑞𝑞𝑥𝑥2�
 𝑞𝑞 
𝛾𝛾

2√2√𝑡𝑡𝑣𝑣
  

 
while the second lower approximate solution is: 
 
𝑢𝑢2(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑢𝑢1(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) + ∫ (𝑤𝑤 − 𝑥𝑥) �𝑣𝑣 𝜕𝜕2

𝜕𝜕𝑤𝑤2 𝑢𝑢1(𝑤𝑤, 𝑡𝑡; 𝛼𝛼) − 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑢𝑢1(𝑤𝑤, 𝑡𝑡; 𝛼𝛼)�𝑥𝑥

0 𝑑𝑑𝑑𝑑  

=
𝑞𝑞�−𝑥𝑥+√2√𝑡𝑡�

 𝑞𝑞 
𝛾𝛾
�

𝑣𝑣
+

𝑞𝑞𝑥𝑥2�
 𝑞𝑞 
𝛾𝛾

2√2√𝑡𝑡𝑣𝑣
−

𝑞𝑞𝑥𝑥2(24𝑡𝑡(−1+𝑣𝑣)+𝑥𝑥2)�
 𝑞𝑞 
𝛾𝛾

48√2𝑡𝑡3 2⁄ 𝑣𝑣
  

 
So on, the third and fourth lower approximate solutions are obtained to be: 
 
𝑢𝑢3(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑢𝑢2(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) + ∫ (𝑤𝑤 − 𝑥𝑥) �𝑣𝑣 𝜕𝜕2

𝜕𝜕𝑤𝑤2 𝑢𝑢2(𝑤𝑤, 𝑡𝑡; 𝛼𝛼) − 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑢𝑢2(𝑤𝑤, 𝑡𝑡; 𝛼𝛼)�𝑥𝑥

0 𝑑𝑑𝑑𝑑  

=
𝑞𝑞�−𝑥𝑥+√2√𝑡𝑡�

 𝑞𝑞 
𝛾𝛾
�

𝑣𝑣
+

𝑞𝑞𝑥𝑥2�
 𝑞𝑞 
𝛾𝛾

√2√𝑡𝑡𝑣𝑣
+

𝑞𝑞𝑣𝑣𝑥𝑥2�
 𝑞𝑞 
𝛾𝛾

√2√𝑡𝑡𝑣𝑣
−

√2𝑞𝑞𝑣𝑣𝑥𝑥2�
 𝑞𝑞 
𝛾𝛾

√𝑡𝑡𝑣𝑣
+

𝑞𝑞𝑣𝑣2𝑥𝑥2�
 𝑞𝑞 
𝛾𝛾

2√2√𝑡𝑡𝑣𝑣
−

𝑞𝑞𝑣𝑣𝑥𝑥4�
 𝑞𝑞 
𝛾𝛾

24√2𝑡𝑡3 2⁄ 𝑣𝑣
+

𝑞𝑞𝑥𝑥6�
 𝑞𝑞 
𝛾𝛾

960√2𝑡𝑡5 2⁄ 𝑣𝑣
−

𝑞𝑞𝑥𝑥2(24𝑡𝑡(−1+𝑣𝑣)+𝑥𝑥2)�
 𝑞𝑞 
𝛾𝛾

48√2𝑡𝑡3 2⁄ 𝑣𝑣
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𝑢𝑢4(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑢𝑢4(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) + ∫ (𝑤𝑤 − 𝑥𝑥) �𝑣𝑣 𝜕𝜕2

𝜕𝜕𝑤𝑤2 𝑢𝑢3(𝑤𝑤, 𝑡𝑡; 𝛼𝛼) − 𝜕𝜕
𝜕𝜕𝑡𝑡
𝑢𝑢3(𝑤𝑤, 𝑡𝑡; 𝛼𝛼)�𝑥𝑥

0 𝑑𝑑𝑑𝑑  

=
𝑞𝑞�−𝑥𝑥+√2√𝑡𝑡�

 𝑞𝑞 
𝛾𝛾
�

𝑣𝑣
+

3𝑞𝑞𝑥𝑥2�
 𝑞𝑞 
𝛾𝛾

2√2√𝑡𝑡𝑣𝑣
+

3𝑞𝑞𝑣𝑣𝑥𝑥2�
 𝑞𝑞 
𝛾𝛾

2√2√𝑡𝑡𝑣𝑣
−

2√2𝑞𝑞𝑣𝑣𝑥𝑥2�
 𝑞𝑞 
𝛾𝛾

√𝑡𝑡𝑣𝑣
+

√2𝑞𝑞𝑣𝑣2𝑥𝑥2�
 𝑞𝑞 
𝛾𝛾

√𝑡𝑡𝑣𝑣
−

𝑞𝑞𝑣𝑣3𝑥𝑥2�
 𝑞𝑞 
𝛾𝛾

2√2√𝑡𝑡𝑣𝑣
−

5𝑞𝑞𝑥𝑥4�
 𝑞𝑞 
𝛾𝛾

48√2𝑡𝑡3 2⁄ 𝑣𝑣
+

𝑞𝑞𝑣𝑣𝑥𝑥4�
 𝑞𝑞 
𝛾𝛾

6√2𝑡𝑡3 2⁄ 𝑣𝑣
−

𝑞𝑞𝑣𝑣2𝑥𝑥4�
 𝑞𝑞 
𝛾𝛾

16√2𝑡𝑡3 2⁄ 𝑣𝑣
+

𝑞𝑞𝑥𝑥6�
 𝑞𝑞 
𝛾𝛾

240√2𝑡𝑡5 2⁄ 𝑣𝑣
−

𝑞𝑞𝑣𝑣𝑥𝑥6�
 𝑞𝑞 
𝛾𝛾

320√2𝑡𝑡5 2⁄ 𝑣𝑣
−

𝑞𝑞𝑥𝑥8�
 𝑞𝑞 
𝛾𝛾

21504√2𝑡𝑡7 2⁄ 𝑣𝑣
−

𝑞𝑞𝑥𝑥2�24𝑡𝑡(−1+𝑣𝑣)+𝑥𝑥2��
 𝑞𝑞 
𝛾𝛾

48√2𝑡𝑡3 2⁄ 𝑣𝑣
  

 
Following the same approach as in the above when evaluating the lower-case approximate solutions, 
we can find the solution for the upper case up to the fourth iteration by applying Eq. (24) starting with the 
initial guess approximate solution: 
 
