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GRAPHICAL ABSTRACT 

 
 

 
ABSTRACT 
 
The unsteady boundary layer flow is presented for non-Newtonian fluid flow past an oscillating vertical plate 
with constant wall temperature. The Casson fluid model is used to distinguish the non-Newtonian fluid 
behavior. The governing partial differential equations corresponding to the momentum and energy equations 
are transformed into dimensionless forms, by using suitable transformations. Laplace transform method is used 
to find the exact solutions of these equations. The expressions for shear stress in terms of skin friction and the 
rate of heat transfer in terms of Nusselt number are also obtained. Numerical results of velocity and 
temperature profiles with various values of embedded flow parameters are shown graphically and their effects 
are discussed in detail.  
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1. INTRODUCTION 
 

It is a well know fact that many complex fluids 
such as blood, soap, clay coating, certain oils and 
greases, elastomers, suspensions and many emulsions 
are noteworthy due to their various applications in 
industries. But unfortunately Navier Stokes equations 
are no more valid to describe them. Such fluids are 
known as non-Newtonian fluids. These fluids are 
described by a non-linear relationship between the stress 
and the rate of strain. Therefore, mostly it is not easy to 
find their solution, more specifically exact solutions 
same like for Newtonian fluids. Newtonian fluids on the 
other hand are relative easy and convenient for exact 
solutions [1-5].  

The interest of researchers to study non-
Newtonian fluid is motivated because of their extensive 
applications in diverse areas of biorheology, geophysics, 
chemical and petroleum industries.  In view of these 
particular applications, the study and understanding of 
non-Newtonian fluids have now become an increasingly 
appealing topic of current research in this field. The 
most difficult task in studying non-Newtonian fluids is, 
that they cannot be described by using a single 
mathematical model like Newtonian fluids. Therefore, 
for each non-Newtonian fluid there is a separate model 
of constitutive equations. Amongst them there is one 
non-Newtonian fluid model which is recently quite 
famous called Casson fluid model. Basically this fluid 
model was introduced by Casson in 1959 to study the 
prediction of the flow behavior of pigment-oil 
suspensions [6]. After the seminal work of Casson, 
several authors including Hayat et al. [7], 
Mukhopadhyay [8], Bhattacharyya [9], Mukhopadhyay 

et al. [10] and Pramanik [11] have used Casson fluid 
model in their respective problems. However most of 
them analyzed their problems using either approximate 
or numerical methods. Some famous examples of 
Casson fluid include jelly, tomato sauce, honey, soup 
and concentrated fruit juices amongst others. 

Exact solutions of Casson fluid are scarce. They 
are even more rare when the flow of Casson fluid is 
needed to study in the presence of free convection. Due 
to this reason we are motivated to study this problem. 
More exactly, in this article we have considered the 
unsteady free convection flow of Casson fluid past an 
oscillating vertical plate which obeys the constant wall  
temperature condition.  Exact solutions are obtained by 
using the Laplace transform technique. Analytical results 
for skin-friction and Nusselt number are provided. 
Graphical results are presented and discussed for various 
physical parameters. Exact solutions obtained in this 
paper can be used as a bench mark for validation of 
other solutions obtained via approximate or numerical 
schemes. 

 
2. FORMULATION OF THE PROBLEM 

 
We consider Casson fluid past an infinite vertical 

flat plate situated at the flow being confined to 0y , 

where y  is the coordinate measured in the normal 

direction to the surface. It is assumed that at the initial 
moment ,0t both the plate and fluid are at rest with 

constant temperature 
T . At time  0t  the plate 

begins to oscillate in its plane  0y  according to 
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( ) c o s ( ) ,U H t tV i                        (1) 

 
where the constant U  is the amplitude of the plate 
oscillations, )( tH is the unit step function, i  is the unit 

vector in the vertical flow direction and   is the 
frequency of oscillation of the plate. At the same time, 
the plate temperature is raised to 

wT  which is thereafter 

maintained constant. The corresponding equations for 
momentum and energy under the above assumptions are 
given by 
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We introduce the following dimensionless variables 
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into equations (2-4), and we get (* symbols are dropped 
for simplicity) 
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with associated initial and boundary conditions 
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where  
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are the Prandtl and Grashof numbers. 

 
 

3. SOLUTION OF THE PROBLEM 
 

Applying Laplace transforms to equations (6) and 
(7), using initial and boundary conditions (8), we get the 
following solutions in the transformed plane  
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The inverse Laplace transforms of equations (9) and (10) 
are obtained as follows: 
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where, ( , )m eu y t denotes the mechanical part and 

( , )thu y t  is the corresponding thermal part. 

