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Abstract Let 𝑅𝑅 be a commutative ring with a nonzero identity and 𝑍𝑍(𝑅𝑅) be the set of zero-
divisors of 𝑅𝑅. The weakly zero-divisor graph of 𝑅𝑅, denoted by 𝑊𝑊Г(𝑅𝑅), is the graph with the vertex 
set 𝑍𝑍(𝑅𝑅)∗ = 𝑍𝑍(𝑅𝑅)\{0}, where two distinct vertices 𝑎𝑎 and 𝑏𝑏 form an edge if 𝑎𝑎𝑎𝑎 = 𝑏𝑏𝑏𝑏 = 𝑟𝑟𝑟𝑟 = 0 for 
𝑟𝑟, 𝑠𝑠 ∈ 𝑅𝑅\{0}. For an ideal 𝐼𝐼 of 𝑅𝑅, the ideal-based zero-divisor graph of 𝑅𝑅, denoted by Г𝐼𝐼(𝑅𝑅), has 
vertices {𝑎𝑎 ∈ 𝑅𝑅\𝐼𝐼:𝑎𝑎𝑎𝑎 ∈ 𝐼𝐼 for some 𝑏𝑏 ∈ 𝑅𝑅\𝐼𝐼} and edges {(𝑎𝑎,𝑏𝑏):𝑎𝑎𝑎𝑎 ∈ 𝐼𝐼,𝑎𝑎,𝑏𝑏 ∈ 𝑅𝑅\𝐼𝐼,𝑎𝑎 ≠ 𝑏𝑏}. In this 
article, an ideal-based weakly zero-divisor graph of 𝑅𝑅, denoted by 𝑊𝑊Г𝐼𝐼(𝑅𝑅), is introduced which 
contains Г𝐼𝐼(𝑅𝑅) as a subgraph and is identical to the graph 𝑊𝑊Г(𝑅𝑅) when 𝐼𝐼 = {0}. The relationship 
between the graphs 𝑊𝑊Г𝐼𝐼(𝑅𝑅) and 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) is investigated and the planar property of 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is 
studied. The results show that 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) is isomorphic to a subgraph of 𝑊𝑊Г𝐼𝐼(𝑅𝑅). For 𝑊𝑊Г𝐼𝐼(𝑅𝑅) to be 
planar, some restraints are provided on the size of the ideal 𝐼𝐼 and girth of 𝑊𝑊Г𝐼𝐼(𝑅𝑅). In conclusion, 
the results suggest that 𝑊𝑊Г𝐼𝐼(𝑅𝑅) and 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) are strongly related and establish necessary and 
sufficient conditions for 𝑊𝑊Г𝐼𝐼(𝑅𝑅) to be planar. In addition, rings 𝑅𝑅 with planar 𝑊𝑊Г𝐼𝐼(𝑅𝑅) are 
classified. 
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Introduction 
 
Let 𝑅𝑅 be a commutative ring with identity and 𝑍𝑍(𝑅𝑅) be the set of zero-divisors of 𝑅𝑅. The zero divisor 
graph of 𝑅𝑅 is the graph Г(𝑅𝑅) with the vertex set 𝑍𝑍(𝑅𝑅)∗ = 𝑍𝑍(𝑅𝑅) − {0} and edges set {(𝑎𝑎, 𝑏𝑏): 𝑎𝑎𝑎𝑎 = 0,𝑎𝑎,𝑏𝑏 ∈
𝑍𝑍(𝑅𝑅)∗}. In 1988, Beck [1] presented the graph in the work pertaining to coloring of rings. In 1993, the 
graph was further studied by Anderson and Naseer [2]. These earlier works included zero in the set of 
vertices of Г(𝑅𝑅). In 1999, Anderson and Livingston [3] gave the definition of Г(𝑅𝑅) which did not include 
zero in the vertex set. This work produced fundamental results on Г(𝑅𝑅). In [3], it was shown that the 
diameter of Г(𝑅𝑅) is at most three and if Г(𝑅𝑅) is not acyclic and 𝑅𝑅 is Artinian, then the girth of Г(𝑅𝑅) is at 
most four. The authors also determined when the graph Г(𝑅𝑅) is complete or star and studied the group 
Aut(Г(R)). Numerous authors have investigated the graph in great detail, and new results and 
generalizations have been provided. Generalizations of Г(R) are given in [4] and [5]. Results on 
structural properties of Г(𝑅𝑅) for finite rings 𝑅𝑅 are discussed in [6], [7], [8] and [9]. Planarity of Г(𝑅𝑅) is 
studied in [10], [11] and [12]. Realizable zero-divisor graphs are studied in [13]. For 𝑎𝑎, 𝑏𝑏 ∈ 𝑅𝑅\{0}, where 
𝑅𝑅 is finite, the probability that 𝑎𝑎𝑎𝑎 = 0 is determined in [14].  
 