𝑢𝑢0(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑐𝑐(𝑠𝑠0(𝑡𝑡; 𝛼𝛼) − 𝑥𝑥)  

=
𝑞𝑞�−𝑥𝑥+√𝑡𝑡�

2 𝑞𝑞 
𝛾𝛾
�

𝑣𝑣
  

 

where 𝑠𝑠0(𝑡𝑡; 𝛼𝛼) = 𝑎𝑎0√𝑡𝑡 and 𝑎𝑎0 = �
2 𝑞𝑞 
𝛾𝛾

. Thus, further approximations will be: 

 
𝑢𝑢1(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑢𝑢0(𝑥𝑥, 𝑡𝑡, 𝛼𝛼) + ∫ (𝑤𝑤 − 𝑥𝑥) �𝑣𝑣 𝜕𝜕2

𝜕𝜕𝑤𝑤2 𝑢𝑢0(𝑤𝑤, 𝑡𝑡; 𝛼𝛼) − 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑢𝑢0(𝑥𝑥, 𝑡𝑡; 𝛼𝛼)�𝑥𝑥

0 𝑑𝑑𝑑𝑑    

=
𝑞𝑞�−𝑥𝑥+√2√𝑡𝑡�

 𝑞𝑞 
𝛾𝛾
�

𝑣𝑣
+

𝑞𝑞𝑥𝑥2�
 𝑞𝑞 
𝛾𝛾

2√2√𝑡𝑡𝑣𝑣
  

𝑢𝑢2(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑢𝑢1(𝑥𝑥, 𝑡𝑡, 𝛼𝛼) + ∫ (𝑤𝑤 − 𝑥𝑥) �𝑣𝑣 𝜕𝜕2

𝜕𝜕𝑤𝑤2 𝑢𝑢1(𝑤𝑤, 𝑡𝑡; 𝛼𝛼) − 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑢𝑢1(𝑤𝑤, 𝑡𝑡; 𝛼𝛼)�𝑥𝑥

0 𝑑𝑑𝑑𝑑  

=
𝑞𝑞�−𝑥𝑥+√2√𝑡𝑡�

 𝑞𝑞 
𝛾𝛾
�

𝑣𝑣
+

𝑞𝑞𝑥𝑥2�
 𝑞𝑞 
𝛾𝛾

2√2√𝑡𝑡𝑣𝑣
−

𝑞𝑞𝑥𝑥2(24𝑡𝑡(−1+𝑣𝑣)+𝑥𝑥2)�
 𝑞𝑞 
𝛾𝛾

48√2𝑡𝑡3 2⁄ 𝑣𝑣
  

𝑢𝑢3(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) =
𝑞𝑞(−𝑥𝑥+√2√𝑡𝑡�

𝑞𝑞
𝛾𝛾)

𝑣𝑣
+

𝑞𝑞𝑥𝑥2�
𝑞𝑞
𝛾𝛾

√2√𝑡𝑡𝑣𝑣
+

𝑞𝑞 𝑣𝑣𝑥𝑥2�
𝑞𝑞
𝛾𝛾

√2√𝑡𝑡𝑣𝑣
−

√2𝑞𝑞 𝑣𝑣𝑥𝑥2�
𝑞𝑞
𝛾𝛾

√𝑡𝑡𝑣𝑣
+

𝑞𝑞 𝑣𝑣2𝑥𝑥2�
𝑞𝑞
𝛾𝛾

2√2√𝑡𝑡𝑣𝑣
−

𝑞𝑞𝑥𝑥4�
𝑞𝑞
𝛾𝛾

24√2𝑡𝑡3 2⁄ 𝑣𝑣
+

𝑞𝑞 𝑣𝑣𝑥𝑥4�
𝑞𝑞
𝛾𝛾

24√2𝑡𝑡3 2⁄ 𝑣𝑣
+  

𝑞𝑞𝑥𝑥6�
𝑞𝑞
𝛾𝛾

960√2𝑡𝑡5 2⁄ 𝑣𝑣
−

 
𝑞𝑞𝑥𝑥2(24𝑡𝑡(−1+𝑣𝑣)+𝑥𝑥2)�

𝑞𝑞
𝛾𝛾

48√2𝑡𝑡3 2⁄ 𝑣𝑣
  

𝑢𝑢4(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) =
𝑞𝑞(−𝑥𝑥+√2√𝑡𝑡�

𝑞𝑞
𝛾𝛾)