Note that the above solution (12) for velocity is 
only valid for P r 1 . Moreover the solution for 

P r 1  can be easily obtained by putting Pr 1  into 

equation (7), and follow a similar procedure as discussed 
above, we obtain 
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The expression for skin-friction and Nusselt number are  
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4. LIMITING CASES 
 

The following solutions from the literature appear 
as the limiting cases of our general solutions. 
 
(i). By taking     into equation (14), the 

corresponding solutions for viscous fluid can be 
obtained as a special case: 
(ii).  
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(iii). By taking 0  , which corresponds to 

impulsive motion of the plate, then equations (12)  yield  
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equation (20) describe the corresponding solution of 
Stokes’ first problem for Casson fluid. It is important to 
note that exact solution of Stokes’ first problem for 
Casson fluid (20) is also not reported in the literature 
and hence is new.  
 
(iv). In this last case, we assume that the flow is 
induced only due to bounding plate and the 
corresponding buoyancy forces are zero equivalently it 
shows the absence of free convection  0G r due to 

the differences in temperature gradient. This shows that 
the thermal parts of velocity in equation (14) is zero. 
Hence the flow is only governed by the corresponding 
mechanical part given by 
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Note that equation (21) is identical (when    ) to 

that obtained by Fetecau et al. [9], see equation (8). This 
fact is also shown in figure 8. 
 
5. RESULTS AND DISCUSSION 
 

In this section, the obtained exact solutions are 
studied numerically in order to determine the effects of 
Prandtl number P r , Grashof number G r , Casson 
parameter   and phase angle  t . It is observed from 

figure 1 that velocity decreases with increasing P r . 
Figure 2 elaborates that the velocity increases with 
increasing G r . Figure 3 shows influence of Casson 
parameter. It is found that velocity decreases with 
increasing values of  . It is further observed from this 

figure that when the Casson parameter   is large 

enough i.e.    , the non-Newtonian behavior  

disappear and the fluid purely behaves like a Newtonian 
fluid. Thus, the velocity boundary layer thickness for 
Casson fluid is larger than the Newtonian fluid. It occurs 
because of plasticity of Casson fluid. Figure 4 shows the 
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oscillatory behavior of velocity for different values of 
.t This figure can easily help us to check the accuracy 

of our results. We can see that for these values of ,t  

the velocity shows its values either 1, 0 or -1 which are 
identical with the imposed boundary conditions of 
velocity in equation (9). It is depicted from figure 5 that, 
the temperature profile decrease with increasing values 
of Prandtl number P r . It is observed that the thermal 
boundary layer thickness is maximum near the plate and 
decreases with increasing distance from the leading edge 
and finally approaches to zero. It is also noticed from 
this figure that the magnitude of temperature is greater 
for air compare to electrolytic solution and water.  

For the sake of correctness and verification, we 
have compared our results with those of Fetecau et al. 
[9]. This comparison is shown in figure 6. It is found 
that our limiting solution (21) is identical to equation (8) 
obtained by Fetecau et al. [1]. This confirms the 
accuracy of our obtained result. 

 

 
Figure 1: Profiles of velocity for different values of P r , when 

, 0 .2  a n d  3 .
4

t G r
     

 
Figure 2: Profiles of velocity for different values of Gr , 

when  P r 0 .3 , 0 .6 , 0 .3 a n d .
4

t
      

 
Figure 3: Profiles of velocity for different values of  , where 

P r 0 .3, 0 , 0 .3 an d .
4

G r t
     

 
Figure 4: Profiles of velocity for different values of t , 

when 3 ,  P r 0 . 3 ,  1  a n d 0 . 5 .G r t      

    

Figure 5: Profiles of temperature for different values of P r , 

when t = 0.4. 

 
Figure 6: Comparison of the present results [see equation (21), 

when    ] with those obtained by Fetecau et al. [1], [see 

equation (8)] whe 0 .2 , 0 , 1, 1 an d  1 .t a U v      

 
6. CONCLUSION 

 
Exact solutions for unsteady free convection flow 

of Casson fluid past an oscillating vertical plate with 
constant wall temperature are obtained. The Laplace 
transform technique is used for solution. Plots are 
prepared for velocity and temperature and discussed in 
details. It is found that the Casson fluid parameter have 
decreasing effect on velocity.  
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