In 2003, Redmond [15] presented a generalization of Г(𝑅𝑅) which is based on an ideal 𝐼𝐼 of 𝑅𝑅, where the 
vertex set is 𝑉𝑉 = {𝑎𝑎 ∈ 𝑅𝑅\𝐼𝐼: 𝑎𝑎𝑎𝑎 ∈ 𝐼𝐼 for some 𝑏𝑏 ∈ 𝑅𝑅\𝐼𝐼} and the edge set is 𝐸𝐸 = {(𝑎𝑎,𝑏𝑏): 𝑎𝑎𝑎𝑎 ∈ 𝐼𝐼,𝑎𝑎, 𝑏𝑏 ∈
𝑅𝑅\𝐼𝐼,𝑎𝑎 ≠ 𝑏𝑏}. The generalized graph was denoted by Г𝐼𝐼(𝑅𝑅). Redmond [15] found the diameter, 
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connectivity, clique number and girth of Г𝐼𝐼(𝑅𝑅). Then, Redmond [15] determined graphs on 𝑛𝑛 vertices 
which can be presented as Г𝐼𝐼(𝑅𝑅) for specific values of 𝑛𝑛. In [2], a list of rings 𝑅𝑅 is given for which Г(𝑅𝑅) 
has one, two, three or four vertices. Redmond [15] determined all rings 𝑅𝑅 with |𝑉𝑉(Г(𝑅𝑅))| = 5 and also 
determined when Г𝐼𝐼(𝑅𝑅) is planar. Later on, the graph has been studied by various authors such as 
Miamani et al. [16], Atani et al. [17], Smith [18], Mallika et al. [19] followed by Ansari-Toroghy et al. [20]. 
 
In 2021, Nikmehr et al. [21] defined weakly zero-divisor graph of a ring 𝑅𝑅 as the graph 𝑊𝑊Г(𝑅𝑅) with vertex 
set 𝑍𝑍(𝑅𝑅)∗ and distinct vertices 𝑎𝑎 and 𝑏𝑏 are adjacent if ∃𝑟𝑟 ∈ 𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎) and 𝑠𝑠 ∈ 𝑎𝑎𝑎𝑎𝑎𝑎(𝑏𝑏) such that 𝑟𝑟𝑟𝑟 =
0, where 𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎) = {𝑚𝑚 ∈ 𝑅𝑅 ∶ 𝑎𝑎𝑎𝑎 = 0}. This graph contains Г(𝑅𝑅) as a subgraph. The authors studied this 
graph's connectedness, diameter, girth and determined when 𝑊𝑊Г(𝑅𝑅) is a star. They showed that the 
diameter of 𝑊𝑊Г(𝑅𝑅) is ≤ 2 and if 𝑊𝑊Г(𝑅𝑅) is not acyclic, then the girth of 𝑊𝑊Г(𝑅𝑅) is ≤ 4. They also showed 
when Г(𝑅𝑅) = 𝑊𝑊Г(𝑅𝑅) and studied the coloring of 𝑊𝑊Г(𝑅𝑅). Later on, the graph 𝑊𝑊Г(𝑅𝑅) has been studied by 
various authors such as shariq et al. [22], Nazim et al. [23] and Rehman et al. [24]. 