𝑣𝑣
+

3𝑞𝑞𝑥𝑥2�
𝑞𝑞
𝛾𝛾

2√2√𝑡𝑡𝑣𝑣
+

3𝑞𝑞 𝑣𝑣𝑥𝑥2�
𝑞𝑞
𝛾𝛾

2√2√𝑡𝑡𝑣𝑣
−

2√2𝑞𝑞 𝑣𝑣𝑥𝑥2�
𝑞𝑞
𝛾𝛾

√𝑡𝑡𝑣𝑣
+

√2𝑞𝑞 𝑣𝑣2𝑥𝑥2�
𝑞𝑞
𝛾𝛾

√𝑡𝑡𝑣𝑣
−

𝑞𝑞 𝑣𝑣3𝑥𝑥2�
𝑞𝑞
𝛾𝛾

2√2√𝑡𝑡𝑣𝑣
−

5𝑞𝑞𝑥𝑥4�
𝑞𝑞
𝛾𝛾

48√2𝑡𝑡3 2⁄ 𝑣𝑣
+

𝑞𝑞 𝑣𝑣𝑥𝑥4�
𝑞𝑞
𝛾𝛾

6√2𝑡𝑡3 2⁄ 𝑣𝑣
−

𝑞𝑞 𝑣𝑣2𝑥𝑥4�
𝑞𝑞
𝛾𝛾

16√2𝑡𝑡3 2⁄ 𝑣𝑣
+

𝑞𝑞𝑥𝑥6�
𝑞𝑞
𝛾𝛾

240√2𝑡𝑡5 2⁄ 𝑣𝑣
−

𝑞𝑞 𝑣𝑣𝑥𝑥6�
𝑞𝑞
𝛾𝛾

320√2𝑡𝑡5 2⁄ 𝑣𝑣
−

𝑞𝑞𝑥𝑥8�
𝑞𝑞
𝛾𝛾

21504√2𝑡𝑡7 2⁄ 𝑣𝑣
−

𝑞𝑞𝑥𝑥2(24𝑡𝑡(−1+𝑣𝑣)+𝑥𝑥2)�
𝑞𝑞
𝛾𝛾

48√2𝑡𝑡3 2⁄ 𝑣𝑣
  

 
Thus, we can obtain 𝑢𝑢�4(𝑥𝑥, 𝑡𝑡) = [𝑢𝑢4(𝑥𝑥, 𝑡𝑡; 𝛼𝛼), 𝑢𝑢�4(𝑥𝑥, 𝑡𝑡; 𝛼𝛼)] as an approximate of the height of the sediment 
above the datum. 
 
The second crucial aspect of the problem is to find the moving boundary 𝑠̃𝑠(𝑡𝑡) as a fuzzy function, which 
must satisfy condition (9) and establish the relationship between the moving boundary 𝑠̃𝑠(𝑡𝑡) and the 
sedimentation height 𝑢𝑢�(𝑥𝑥, 𝑡𝑡). 
 
We can find the iterative functions of the lower and upper cases of the moving boundary by also applying 
the FVIM for Eqs. (27) and (28), and hence for case (i), we get: 
 
𝑠𝑠1(𝑡𝑡; 𝛼𝛼) = 𝑠𝑠0(𝑡𝑡; 𝛼𝛼) − ∫  𝑡𝑡0 �𝛾𝛾𝑠𝑠0(𝑤𝑤; 𝛼𝛼) 𝑑𝑑𝑠𝑠0(𝑤𝑤;𝛼𝛼)

𝑑𝑑𝑑𝑑
+ 𝑣𝑣 𝜕𝜕𝑢𝑢4(𝑥𝑥,𝑤𝑤)

𝜕𝜕𝜕𝜕
�
𝑥𝑥=𝑠𝑠0(𝑤𝑤;𝛼𝛼)

� 𝑑𝑑𝑑𝑑  

= √2√𝑡𝑡�
𝑞𝑞

𝛾𝛾
+

𝑞𝑞5𝑡𝑡

336𝛾𝛾4
−

𝑞𝑞4𝑡𝑡

10𝛾𝛾3
+

3𝑞𝑞4𝑡𝑡𝑣𝑣

40𝛾𝛾3
+

𝑞𝑞3𝑡𝑡

𝛾𝛾2
−

4𝑞𝑞3𝑡𝑡𝑣𝑣

3𝛾𝛾2
+

𝑞𝑞3𝑡𝑡𝑣𝑣2

2𝛾𝛾2
−

4𝑞𝑞2𝑡𝑡

𝛾𝛾
+

6𝑞𝑞2𝑡𝑡𝑣𝑣

𝛾𝛾
−

4𝑞𝑞2𝑡𝑡𝑣𝑣2

𝛾𝛾
+

𝑞𝑞2𝑡𝑡𝑣𝑣3

𝛾𝛾
  

 
and 
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𝑠𝑠1(𝑡𝑡; 𝛼𝛼) = 𝑠𝑠0(𝑡𝑡; 𝛼𝛼) − ∫  𝑡𝑡0 �𝛾𝛾𝑠𝑠0(𝑤𝑤; 𝛼𝛼) 𝑑𝑑𝑠𝑠0(𝑤𝑤;𝛼𝛼)
𝑑𝑑𝑑𝑑

+ 𝑣𝑣 𝜕𝜕𝑢𝑢4(𝑥𝑥,𝑤𝑤)
𝜕𝜕𝜕𝜕

�
𝑥𝑥=𝑠𝑠0(𝑤𝑤;𝛼𝛼)

� 𝑑𝑑𝑑𝑑  

= √2√𝑡𝑡�
𝑞𝑞
𝛾𝛾

+ 𝑞𝑞5𝑡𝑡
336𝛾𝛾4

− 𝑞𝑞4𝑡𝑡
10𝛾𝛾3

+ 3𝑞𝑞4𝑡𝑡𝑣𝑣
40𝛾𝛾3

+ 𝑞𝑞3𝑡𝑡
𝛾𝛾2
− 4𝑞𝑞3𝑡𝑡𝑣𝑣

3𝛾𝛾2
+ 𝑞𝑞3𝑡𝑡𝑣𝑣2

2𝛾𝛾2
− 4𝑞𝑞2𝑡𝑡

𝛾𝛾
+ 6𝑞𝑞2𝑡𝑡𝑣𝑣

𝛾𝛾
− 4𝑞𝑞2𝑡𝑡𝑣𝑣2

𝛾𝛾
+ 𝑞𝑞2𝑡𝑡𝑣𝑣3

𝛾𝛾
  

 
By applying this process for the second iteration, that is evaluand using a computer program written in 
Mathematica 11 which is so difficult to be presented here, as an approximate solution of the movement 
of shoreline position. 
 
