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ABSTRACT

Flexural vibration of an infinite Pyrocomposite circular cylinder made of inner solid and outer hollow pyroelectric layer
belonging to 6mm-class bonded together by a Linear Elastic Material with Voids (LEMV) is studied. The exact
frequency equation is obtained for the traction free outer surface with continuity conditions at the interfaces.
Numerical results in the form of data and dispersion curves for the first and second mode of the flexural vibration of the
cylinder ceramic - 1 / Adhesive / ceramic - 2 by taking the adherents as BaTio; and the adhesive layer as an existing
Carbon Fibre Reinforced Polymer (CFRP) or as a hypothetical LEMV layer with and without voids are compared with a
pyroelectric solid cylinder. The damping is analyzed through the imaginary part of the complex frequencies.

| Flexural vibration | pyrocomposite | solid cylinders | LEMV | CFRP |

1. INTRODUCTION

The applications of pyroelectric materials and pyroelectric ceramic/polymer composite materials are many and
[1] - [10] are a few in particular. Dispersion characteristics of wave propagation in pyoelectric plate and cylinder
have been studied by Paul and Raman [11]-[13]. Paul and Nelson [14] have extended the study of Vasudeva and
Govinda Rao [15]-[16] on the influence of distributed voids in the interfacial LEMV adhesive zones of the
isotropic Sandwich plate to the flexural vibration of Piezo composite hollow cylinder. A continuum theory of
LEMYV with distinct properties has been developed by Cowin and Nunziato [17]. In layered composites pores or
voids are found in the interface region and it is known to affect the estimation of physical and mechanical
properties of the composites [18]. Voorhees and Green [19] have studied the mechanical behavior of sandwich
composites made of thin porous core and denser face materials. Damage detection and vibration control of a new
smart board designed by mounting piezoelectric fibers with metal cores on the surface of a CFRP composite was
studied by Takagikiyoshi [20].

In the present analysis flexural vibration of pyrocomposite circular solid cylinder of crystal class 6mm with
LEMV/CFRP as a bonding layer is considered. The frequency equation for flexural vibration of solid cylinder
has been derived for traction free shorted outer surface with interface continuity conditions on both sides of the
LEMV layer. Numerical work is carried out and the dispersion curves for the flexural vibration of the
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pyrocomposite solid cylinder with middle core LEMV/CFRP are compared with that of pyroelectric solid
cylinder.

2. GOVERNING EQUATIONS

The equations governing elastic, electric and thermal behavior are given by Mindlin [21] - [22]
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Where, T'ij, Sk,I ,D'j, EkI .o and @' are stresses, strains, electric displacements, electric fields, entropy and

temperature. Here, CvI is the specific heat capacity, €, is the reference temperature, and p' is the density.

And C'ij,e'mn,glu,ﬁ'j and p'm are elastic, piezoelectric, dielectric, thermal stress coefficients and
pyroelectric constants respectively. The comma followed by an independent variable denotes partial

differentiation of that coefficient with respect to that independent variable and Eli=- ¢', i~ The superscript
(|:1, 2) is to denote the constants and variables of inner and outer pyroelectric materials of hexagonal (class 6
mm).
For crystal class 6 mm, the material constants are
'c'y Cwu Cs 0 0 0 | _ﬂll_
Cz Cu Cus 0 0 0 £ 0
cl_ Cs C'%s C's 0 0 0 B= £'s p,T 1o
0 0 0 Cw 0 0| 0| ,
0 0 0 0 Cu 0 0 P
0 0 0 0 0 Cle] | 0 |
0 0 0 eu e 0 gu 0 0
e'=| 0 0 0 €5 —ewu 0, =0 &u 0
e eu eu 0 0 O 0 0 ¢&'s
Where, C'es :[Mj The stress components T 'ij , electric displacements D,, and the entropy

o satisfy the following equations for flexural vibration of hexagonal symmetry
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The equations of flexural motion, Gauss’s equation and the entropy equation in cylindrical polar coordinates r,0,
z for class 6 are
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Where K, is heat conduction coefficient, d = , U, vand w are the displacements along r, 6, z direction,
0
¢ is the electric potential, p is the mass density and t is the time. The solutions of Eqn. (3) is considered in the

form
u'(r,0,z,t)=(u',, +r*v', Jexpli(kz+ pt))
v'(r,0,z ,t)=(r‘1 u'y —v' )exp{i (kz+ pt)},
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w(r, 0201 4 el ). "
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Where, k is the wave number, p is the angular frequency and i=~+/—1. We introduce the non-dimensional

r
quantities x and & such that X:(Hj , & =kh and h = h; — hy (ho, hs are inner and outer radius of the

cylinders) thickness of the composite solid cylinder.
Using the above solution, Eqn (3) can be rewritten as