 
In this article, an ideal-based weakly zero-divisor graph of a commutative ring 𝑅𝑅, denoted by 𝑊𝑊Г𝐼𝐼(𝑅𝑅), is 
introduced which contains Г𝐼𝐼(𝑅𝑅) as a subgraph and is identical to 𝑊𝑊Г(𝑅𝑅) when 𝐼𝐼 = {0}. The graph 
𝑊𝑊Г𝐼𝐼(𝑅𝑅) is shown to have a certain relationship with 𝑊𝑊Г(𝑅𝑅/𝐼𝐼). It is shown that 𝑊𝑊Г𝐼𝐼(𝑅𝑅) contains |𝐼𝐼| 
disjoint subgraphs isomorphic to 𝑊𝑊Г(𝑅𝑅/𝐼𝐼). For Г𝐼𝐼(𝑅𝑅) to be planar, some restrictions on the size of 𝐼𝐼 
and girth of Г(𝑅𝑅/𝐼𝐼) are discussed in [15] and later improved in [18]. As in [18], the graph Г𝐼𝐼(𝑅𝑅) is 
planar iff girth of Г(𝑅𝑅/𝐼𝐼) is infinite and either (𝑎𝑎) |𝐼𝐼| = 2 or (𝑏𝑏) |𝑉𝑉(Г(𝑅𝑅/𝐼𝐼))| ≤ 1 and |𝐼𝐼| ∈ {2, 3, 4}. Since 
Г𝐼𝐼(𝑅𝑅) ⊆ 𝑊𝑊Г𝐼𝐼(𝑅𝑅), it is evident that if 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is planar then Г𝐼𝐼(𝑅𝑅) is planar. It is discussed when Г𝐼𝐼(𝑅𝑅) is 
planar but 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is not planar. It is shown that if 𝑅𝑅/𝐼𝐼 is non-reduced and |𝑉𝑉(Г(𝑅𝑅/𝐼𝐼))| > 2, then 𝑊𝑊Г𝐼𝐼(𝑅𝑅) 
is not planar. For 𝑊𝑊Г𝐼𝐼(𝑅𝑅) to be planar, some restrictions on the girth of 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) are also discussed. 
The results show that if the girth of 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) is 3 or 4, then 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is not planar. Necessary and 
sufficient conditions for 𝑊𝑊Г𝐼𝐼(𝑅𝑅) to be planar are provided and rings 𝑅𝑅 with non-trivial planar 𝑊𝑊Г𝐼𝐼(𝑅𝑅) are 
classified. In addition to introducing an ideal based generalization of 𝑊𝑊Г(𝑅𝑅), this study gives an 
understanding of the relationship between 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) and the generalized graph. Specifically, in 
regard to planar property of graphs, the study shows that the girth of 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) has to do with the 
generalized graph being planar and classifies rings 𝑅𝑅 for which 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is planar.  
 