Case (ii): Also, by choosing the initial fuzzy approximations of 𝑢𝑢�0(𝑥𝑥, 𝑡𝑡) and 𝑠̃𝑠0(𝑥𝑥, 𝑡𝑡) as before when carried 
out in case (i), for the lower and upper cases, we can evaluate respectively the approximate solutions of 
case (ii) for the lower and upper solutions of Eqs. (25) and (26) up to the forth iteration as: 
 
𝑢𝑢1(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑢𝑢0(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) + ∫ (𝑤𝑤 − 𝑥𝑥) �𝑣𝑣 𝜕𝜕2

𝜕𝜕𝑤𝑤2 𝑢𝑢0(𝑤𝑤, 𝑡𝑡; 𝛼𝛼) − 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑢𝑢0(𝑥𝑥, 𝑡𝑡; 𝛼𝛼)�𝑥𝑥

0 𝑑𝑑𝑑𝑑   

=
𝑞𝑞�−𝑥𝑥+√2√𝑡𝑡�

𝑞𝑞
𝛾𝛾
�

𝑣𝑣
+

𝑞𝑞𝑥𝑥2�
𝑞𝑞
𝛾𝛾

2√2√𝑡𝑡𝑣𝑣
  

𝑢𝑢1(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑢𝑢0(𝑥𝑥, 𝑡𝑡, 𝛼𝛼) + ∫ (𝑤𝑤 − 𝑥𝑥) �𝑣𝑣 𝜕𝜕2

𝜕𝜕𝑤𝑤2 𝑢𝑢0(𝑤𝑤, 𝑡𝑡; 𝛼𝛼) − 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑢𝑢0(𝑥𝑥, 𝑡𝑡; 𝛼𝛼)�𝑥𝑥

0 𝑑𝑑𝑑𝑑  

=
𝑞𝑞�−𝑥𝑥+√2√𝑡𝑡�𝑞𝑞𝛾𝛾�

𝑣𝑣
+

𝑞𝑞𝑥𝑥2�
𝑞𝑞
𝛾𝛾

2√2√𝑡𝑡𝑣𝑣
  

𝑢𝑢2(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑢𝑢1(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) + ∫ (𝑤𝑤 − 𝑥𝑥) �𝑣𝑣 𝜕𝜕2

𝜕𝜕𝑤𝑤2 𝑢𝑢1(𝑤𝑤, 𝑡𝑡; 𝛼𝛼) − 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑢𝑢1(𝑥𝑥, 𝑡𝑡; 𝛼𝛼)�𝑥𝑥

0 𝑑𝑑𝑑𝑑  

=
𝑞𝑞(−𝑥𝑥+√2√𝑡𝑡�

𝑞𝑞
𝛾𝛾)

𝑣𝑣
+

𝑞𝑞(− 1
12
𝑣𝑣𝑥𝑥4�

𝑞𝑞
𝛾𝛾−2𝑡𝑡(−1+𝑣𝑣)𝑣𝑣𝑥𝑥2�

𝑞𝑞
𝛾𝛾)

4√2𝑡𝑡3 2⁄ 𝑣𝑣𝑣𝑣
+

𝑞𝑞𝑥𝑥2�
𝑞𝑞
𝛾𝛾

2√2√𝑡𝑡𝑣𝑣
  

𝑢𝑢2(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) = 𝑢𝑢1(𝑥𝑥, 𝑡𝑡, 𝛼𝛼) + ∫ (𝑤𝑤 − 𝑥𝑥) �𝑣𝑣 𝜕𝜕2

𝜕𝜕𝑤𝑤2 𝑢𝑢1(𝑤𝑤, 𝑡𝑡; 𝛼𝛼) − 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑢𝑢1(𝑥𝑥, 𝑡𝑡; 𝛼𝛼)�𝑥𝑥

0 𝑑𝑑𝑑𝑑  

=
𝑞𝑞𝑥𝑥2�

𝑞𝑞
𝛾𝛾

2√2√𝑡𝑡𝑣𝑣
+

𝑞𝑞(−𝑥𝑥+√2√𝑡𝑡�
𝑞𝑞
𝛾𝛾)

𝑣𝑣
−

𝑞𝑞𝑥𝑥2(24𝑡𝑡𝑣𝑣(−1+𝑣𝑣)�
𝑞𝑞
𝛾𝛾+𝑣𝑣𝑥𝑥

2�
𝑞𝑞
𝛾𝛾)

48√2𝑡𝑡3 2⁄ 𝑣𝑣𝑣𝑣
  

𝑢𝑢3(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) =
𝑞𝑞(−𝑥𝑥+√2√𝑡𝑡�

𝑞𝑞
𝛾𝛾)