CiVZi+A -A, A -A,
AV: TV A (V7 + A, A,
AV elVi+ A, —(KZV2+A) ~A ', w, ¢\ T =0,
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Where
Vz :a_2+(lj£
ox*  \ x)ox
A, = & —(ch)
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A= &°Cy— (ch)®
A= &

A,=¢

Ag= K'323I &’
A,=pe
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and
= Clij _ el ! — 'c'ucCly
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The solutions of the Eqgn (5) are taken as

M‘“ TM» TMQ TM»

[A' J,(@x)+B}Y,(a] x)]cosne

[A' J.(@;x)+B;Y, (o] x)]d cosné

(@)
#'= [ A3, (@' X)+B!Y, (@'x)]e! cosng
T'= [ }Jn(a}X)+B}Yn(a}X)]h}cosne
j=0
And (a}x)z are the four roots of the Eqn (5) when replacing V> :—(a; x)z_
The constants d, ,ej and h; can be evaluated using the following relations:
(Cavi+A)-Ad'i+Ae'i - AN =0,
AZVZ +((_:44|V2 n As)dl J_ +(§1|5V2 + A6)644| e A, h'; =0,
(8)

AV? +(§1'5v2 + Ae)d'j —(K;f'vz + Ag)e' [ —Agh'; =0,
AVZ+A,d' - Age +(iK,'VZ + Ay ' =0,

Also the solution of Eqn. (6) is

V' =[A; J, (aix)+Bly, (a;x)]sin ne,

Where (ciX)? :4
C66
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In the context of the theory of LEMV, the equations of motion and balance of equilibrated force are given by [23]
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pU = pu, y+(A+ 1)U i+ By,
pky=ay i—oy-Sy—Bu
Where U,V, W are displacements in r, ® and z directions «, ,&, @ and K (equilibrated inertia) are material

constants characterizing the core of LEMV, p is the density and A, & are the Lame’s constants and ¥ is the

new kinematical variable associated with a material with voids comes into contact with another material without
voids.

©)

The solution for Eqgn. (9) is taken as

u (r,H,z,t)z(u ,r+r‘1v]0)exp{i(kz+ pt)},
v (r,H,z,t):(r ‘1u]9—v’r)exp{i(kz+ pt)},

w(r, 8,z,t)=i (%j expli(kz+ pt)}, (10)

v (r.0,2,t)= [% jexp{i (kz+ pt)},

Substituting Eqn. (10) in Eqn (9) and using the dimensionless variables x and ¢, the Egn. (10) becomes
(A+2u)V?+B, ~ -B, B,

B,V° 1V’+B, B, |(u,w,p)=0 (11)
~-B,V® B, aV’+B,
[;7 V2+Bl]v =0. (12)
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and
ﬂ/ = 1 = 1 a = ) = 1
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The solutions of the Eqgn. (11) are taken as

3
u :Z[Aj Jo(a;X)+B, yo(ajx)]cosne
j=0

J_

3
W ZZ[AjJO(O{jX)+Bj yo(ajx)]djcosne (13)
j=0

3
W :Z[Aon(ajx)+Bj yo(ajx)]ej cosné

j=0
(ocjx)z are the three roots of the equation (11) when replacing Vi=— (aj X)2 . The constants dj and g
can be evaluated using the following relations:

BZV2+(ﬁV2+B4)dj +Bge; =0,
~B,V2+(B;)d, +(a V2 +B e, =0
The solution of Eqn. (12) is

v =[A, J,(@,X)+B, y,(a,X)kinne,

(14)

B
Where (a,X)? =—
7

The governing equation for CFRP core material can be deduced from Eqn. (9) by taking the void volume fraction
Ci1 =Cp

w =0 ,and the Lame’s constantsas A =C,, , (/= >

3. FREQUENCY EQUATIONS
The frequency equation has been derived by using the following boundary and interface conditions

(i) Since the outer surface are traction free and coated with electrodes which is shorted, the boundary conditions
become