The ring 𝑅𝑅 in this article is commutative with 0 ≠ 1 and 𝐼𝐼 is a proper ideal of 𝑅𝑅. The radical of 𝐼𝐼, denoted 
by √𝐼𝐼, is the set {𝑎𝑎 ∈ 𝑅𝑅 ∶  𝑎𝑎𝑛𝑛 ∈ 𝐼𝐼 for some 𝑛𝑛 ≥ 1}. For 𝑎𝑎 ∈ 𝑅𝑅, define 𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎) = {𝑚𝑚 ∈ 𝑅𝑅 ∶ 𝑎𝑎𝑎𝑎 = 0}. Define 
nil(𝑅𝑅) = {𝑎𝑎 ∈ 𝑅𝑅 | 𝑎𝑎𝑛𝑛 = 0 for some 𝑛𝑛 ∈ ℕ}. The ring 𝑅𝑅 is reduced if nil(𝑅𝑅) = {0}. For a graph 𝐺𝐺, let 𝑑𝑑(𝑎𝑎, 𝑏𝑏) 
be the length of the shortest path from 𝑎𝑎 to 𝑏𝑏. The diameter of 𝐺𝐺, denoted by diam(𝐺𝐺), is 
sup{𝑑𝑑(𝑎𝑎,𝑏𝑏):𝑎𝑎,𝑏𝑏 ∈ 𝑉𝑉(𝐺𝐺)}. The girth of 𝐺𝐺, denoted by gr(𝐺𝐺), is the length of the shortest cycle in 𝐺𝐺 (gr(𝐺𝐺) =
∞ if 𝐺𝐺 is acyclic). The graph 𝐺𝐺 is connected if there is a path between any two vertices. A planar graph 
is one which can be drawn in the plane in such a way that no two edges intersect. For any undefined 
graph theoretic terms, see Chartrand [25] and Bollobas [26].   
 
Preliminaries 
 
In an earlier study by Redmond [15], the following result was presented regarding the diameter 
and girth of Г𝐼𝐼(𝑅𝑅).   
 
Theorem  1 [15]. Let 𝐼𝐼 be an ideal of 𝑅𝑅. Then: 

 
(1) Г𝐼𝐼(𝑅𝑅) is connected with diam(Г𝐼𝐼(𝑅𝑅)) ≤ 3.  

 
(2) gr(Г𝐼𝐼(𝑅𝑅)) ≤ gr(Г(𝑅𝑅/𝐼𝐼)). In particular, if gr(Г(𝑅𝑅/𝐼𝐼)) ≠ ∞, then gr(Г𝐼𝐼(𝑅𝑅)) ≠ ∞, and therefore 

gr(Г𝐼𝐼(𝑅𝑅)) ≤ gr(Г(𝑅𝑅/𝐼𝐼)) ≤ 4. 
 
It is shown that Г𝐼𝐼(𝑅𝑅) ⊆ 𝑊𝑊Г𝐼𝐼(𝑅𝑅) and this fact is used together with Theorem 1 to find the diameter and 
girth of 𝑊𝑊Г𝐼𝐼(𝑅𝑅). In [15], it was shown how Г𝐼𝐼(𝑅𝑅) and Г(𝑅𝑅/𝐼𝐼) are related. An analogous relationship 
between 𝑊𝑊Г𝐼𝐼(𝑅𝑅) and 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) is established by defining, for each 𝑖𝑖 ∈ 𝐼𝐼, a subgraph of 𝑊𝑊Г𝐼𝐼(𝑅𝑅) 
isomorphic to 𝑊𝑊Г(𝑅𝑅/𝐼𝐼). 
 
Since 𝑉𝑉(𝑊𝑊𝑊𝑊𝐼𝐼(𝑅𝑅)) = 𝑉𝑉(𝛤𝛤𝐼𝐼(𝑅𝑅)), the following theorem from [15] gives the cardinality of 𝑊𝑊Г𝐼𝐼(𝑅𝑅). 
 
Proposition 2 [15]. Let 𝐼𝐼 be an ideal of 𝑅𝑅. Then |𝑉𝑉(Г𝐼𝐼(𝑅𝑅))| < ∞ iff either |𝑅𝑅| < ∞ or 𝐼𝐼 is a prime. 
Moreover, if |𝑉𝑉(Г(𝑅𝑅/𝐼𝐼))| = 𝑛𝑛, then �𝑉𝑉�Г𝐼𝐼(𝑅𝑅)�� = 𝑛𝑛 ∙ |𝐼𝐼|.  
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While studying the planarity of 𝑊𝑊Г𝐼𝐼(𝑅𝑅), some restrictions were given on the size of 𝐼𝐼 and girth of 
𝑊𝑊Г(𝑅𝑅/𝐼𝐼). The following result from [18] was used together with the fact that Г𝐼𝐼(𝑅𝑅) ⊆ 𝑊𝑊Г𝐼𝐼(𝑅𝑅) to give 
restraints on |𝐼𝐼| when 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is planar. 
 