𝑣𝑣
+

𝑞𝑞𝑥𝑥4�
𝑞𝑞
𝛾𝛾

48√2𝑡𝑡3 2⁄ −
𝑞𝑞𝑥𝑥4�

𝑞𝑞
𝛾𝛾

24√2𝑡𝑡3 2⁄ 𝑣𝑣
+

𝑞𝑞𝑣𝑣𝑥𝑥4�
𝑞𝑞
𝛾𝛾

48√2𝑡𝑡3 2⁄ 𝑣𝑣
+

𝑞𝑞�− 1
12
𝑣𝑣𝑥𝑥4�

𝑞𝑞

𝛾𝛾−2𝑡𝑡�−1+𝑣𝑣�𝑣𝑣𝑥𝑥
2�

𝑞𝑞
𝛾𝛾�

4√2𝑡𝑡3 2⁄ 𝑣𝑣𝑣𝑣
+

𝑞𝑞𝑥𝑥2�𝑞𝑞𝛾𝛾
√2√𝑡𝑡

−
√2𝑞𝑞𝑥𝑥2�𝑞𝑞𝛾𝛾

√𝑡𝑡
+

                        
𝑞𝑞𝑥𝑥2�

𝑞𝑞
𝛾𝛾

√2√𝑡𝑡𝑣𝑣
+

𝑞𝑞𝑣𝑣𝑥𝑥2�
𝑞𝑞
𝛾𝛾

2√2√𝑡𝑡
+

𝑞𝑞𝑥𝑥6�
𝑞𝑞
𝛾𝛾

960√2𝑡𝑡5 2⁄ 𝑣𝑣
  

𝑢𝑢3(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) =
𝑞𝑞𝑥𝑥2�

𝑞𝑞
𝛾𝛾

√2√𝑡𝑡
−

√2𝑞𝑞𝑥𝑥2�
𝑞𝑞
𝛾𝛾

√𝑡𝑡
+

𝑞𝑞𝑥𝑥2�
𝑞𝑞
𝛾𝛾

√2√𝑡𝑡𝑣𝑣
+

𝑞𝑞𝑣𝑣𝑥𝑥2�
𝑞𝑞
𝛾𝛾

2√2√𝑡𝑡
+

𝑞𝑞𝑥𝑥6�
𝑞𝑞
𝛾𝛾

960√2𝑡𝑡5 2⁄ 𝑣𝑣
+

𝑞𝑞�−𝑥𝑥+√2√𝑡𝑡�
𝑞𝑞
𝛾𝛾�

𝑣𝑣
−

𝑞𝑞𝑥𝑥2�24𝑡𝑡𝑣𝑣(−1+𝑣𝑣)�
𝑞𝑞

𝛾𝛾+𝑣𝑣𝑥𝑥
2�

𝑞𝑞
𝛾𝛾�

48√2𝑡𝑡3 2⁄ 𝑣𝑣𝑣𝑣
+

                     
𝑞𝑞𝑥𝑥4�

𝑞𝑞
𝛾𝛾

48√2𝑡𝑡3 2⁄ −
𝑞𝑞𝑥𝑥4�

𝑞𝑞
𝛾𝛾

24√2𝑡𝑡3 2⁄ 𝑣𝑣
+

𝑞𝑞𝑣𝑣𝑥𝑥4�
𝑞𝑞
𝛾𝛾

48√2𝑡𝑡3 2⁄ 𝑣𝑣
  

𝑢𝑢4(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) =
𝑞𝑞(−𝑥𝑥+√2√𝑡𝑡�

𝑞𝑞
𝛾𝛾)