Trlr :TrI9 = Trlz = ¢I = TI r =0 at I =X, with 1=2
(ii) On the interfaces (inner and middle, outer and middle), the continuity conditions are
At I=X,, X

Trlr =T .Trla :Trai Trlz =T

rr

su'l=upv=viw =w

¢' =0, T'+=0 (Atnon-pyroelectric core material) and
w , = 0 due to void volume fraction field with | =1,2
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The interface condition i | = 0 on the void volume fraction field v is suggested by Atkin et al [24]. (When a

material with voids comes into contact with another material without voids). The frequency equation is obtained
as 23 x 23 determinantal equation, on substituting the solutions in the boundary- interface conditions. It is written
in symbolic form as

|E(i, )] =0, (i,j=123,..,23) (15)

The non-zero elements at X=X, by varying j from 1 to 4 are

E@, j)=2 1(“ JJ (a X - [cll(a) +Cyed]+8; €+ Bh, ]J (ax)

1

e s

E( j+5)=—
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E(3,5)= (%J £, (ax)
E(3,j+5)=— (e+d ){ 1(aj &){%)J(J(ajxl)}
E(3, 9)=— ﬁ[xﬂjg 3, (%)
E(4,j)=—at J,(at %)+ [Xﬂjao(a}xl)
n
E(4,5)= {;

1

Jjo(aéxl)
E(4,j+5)=a, J(a, xl)—(xﬂjao(ajxl)
E(4’9):_(X£j‘]o(a4xl)
: n 1
E(5, J):_(X_j‘lo(ajxﬂ
E(5,5)= {a; Jl(a; xl)—(xﬂj J,(aix,) }

E(5,j+5)= [X%JJO((Z]XI)

E(5,9)= { 3(e, xl)—(xﬂl) 3, (%) }
E(6,)=d} 3,(e} )

E(6,j+5)— d, J(a4x1)

E(7,])=¢] (a x)
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E@® j)=h] (%j%(a} %)= () Iy (e %)

E(9, j+5)=¢, {— a,3(a, ><1)+[X1J \NCT xi):l

and the other nonzero elements at the interfaces x = x; can be obtained on replacing Jo by J; and Y, by Y in the
above elements. They are E(i ,J+9 ) (i=1, 2,3, 4,5,6,9). The non - zero elements at X = x, by varying j
from 6 to 10 are,

2 ﬁ[%} 3 x,)
2n(in-Y u

+{—(2_,+ 2/,_1)(aj)Z+Eej—ﬂ_,8dj+T}Jo(asz)

2

E(10,9)= |:2n [ le(a4X2) [(nxol)]J( Xz)j|

E(10, j +8)=—2C,, ( ] [Cn(a) +Ched’+8 el +fh, ]J (@ix,)
66

E(10,18)=2nc, [ JJ a2 X, {2” ”Xz)lz) GG}J (ax,)
E(1L, j)=2n,uHX—2’ 3(e, xz){ ((r'xz;)}]o(asz)_

E(11,9)= —2;7[(“ JJl(a4 X, )+ [”(” _21) —((ag)z ]Jo(a4x2)]

E(L j +8)=—2n 6626{ X—Z'Jal(ajz Xz)_|: (FXZ_)%)}JO(OC]ZXZ)}
E(11,18)= -c2 {—2 (

E(0, ] )=
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E(12, j)=—7(s+d, ){ a; (e, X2)+(X—JJO(0{]X2)}
2
E(lZ’ 9):_/_1()(1}5 Jo(a,X;)
2
n
E(12, j+8)= - (s +d?+&> ,){( T)Jl(afxz)—(x—}]o(afxz)}
2
E(12,18)= ( JEJ (ar2x,)
£03, j)=at, (e, %)~ (
X
n
E(13,9)=—(—JJ0(Q4X2)
X2

JJ (a;%,)

2

E(13, j +8)=—a? J,(a’x,)+ (Xl

2

J‘]o(ajzxz)

n

E(13,18)= (X—z
. n
)= (—

E(14,9)=—|:a4 3,(a, XZ){%) 3, (%) }

JJo(ajzxz)

]‘Jo(asxz)

jJO(anZ)

E(14,j+8)=-a} Jl(a,? x2)+ [1
X

2

E(14,18) = (Xﬂ

2

J‘]o(aszxz)