Proposition 3 [18]. Let 𝐼𝐼 be an ideal of 𝑅𝑅. If Г𝐼𝐼(𝑅𝑅) is planar, then |𝐼𝐼| ≤ 2 or |𝑉𝑉(Г(𝑅𝑅/𝐼𝐼))| ≤ 1.  

 
For a graph 𝐺𝐺, the following result from [13] shows when 𝐺𝐺 ≇ Г(𝑅𝑅) for a ring 𝑅𝑅.  
 
Theorem 4 [13]. Let 𝐺𝐺 be a graph with |𝐺𝐺| > 2. If 𝐺𝐺 contains a looped endpoint, then 𝐺𝐺 ≇ Г(𝑅𝑅) for a ring 
𝑅𝑅.   
 
The following is the definition of the subdivision of a graph 𝐺𝐺.  
 
Definition 5 [15]. A graph 𝐻𝐻 obtained from a graph 𝐺𝐺 by subdividing some edges of 𝐺𝐺 is called a 
subdivision of 𝐺𝐺.  
 
For 𝑎𝑎, 𝑏𝑏 ∈ 𝑉𝑉(𝑊𝑊Г𝐼𝐼(𝑅𝑅)),𝑎𝑎 = 𝑏𝑏, it was determined when 𝑎𝑎, 𝑏𝑏 ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)). This result was used 
together with Theorem 4 and the following well known Kuratowski’s theorem for planar graphs to 
give restraint on the cardinality of Г(𝑅𝑅/𝐼𝐼) when 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is planar and nil(𝑅𝑅/𝐼𝐼) ≠ {0}.  
 
Theorem 6 [26]. A graph 𝐺𝐺 is planar iff 𝐺𝐺 does not contain a subdivision of 𝐾𝐾5 or 𝐾𝐾3,3.   
 
The following theorem from [18] determines when Г𝐼𝐼(𝑅𝑅) is planar. 
 
Theorem 7 [18]. Let |𝑅𝑅| < ∞, {0} ≠ 𝐼𝐼 ⊂ 𝑅𝑅 and 𝐼𝐼 is a nonprime ideal of 𝑅𝑅. Then Г𝐼𝐼(𝑅𝑅) is planar iff 
gr(Г(𝑅𝑅/𝐼𝐼)) = ∞ and either (𝑎𝑎) |𝐼𝐼| = 2 or (𝑏𝑏) |𝑉𝑉(Г(𝑅𝑅/𝐼𝐼))| = 1 and |𝐼𝐼| ≤ 4. 

 
The following theorem from [7] was used to investigate the planarity of 𝑊𝑊Г𝐼𝐼(𝑅𝑅) when |𝑅𝑅| < ∞, 
gr(Г(𝑅𝑅/𝐼𝐼)) = ∞ and nil(𝑅𝑅/𝐼𝐼) ≠ {0}.  
 
Theorem 8 [7]. Let nil(𝑅𝑅) ≠ {0}. Then the following three statements are equivalent. 
 
(1) gr(Г(𝑅𝑅)) = ∞. 
 
(2) 𝑅𝑅 ≅ 𝐵𝐵 or 𝑅𝑅 ≅ ℤ2 × 𝐵𝐵, where 𝐵𝐵 = ℤ4 or ℤ2[𝑋𝑋]/(𝑋𝑋2), or Г(𝑅𝑅) is a star graph. 
 
(3)  Г(𝑅𝑅) is a singleton, a 𝐾𝐾�1,3, or a 𝐾𝐾1,𝑛𝑛, 𝑛𝑛 ≥ 1. 