𝑣𝑣
+

𝑞𝑞𝑥𝑥4�
𝑞𝑞
𝛾𝛾

12√2𝑡𝑡3 2⁄ −
𝑞𝑞𝑣𝑣𝑥𝑥4�

𝑞𝑞
𝛾𝛾

48√2𝑡𝑡3 2⁄ −
5𝑞𝑞𝑥𝑥4�

𝑞𝑞
𝛾𝛾

48√2𝑡𝑡3 2⁄ 𝑣𝑣
+

𝑞𝑞𝑣𝑣𝑥𝑥4�
𝑞𝑞
𝛾𝛾

12√2𝑡𝑡3 2⁄ 𝑣𝑣
−

𝑞𝑞𝑣𝑣2𝑥𝑥4�
𝑞𝑞
𝛾𝛾

48√2𝑡𝑡3 2⁄ 𝑣𝑣
−

𝑞𝑞𝑣𝑣𝑥𝑥4�
𝑞𝑞
𝛾𝛾

48√2𝑡𝑡3 2⁄ −
𝑞𝑞𝑥𝑥8�

𝑞𝑞
𝛾𝛾

21504√2𝑡𝑡7 2⁄ 𝑣𝑣
+

                     
𝑞𝑞�− 1

12
𝑣𝑣𝑥𝑥4�

𝑞𝑞

𝛾𝛾−2𝑡𝑡�−1+𝑣𝑣�𝑣𝑣𝑥𝑥
2�

𝑞𝑞
𝛾𝛾�

4√2𝑡𝑡3 2⁄ 𝑣𝑣𝑣𝑣
+

3𝑞𝑞𝑥𝑥2�
𝑞𝑞
𝛾𝛾

2√2√𝑡𝑡
−

2√2𝑞𝑞𝑥𝑥2�
𝑞𝑞
𝛾𝛾

√𝑡𝑡
+

3𝑞𝑞𝑥𝑥2�
𝑞𝑞
𝛾𝛾

2√2√𝑡𝑡𝑣𝑣
+

√2𝑞𝑞𝑣𝑣𝑥𝑥2�
𝑞𝑞
𝛾𝛾

√𝑡𝑡
−

𝑞𝑞𝑣𝑣2𝑥𝑥2�
𝑞𝑞
𝛾𝛾

2√2√𝑡𝑡
−

𝑞𝑞𝑥𝑥6�
𝑞𝑞
𝛾𝛾

480√2𝑡𝑡5 2⁄ +

                   
𝑞𝑞𝑥𝑥6�

𝑞𝑞
𝛾𝛾

240√2𝑡𝑡5 2⁄ 𝑣𝑣
−

𝑞𝑞𝑣𝑣𝑥𝑥6�
𝑞𝑞
𝛾𝛾

960√2𝑡𝑡5 2⁄ 𝑣𝑣
  

𝑢𝑢4(𝑥𝑥, 𝑡𝑡; 𝛼𝛼) =
3𝑞𝑞𝑥𝑥2�

𝑞𝑞
𝛾𝛾

2√2√𝑡𝑡
−

2√2𝑞𝑞𝑥𝑥2�
𝑞𝑞
𝛾𝛾

√𝑡𝑡
+

3𝑞𝑞𝑥𝑥2�
𝑞𝑞
𝛾𝛾

2√2√𝑡𝑡𝑣𝑣
+

√2𝑞𝑞𝑣𝑣𝑥𝑥2�
𝑞𝑞
𝛾𝛾

√𝑡𝑡
−

𝑞𝑞𝑣𝑣2𝑥𝑥2�
𝑞𝑞
𝛾𝛾

2√2√𝑡𝑡
−

𝑞𝑞𝑥𝑥6�
𝑞𝑞
𝛾𝛾

480√2𝑡𝑡5 2⁄ +
𝑞𝑞𝑥𝑥6�

𝑞𝑞
𝛾𝛾

240√2𝑡𝑡5 2⁄ 𝑣𝑣
−

𝑞𝑞𝑣𝑣𝑥𝑥6�
𝑞𝑞
𝛾𝛾

960√2𝑡𝑡5 2⁄ 𝑣𝑣
+

                      
𝑞𝑞�−𝑥𝑥+√2√𝑡𝑡�

𝑞𝑞
𝛾𝛾�

𝑣𝑣
−

𝑞𝑞𝑥𝑥2�24𝑡𝑡𝑣𝑣(−1+𝑣𝑣)�
𝑞𝑞

𝛾𝛾+𝑣𝑣𝑥𝑥
2�

𝑞𝑞
𝛾𝛾�

48√2𝑡𝑡3 2⁄ 𝑣𝑣𝑣𝑣
+

𝑞𝑞𝑥𝑥4�
𝑞𝑞
𝛾𝛾

12√2𝑡𝑡3 2⁄ −
5𝑞𝑞𝑥𝑥4�

𝑞𝑞
𝛾𝛾

48√2𝑡𝑡3 2⁄ 𝑣𝑣
−

𝑞𝑞𝑣𝑣𝑥𝑥4�
𝑞𝑞
𝛾𝛾

48√2𝑡𝑡3 2⁄ −
𝑞𝑞𝑣𝑣𝑥𝑥4�

𝑞𝑞
𝛾𝛾

48√2𝑡𝑡3 2⁄ +
𝑞𝑞𝑣𝑣𝑥𝑥4�

𝑞𝑞
𝛾𝛾

12√2𝑡𝑡3 2⁄ 𝑣𝑣
−

                     
𝑞𝑞𝑣𝑣2𝑥𝑥4�

𝑞𝑞
𝛾𝛾

48√2𝑡𝑡3 2⁄ 𝑣𝑣
−

𝑞𝑞𝑥𝑥8�
𝑞𝑞
𝛾𝛾

21504√2𝑡𝑡7 2⁄ 𝑣𝑣
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The case (ii) first iterative solution of the moving boundary based on using the FVIM depending on Eqs. 
(29) and (30), as follows: 
 
𝑠𝑠1(𝑡𝑡; 𝛼𝛼) = 𝑠𝑠0(𝑡𝑡; 𝛼𝛼) − ∫  𝑡𝑡0 �𝛾𝛾𝑠𝑠0(𝑤𝑤; 𝛼𝛼) 𝑑𝑑𝑠𝑠0(𝑤𝑤;𝛼𝛼)

𝑑𝑑𝑑𝑑
+ 𝑣𝑣 𝜕𝜕𝑢𝑢4(𝑥𝑥,𝑤𝑤;𝛼𝛼)

𝜕𝜕𝜕𝜕
�
𝑥𝑥=𝑠𝑠0(𝑤𝑤;𝛼𝛼)