E(5, j)=—d, J(a, %)
E(15, j+8)=d?J,(a?x,)
E(6, j+9)=¢? J,(a?x,)
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EQ17,j+9)=h? (%]Jo(af X,)—(a}) Iy (@] x,)

E(18, j)=¢ { a; (e, X2)+(X£2j \NC2 xz)}

and the other nonzero elements at the interface x = x, can be obtained on replacing J, by J; and Y, by Y, in the
above elements. They

are E(i, j+4),E(i, j+13) (i =10,11,12,13,14,15), E(16, j+14),E(17, j+14) and E(18, j +4)
At the outer surface x = X3, the nonzero elements by varying j from 14 to 18 are

E(L9, j)= 26662(%2}] (o2 %, -[61 (@7)? 42 ed? +8% e + B, |3, (@2%,)

3

E(19,18)=—2nc2 (“—fj 3,(e2 xs){%}] (a2x,)

E(20, j):{Zn (i—j]Jl(af X, )- [%}J (@ x)}
E(20,18)= { 2 (“—5]31(05; X3)+[(a§ xa)z—%}\]( xs)}

(o1 ,-):_(g+d;+qgeg){(a§)%(a; xs)_[xijjo(afxs)}

E(2118)= (X JsJ (o X,)

E(22, j)=e?J,(a} x;)

E(22,18)=0

E(23, j) (X JJ (a X3)— (a ), (a X3)
(

E(23,18)=0
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the other nonzero element at the interface x = x5 can be obtained on replacing J, by J; and Y, by Y in the above
elements. They are E (i )+ 5)(i =19,20,21,22,23) . In the case of without voids in the interface region, the

frequency equation is obtained by taking =0 in Eqgn. (14) which reduces to a 21 x 21 determinantal equation.

The frequency equations derived above are valid for different inner and outer materials of 6mm class and
arbitrary thickness of layers.

4. NUMERICAL RESULTS

Zeros of the frequency equations are evaluated using Muller’s method [25]. The elastic, piezoelectric, dielectric
and pyroelectric constants for BaTio; are taken from Ref. [26]-[27]. The material constants of LEMV bonding
layer are taken as the hypothetical material no.2, in Table 111 of Puri and Cowin [28]. The value of dimensionless
number N, which is void volume measure factor, defined in eq. (3.4) of Ref [28], and the value of N is found to
be 0 < N < 0.66. The material constants of CFRP bonding layer are taken from [29]. For all the numerical
calculations, the inner/outer and middle/outer radius of the cylinders are taken as a/c = 0.6666 and b/c = 0.7333
respectively. The complex frequencies for the flexural waves in the first and second modes are given in Tables 1
and 2. The imaginary parts of the frequencies representing the attenuation of the flexural vibration of Pyro
laminated-LEMV  (with and without voids) and Pyro laminated - CFRP cylinders are compared with
pyroelectric solid cylinder. The dispersion curves for the real part of frequency against the dimensionless wave
number for the interfacial layers LEMV (N=0 and N=0.33)/CFRP and pyroelectric solid cylinder are plotted for
the first and second flexural mode in Figs. 1 and 2 respectively.

5. CONCLUSION

The frequency equation for free flexural vibration of pyrocomposite solid cylinder with LEMV as core material is
derived. From the numerical data, an increase in imaginary part of the frequencies which is a measure of
attenuation of the composite vibration is observed with voids/pores in the core material than the vibration of the
pyroelectric solid cylinder. The present model with CFRP core may have a similar practical application discussed
in [5]-[6].

REFERENCES

[1] Lang S. B, “Guide to the literature of piezoelectricity and pyroelectricity, Ferroelectrics” 142, (3-4),
263-379, 1993 and 146, (1-4), 153-369, 1993.

[2] Hasegawa J and Takaya K, “Development of microcomputer- aided pyroelectric thermal imaging
system and application to pain management”, Medical and Biological Engg. & Computing, Vol(24)
no(3)/May 1986, 275-280.

[3] Dimmock J O, “Pyroelectric Infrared detectors and applications”, Journal of Electronic materials,
Vol(1), no(2)/May 1972, 255-309.
[4] Hiroyuki Ida and Jun Kawai, “ldentification of steel by X-ray fluorescence analysis with a pyroelectric

X-ray generator”, Analytical and Bioanalytical Chemistry, VVol.379, no(4)/2004, 735 -738.