 
Remark 9 [7]. If 𝑅𝑅 is finite, nil(𝑅𝑅) ≠ {0} and Г(𝑅𝑅) is a star graph, then |𝑉𝑉(Г(𝑅𝑅))| ≤ 3. If |𝑉𝑉(Г(𝑅𝑅))| = ∞ 
and Г(𝑅𝑅) is star graph, then either 𝑅𝑅 ≅ 𝑍𝑍2 × 𝐷𝐷 for an integral domain 𝐷𝐷, or nil(𝑅𝑅) = {0,𝑎𝑎}, where 𝑍𝑍(𝑅𝑅) =
𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎).  

 
By Theorem 8, one of the cases when gr(Г(𝑅𝑅/𝐼𝐼)) = ∞ and nil(𝑅𝑅) ≠ {0} is that Г(𝑅𝑅/𝐼𝐼) is a star graph. 
Redmond [15] defined the connected columns in Г𝐼𝐼(𝑅𝑅) as follows. 
 
Definition 10 [15]. Let {𝑎𝑎𝜆𝜆}𝜆𝜆∈𝛬𝛬 ⊆ 𝑅𝑅 be a set of coset representatives of the vertices of Г(𝑅𝑅/𝐼𝐼); that is, 
⋃ {𝑎𝑎𝜆𝜆 + 𝐼𝐼}𝜆𝜆∈𝛬𝛬 = 𝑍𝑍(𝑅𝑅/𝐼𝐼) − {0 + 𝐼𝐼}. If 𝑎𝑎𝜆𝜆2 ∈ 𝐼𝐼, then 𝑎𝑎𝜆𝜆 = 𝑎𝑎𝜆𝜆 + 𝐼𝐼 is called a connected column of Г𝐼𝐼(𝑅𝑅).  
 
Given Г(𝑅𝑅/𝐼𝐼) is a star graph, the connected columns in Г𝐼𝐼(𝑅𝑅) are discussed in the following lemma from 
[8].  
 
Lemma 11 [8]. Let 𝐼𝐼 be an ideal of 𝑅𝑅. Then: 

 
(1) If Г(𝑅𝑅/𝐼𝐼) ≅ 𝐾𝐾𝑛𝑛, 𝑛𝑛 = 1 or 𝑛𝑛 ≥ 3, then 𝑎𝑎2 ∈ 𝐼𝐼 ∀𝑎𝑎 ∈ 𝑉𝑉(Г𝐼𝐼(𝑅𝑅)). Moreover, Г𝐼𝐼(𝑅𝑅) ≅ 𝐾𝐾𝑛𝑛∙|𝐼𝐼|. 

 
(2) If |𝑉𝑉(Г(𝑅𝑅/𝐼𝐼))| = 2, then either (a) 𝑎𝑎2 ∉ 𝐼𝐼 ∀𝑎𝑎 ∈ 𝑉𝑉(Г𝐼𝐼(𝑅𝑅)) or (b) 𝑎𝑎2 ∈ 𝐼𝐼 ∀𝑎𝑎 ∈ 𝑉𝑉(Г𝐼𝐼(𝑅𝑅)).  

 
(3) If Г(𝑅𝑅/𝐼𝐼) ≅ 𝐾𝐾1,2 , then either (a) 𝑎𝑎2 ∉ 𝐼𝐼 ∀𝑎𝑎 ∈ 𝑉𝑉(Г𝐼𝐼(𝑅𝑅)) or (b) 𝑐𝑐2 ∈ 𝐼𝐼, where 𝑐𝑐 is the center of Г(𝑅𝑅/𝐼𝐼),  