� 𝑑𝑑𝑑𝑑  

= 𝑞𝑞𝑡𝑡 + √2√𝑡𝑡�
𝑞𝑞

𝛾𝛾
−

𝑞𝑞𝑡𝑡𝛾𝛾

𝛾𝛾
+ 6𝑞𝑞𝑡𝑡𝑣𝑣�

𝑞𝑞

𝛾𝛾 �
𝑞𝑞
𝛾𝛾
−

4𝑞𝑞𝑡𝑡𝑣𝑣�
𝑞𝑞
𝛾𝛾�

𝑞𝑞
𝛾𝛾

𝑣𝑣
− 4𝑞𝑞𝑡𝑡𝑣𝑣𝑣𝑣�

𝑞𝑞

𝛾𝛾 �
𝑞𝑞
𝛾𝛾

+ 𝑞𝑞𝑡𝑡𝑣𝑣𝑣𝑣2�
𝑞𝑞

𝛾𝛾 �
𝑞𝑞
𝛾𝛾

+
𝑞𝑞𝑞𝑞4𝑡𝑡

336𝛾𝛾4
+

𝑞𝑞𝑞𝑞2𝑡𝑡

𝛾𝛾2
−

2𝑞𝑞𝑞𝑞2𝑡𝑡𝑣𝑣

3𝛾𝛾2
+

𝑞𝑞𝑞𝑞2𝑡𝑡𝑣𝑣2

6𝛾𝛾2
−

2𝑞𝑞𝑞𝑞2𝑡𝑡𝑣𝑣

3𝛾𝛾2
+

𝑞𝑞𝑞𝑞2𝑡𝑡𝑣𝑣𝑣𝑣

6𝛾𝛾2
+

𝑞𝑞𝑞𝑞2𝑡𝑡𝑣𝑣2

6𝛾𝛾2
+

𝑞𝑞𝑞𝑞2𝑡𝑡𝑣𝑣�
𝑞𝑞
𝛾𝛾�

𝑞𝑞
𝛾𝛾

20𝛾𝛾2
−

𝑞𝑞𝑞𝑞2𝑡𝑡𝑣𝑣�
𝑞𝑞
𝛾𝛾�

𝑞𝑞
𝛾𝛾

10𝑣𝑣  𝛾𝛾2
+

𝑞𝑞𝑞𝑞2𝑡𝑡𝑣𝑣2�
𝑞𝑞
𝛾𝛾�

𝑞𝑞
𝛾𝛾

40𝑣𝑣 𝛾𝛾2
  

𝑠𝑠1(𝑡𝑡; 𝛼𝛼) = 𝑠𝑠0(𝑡𝑡; 𝛼𝛼) − ∫  𝑡𝑡0 �𝛾𝛾𝑠𝑠0(𝑤𝑤; 𝛼𝛼) 𝑑𝑑𝑠𝑠0(𝑤𝑤;𝛼𝛼)
𝑑𝑑𝑑𝑑

+ 𝑣𝑣 𝜕𝜕𝑢𝑢4(𝑥𝑥,𝑤𝑤;𝛼𝛼)
𝜕𝜕𝜕𝜕

�
𝑥𝑥=𝑠𝑠0(𝑤𝑤;𝛼𝛼)

� 𝑑𝑑𝑑𝑑  

= 𝑞𝑞𝑡𝑡 +
𝑞𝑞5𝑡𝑡

336𝛾𝛾4
+

𝑞𝑞3𝑡𝑡

𝛾𝛾2
−

2𝑞𝑞3𝑡𝑡𝑣𝑣

3𝛾𝛾2
+

𝑞𝑞3𝑡𝑡𝑣𝑣2

6𝛾𝛾2
−

2𝑞𝑞3𝑡𝑡𝑣𝑣

3𝛾𝛾2
+

𝑞𝑞3𝑡𝑡𝑣𝑣𝑣𝑣

6𝛾𝛾2
+

𝑞𝑞3𝑡𝑡𝑣𝑣2

6𝛾𝛾2
+ √2√𝑡𝑡�

𝑞𝑞
𝛾𝛾

+ 6𝑞𝑞𝑡𝑡𝑣𝑣�
𝑞𝑞

𝛾𝛾 �
𝑞𝑞
𝛾𝛾
−

4𝑞𝑞𝑡𝑡𝑣𝑣�
𝑞𝑞
𝛾𝛾�

𝑞𝑞
𝛾𝛾

𝑣𝑣
−

4𝑞𝑞𝑡𝑡𝑣𝑣𝑣𝑣�
𝑞𝑞

𝛾𝛾 �
𝑞𝑞
𝛾𝛾

+ 𝑞𝑞𝑡𝑡𝑣𝑣2𝑣𝑣�
𝑞𝑞

𝛾𝛾 �
𝑞𝑞
𝛾𝛾

+
𝑞𝑞3𝑡𝑡𝑣𝑣�

𝑞𝑞
𝛾𝛾�

𝑞𝑞
𝛾𝛾

20𝛾𝛾2
−

𝑞𝑞3𝑡𝑡𝑣𝑣�
𝑞𝑞
𝛾𝛾�

𝑞𝑞
𝛾𝛾

10𝑣𝑣𝛾𝛾2
+

𝑞𝑞3𝑡𝑡𝑣𝑣2�
𝑞𝑞
𝛾𝛾�

𝑞𝑞
𝛾𝛾

40𝑣𝑣𝛾𝛾2
− 𝑞𝑞𝑡𝑡𝛾𝛾

𝛾𝛾
  

 
and the second iteration, that is evaluand using a computer program written in Mathematica 11, which 
is so difficult to be presented here, as an approximate solution of the movement of shoreline position. 
 
Numerical Results 
 
This section presents an approximation of the sediment height 𝑢𝑢�(𝑥𝑥, 𝑡𝑡) and the shoreline positions 𝑠̃𝑠(𝑡𝑡) 
as fuzzy functions, using the concept of 𝛼𝛼-level sets. The numerical calculations were performed using 
Mathematica 11 computer software. The results are approximations and are illustrated through figures 
and Tables. To validate the accuracy of the numerical results, a comparison is made with the exact 
solution obtained when 𝛼𝛼 = 1, as provided by Voller et al [7]. 
 
We consider the triangular fuzzy number 𝑣𝑣� = 2� = (1,2,3), as defined using interval 𝛼𝛼-level given by Eq. 
(31). Hence, in terms of 𝛼𝛼-levels, we can express 𝑣𝑣� as 𝑣𝑣� = [1 + 𝛼𝛼, 3 − 𝛼𝛼], 𝛼𝛼 ∈ [0,1]. This representation 
allows us to describe the range of values for 𝑣𝑣� based on different levels of 𝛼𝛼. 
 
Figures 2 and 3 of case (i) indicate the lower and upper approximate solutions 𝑢𝑢�(𝑥𝑥, 𝑡𝑡) for different values 
of 𝛼𝛼-level, namely 0, 0.4, 0.8 and 1  at the fuzzy triangular value of diffusivity coefficient (𝑣𝑣� = 2�), sediment 
flow (𝑞𝑞 = 0.5) and time  𝑡𝑡 = 3 for 𝛾𝛾 = 10  and 𝛾𝛾 = 15, respectively. where the dashed line stands for 𝑢𝑢 
and continuous line stands for 𝑢𝑢. While, Figure 4-5 present the result of the lower and upper movable 
boundaries of shoreline position for the same above α-level, at the fuzzy triangular number of diffusivity 
coefficient 𝑣𝑣� = 2�, and sediment flow (𝑞𝑞 = 0.5) for 𝛾𝛾 = 10  and 𝛾𝛾 = 15, respectively, where the dashed 
line stands for 𝑠𝑠 and continuous line stands for 𝑠𝑠. In addition, Table 1 presents the absolute errors 
between the exact and approximate solutions with 𝑣𝑣� = 2�, 𝑞𝑞 = 0.5, 𝛾𝛾 = 10 , and 𝛼𝛼 = 1. From Table 1 and 
Figures 2-5, it is appeared that the approximate solution obtained through applying the FVIM are closely 
approximates the exact or nonfuzzy solution provided by Voller et al. [7]. 
 