[5] Merabet E K, Yuen H K, Grote W A and Deppermann K L,”A high sensitivity titration calorimeter
using pyroelectric sensors”, Journal of Thermal Analysis and Calorimetry, vol. (42), no(5)/Nov,1994

[6] Batra A. K., Simmons M., Padmaia Guggila, Aggarwal M. D., and Lal R. B., “Studies on DTGS: PVDF
Composites for Pyroelectric Infrared Detectors”, Integrated Ferroelectric, VVol. 63, 1, 2004, 161-163.



282

Table 1 Complex frequencies for different values of real wave numbers in the first flexural mode of the
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pyrocomposite solid cylinder

Frequencies
Wave no. . . with core
©) Pyroele(_:trlc solid LEMV
cylinder _ LEMV (N=0.33) CFRP
(N=0)

0.01 0.1331E+00 +i 0.5503E-01 +i 0.3983E-01 +i 0.5478E-01 +i
' 0.0000E+00 0.3720E-09 0.5270E-02 0.1700E-08
0.2 0.8719E+00 +i 0.7274E+00 +i 0.7597E-01 +i 0.7274E+00 +i
' 0.0000E+00 0.2361E-07 0.1937E+00 0.9556E-07
06 0.1118E+01 +i 0.9786E+00 +i 0.7292E+00 +i 0.9786E+00 +i
' 0.0000E+00 0.1512E-11 0.5179E+00 0.1468E-09
19 0.1455E+01 +i 0.1386E+01 +i 0.9786E+00 +i 0.1311E+01 +i
' 0.0000E+00 0.8648E-08 0.1511E-11 0.7133E-11
18 0.2193E+01 +i 0.1985E+01 +i 0.1752E+01 +i 0.1808E+01 +i
' 0.0000E+00 0.4822E-11 0.6017E-04 0.8440E+00
24 0.2809E+01 +i 0.2785E+01 +i 0.2349E+01 +i 0.2479E+01 +i
' 0.0000E+00 0.6430E-15 0.8040E-05 0.3415E-13
30 0.3424E+01 +i 0.3316E+01 +i 0.2947E+01 +i 0.3216E+01 +i
' 0.0000E+00 0.1250E-12 0.3878E-05 0.2018E-07
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Table 2 Complex frequencies for different values of real wave numbers in the first flexural mode of the
pyrocomposite solid cylinder.

Frequencies
Wave no. pyroelectric solid Pyrocomposite solid cylinder with core
(&) cylinder LEMV LEMV CFRP
(N=0) (N=0.33)

0.01 0.2563E+00 +i 0.5813E-01 +i 0.4830E-01 +i 0.5503E-01 +i
' 0.0000E+00 0.1626E-01 0.16115E-01 0.3720E-09
0.2 0.9951E+00 +i 0.7274E+00 +i 0.7598E-01 +i 0.7274E+00 +i
' 0.0000E+00 0.1276E-11 0.1936E-01 0.9585E-08
06 0.1241E+00 +i 0.1016E+01 +i 0.7293E+00 +i 0.1016E+01 +i
' 0.0000E+00 0.4662E-08 0.5183E+00 0.2811E-07
12 0.1577E+00 +i 0.1386E+01 +i 0.1016E+01 +i 0.1311E+01 +i
' 0.0000E+00 0.7573E-08 0.2811E-07 0.4283E-12
18 0.2316E+00 +i 0.1985E+01 +i 0.1752E+01 +i 0.1809E+01 +i
' 0.0000E+00 0.2282E-11 0.2704E-05 0.8439E+00
24 0.2932E+01 +i 0.2785E+01 +i 0.2349E+01 +i 0.2479E+01 +i
' 0.0000E+00 0.5715E-15 0.1495E-06 0.5915E-13
3.0 0.3548E+01 +i 0.3316E+01 +i 0.2947E+01 +i 0.3216E+01 +i
' 0.0000E+00 0.919E-13 0.4729E-05 0.1700E-07
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Figure 1 Comparison of dispersion curves of composite solid cylinders BaTio; / CFRP / BaTios; BaTioz /
LEMYV / BaTios (for N = 0 and N = 0.33) and pyroelectric solid cylinder in the first flexural Mode.
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Figure 2 Comparison of dispersion curves of composite solid cylinders BaTio; / CFRP / BaTios; BaTios /
LEMYV / BaTios (for N = 0 and N = 0.33) and pyroelectric solid cylinder in the second flexural Mode.
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