and 𝑎𝑎2 ∉ 𝐼𝐼 ∀𝑎𝑎 ∈ 𝑉𝑉(Г𝐼𝐼(𝑅𝑅)), 𝑎𝑎 ≠ 𝑐𝑐. 
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By using Lemma 11, Remark 9 and Theorem 7 together with the condition for 𝑎𝑎,𝑏𝑏 ∈ 𝑉𝑉(𝑊𝑊Г𝐼𝐼(𝑅𝑅)),𝑎𝑎 = 𝑏𝑏, 
to be adjacent in 𝑊𝑊Г𝐼𝐼(𝑅𝑅), the structure and planarity of 𝑊𝑊Г𝐼𝐼(𝑅𝑅) were investigated in the case when 
Г(𝑅𝑅/𝐼𝐼) is a star graph and nil(𝑅𝑅/𝐼𝐼) ≠ {0}.  
 
If Г(𝑅𝑅/𝐼𝐼) is not star, gr(Г(𝑅𝑅/𝐼𝐼)) = ∞ and nil(𝑅𝑅) ≠ {0}, then 𝑅𝑅/𝐼𝐼 ≅ 𝐵𝐵 or ℤ2 × 𝐵𝐵, where 𝐵𝐵 = ℤ4 or 
ℤ2[𝑋𝑋]/(𝑋𝑋2), by Theorem 8. If 𝑅𝑅/𝐼𝐼 ≅ ℤ4 or ℤ2[𝑋𝑋]/(𝑋𝑋2), then, by using the following theorem from [18] 
together with Lemma 11 and Theorem 6, the cardinality of 𝐼𝐼 was determined so that 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is planar.  
 
Theorem 12 [18]. |𝑍𝑍(𝑅𝑅)| = 2 iff 𝑅𝑅 ≅ ℤ4 or ℤ2[𝑋𝑋]/(𝑋𝑋2). Moreover, |𝑉𝑉(Г(𝑅𝑅/𝐼𝐼))| = 1 iff 𝑅𝑅 ≅ ℤ4 or 
ℤ2[𝑋𝑋]/(𝑋𝑋2). 
 
Some useful properties of 𝑊𝑊Г(𝑅𝑅) are given in the following lemma from [21] which were used to 
investigate the structure of 𝑊𝑊Г𝐼𝐼(𝑅𝑅) when 𝑅𝑅/𝐼𝐼 ≅ ℤ2 × ℤ4 or ℤ2 × ℤ2[𝑋𝑋]/(𝑋𝑋2).  
 
Lemma 13 [21]. The following three statements hold: 
(1) If (𝑎𝑎,𝑏𝑏) ∈ 𝐸𝐸(Г(𝑅𝑅)), then (𝑎𝑎, 𝑏𝑏) ∈ 𝐸𝐸(𝑊𝑊Г(𝑅𝑅)). 
 
(2) If 𝑎𝑎 ∈ nil(𝑅𝑅)\{0}, then (𝑎𝑎,𝑏𝑏) ∈ 𝐸𝐸(𝑊𝑊Г(𝑅𝑅))∀𝑏𝑏 ∈ 𝑉𝑉(𝑊𝑊Г(𝑅𝑅)). 
 
(3) nil(𝑅𝑅)\{0} is a complete subgraph of 𝑊𝑊Г(𝑅𝑅). 
The following theorem from [21] gives the girth of 𝑊𝑊Г(𝑅𝑅). 
 
Theorem 14 [21]. The graph 𝑊𝑊Г(𝑅𝑅) is connected and diam(𝑊𝑊Г(𝑅𝑅)) ≤ 2. Moreover, if gr(𝑊𝑊Г(𝑅𝑅)) ≠ ∞, 
then gr(𝑊𝑊Г(𝑅𝑅)) ≤ 4.  
 
In order to give restraints on the girth of 𝑊𝑊Г(𝑅𝑅/𝐼𝐼), the case gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) ≠ ∞ was investigated. First, 
the case gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = 4 was considered and the planarity of 𝑊𝑊Г𝐼𝐼(𝑅𝑅) was investigated by using the 
following result from [21] which is part of the proof of [21, Theorem 2.3] together with Theorem 7.  
 