Same discussion for case (ii) as in the last above paragraph, we get the result we get the Figure 6-9 and 
the Table 2. 
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Figure 2. Plot of the 4th iterated solution with respect to 𝑥𝑥 for 𝛾𝛾 = 10 in terms of 𝑢𝑢 and 𝑢𝑢 with different 𝛼𝛼-
levels of case (i) 
 
 

 
 

Figure 3. Plot of the 4th iterated solution with respect to 𝑥𝑥 for 𝛾𝛾 = 15 in terms of 𝑢𝑢 and 𝑢𝑢 with different 𝛼𝛼-
levels of case (i) 
 
 

 
 
Figure 4. Plot of the 2nd iterated moving boundary with respect to 𝑥𝑥 for 𝛾𝛾 = 10  in terms of 𝑠𝑠 and 𝑠𝑠 with 
different 𝛼𝛼-levels of case (i) 
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Figure 5. Plot of the 2nd iterated moving boundary with respect to 𝑥𝑥 for 𝛾𝛾 = 15  in terms of 𝑠𝑠 and 𝑠𝑠 with 
different 𝛼𝛼-levels of case (i) 

 
 

Table 1. The exact solution, approximate solution, absolute error of case (i), at 𝑣𝑣�  =  2� and 𝛾𝛾 = 10 
 

𝒙𝒙 Approximate solution Exact solution Absolute error 
0 0.13693064 0.13865301 0.00172238 

0.1 0.11193061 0.11371078 0.00178018 
0.2 0.08693013 0.08888404 0.00195391 
0.3 0.06192807 0.06417269 0.00224457 
0.4 0.03692250 0.03957634 0.00265384 
0.5 0.01191075 0.01509481 0.00318407 
0.6 0.01311069 −0.00927237 0.00383831 
0.7 0.03814609 −0.03352575 0.00462034 
0.8 −0.06320058 −0.05766592 0.00553467 
0.9 −0.08828015 −0.08169359 0.00658656 
1.0 −0.11339165 −0.10560956 0.00778209 

 
 

 
 
Figure 6. Plot of the 4th iterated solution with respect to 𝑥𝑥 for 𝛾𝛾 = 10 in terms of 𝑢𝑢 and 𝑢𝑢 with different 𝛼𝛼-
levels of case (ii) 
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Figure 7. Plot of the 4th iterated solution with respect to 𝑥𝑥 for 𝛾𝛾 = 15 in terms of 𝑢𝑢 and 𝑢𝑢 with different 𝛼𝛼-
levels of case (ii) 
 
 

 
 
Figure 8. Plot of the 2nd iterated moving boundary with respect to 𝑥𝑥 for 𝛾𝛾 = 10  in terms of 𝑠𝑠 and 𝑠𝑠 with 
different 𝛼𝛼-levels of case (ii) 
 
 

 
 
Figure 9. Plot of the 2nd iterated moving boundary with respect to 𝑥𝑥 for 𝛾𝛾 = 15 in terms of 𝑠𝑠 and 𝑠𝑠 with 
different 𝛼𝛼-levels of case (ii) 
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Table 2. The exact solution, approximate solution, absolute error of case (i), at 𝑣𝑣�  =  2� and 𝛾𝛾 = 15 
 

𝒙𝒙 Approximate solution Exact solution Absolute error 
0 0.13693064 0.13865301 0.00172237 

0.1 0.11193061 0.11371078 0.00178017 
0.2 0.08693013 0.08888403 0.00195390 
0.3 0.06192806 0.06417263 0.00224457 
0.4 0.03692250 0.03957634 0.00265383 
0.5 0.01191074 0.01509481 0.00318406 
0.6 0.01311068 −0.00927237 0.00383831 
0.7 0.03814608 −0.03352574 0.00462034 
0.8 −0.06320058 −0.05766591 0.00553466 
0.9 −0.08828014 −0.08169359 0.00658655 
1.0 −0.11339165 −0.10560956 0.00778208 

 
Conclusions 
 
We investigated a mathematical model that utilizes fuzzy parameters, specifically a type of fuzzy number 
that transforms the fluvio deltaic sedimentary problem into a fuzzy problem. It was demonstrated that 
FVIM is a reliable and effective technique for addressing the fluvio-deltaic sedimentary problem, allowing 
for the derivation of an analytical approximate solution. The accuracy of the results was verified by 
comparing the approximate results for the lower and upper solutions for each 𝛼𝛼-level, as well as their 
convergence when 𝛼𝛼 = 1, which represents the crisp solution. We have established that sedimentation 
slows down as the value 𝛾𝛾� increases. As the value of 𝑞𝑞� increases, the sedimentation procedure 
accelerates. The results are shown in Figures 2-9 and Tables 1-2, which shows the effect of fuzzy 
phenomena on the behaviour of the fuzzy solution in the considered numerical results for the problem. 
Further, the proposed procedure outlined in this paper provides an analytical approximate solution that 
could prove useful for future real-world applications. In such methods, analytical function solutions are 
considered more dependable than numerical results got through alternative methods. The Adomian 
decomposition method could be explored for handling the problem. 
 
In future studies, we suggest that we use new parameters in order to transform the problem into a fuzzy 
formulation, use other types of fuzzy numbers, and use the residual error to analyse the fuzzy 
approximate solution. 
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