Theorem 15 [21]. Let gr(𝑊𝑊Г(𝑅𝑅)) ≠ ∞. If gr(𝑊𝑊Г(𝑅𝑅)) = 4, then nil(𝑅𝑅) = {0} and 𝑊𝑊Г(𝑅𝑅) = Г(𝑅𝑅).  
Then the planarity of 𝑊𝑊Г𝐼𝐼(𝑅𝑅) was investigated in the case when gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = 3 by using the following 
theorem from [7] together with Theorem 7.  
  
Theorem 16 [7]. Let nil(𝑅𝑅) = {0}. Then the following three statements are equivalent for a reduced ring 
𝑅𝑅.  
 
(1) Г(𝑅𝑅) is nonempty with gr(Г(𝑅𝑅)) = ∞. 
 
(2) 𝑇𝑇(𝑅𝑅) = ℤ2 × 𝐾𝐾, where 𝐾𝐾 is a field.  
 
(3) Г(𝑅𝑅) = 𝐾𝐾1,𝑛𝑛, 𝑛𝑛 ≥ 1. 

 
Theorem 14 was also used to investigate the planarity of 𝑊𝑊Г𝐼𝐼(𝑅𝑅) when gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = ∞ and 
nil(𝑅𝑅/𝐼𝐼) = {0}. These results were then summarized in the form of a theorem to give necessary and 
sufficient conditions for 𝑊𝑊Г𝐼𝐼(𝑅𝑅) to be planar for finite ring 𝑅𝑅. Finally, rings 𝑅𝑅 with nontrivial planar 𝑊𝑊Г𝐼𝐼(𝑅𝑅) 
were classified by using the classification of rings 𝑅𝑅 with Г𝐼𝐼(𝑅𝑅) ≅ 𝐾𝐾2,𝐾𝐾3 or 𝐾𝐾4 as well as rings 𝑅𝑅 with 
planar non-trivial Г𝐼𝐼(𝑅𝑅) and nil(𝑅𝑅/𝐼𝐼) = {0} presented in [18] and finite planar non-trivial graphs 𝑊𝑊Г𝐼𝐼(𝑅𝑅) 
were also given.  
 
Results and Discussion 
 
First, the definition of the weakly zero-divisor graph of a ring 𝑅𝑅 with respect to an ideal 𝐼𝐼 of 𝑅𝑅 and some 
basic results on the structure of this graph are given. Then the results on the planar property of this 
graph are presented and rings are classified whose ideal-based weakly zero-divisor graphs are planar.  
 
Some Definitions and Basic Structures  
Definition 17. The ideal-based weakly zero-divisor graph, denoted by 𝑊𝑊Г𝐼𝐼(𝑅𝑅), is an undirected graph 
with vertices {𝑎𝑎 ∈ 𝑅𝑅 − 𝐼𝐼⎹ 𝑎𝑎𝑎𝑎 ∈ 𝐼𝐼 for some 𝑏𝑏 ∈ 𝑅𝑅 − 𝐼𝐼}, where distinct vertices 𝑎𝑎 and 𝑏𝑏 are adjacent if and 
only if there exist 𝑟𝑟 ∈ (𝐼𝐼: 𝑎𝑎) and 𝑠𝑠 ∈ (𝐼𝐼: 𝑏𝑏) such that 𝑟𝑟𝑟𝑟 ∈ 𝐼𝐼, where (𝐼𝐼:𝑎𝑎) = {𝑟𝑟 ∈ 𝑅𝑅⎹ 𝑟𝑟𝑟𝑟 ∈ 𝐼𝐼}. 
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Example 18. 
(i) Let 𝑅𝑅 = ℤ2 × ℤ12, 𝐼𝐼 = ℤ2 × {0}. The vertices of the graph 𝑊𝑊Г𝐼𝐼(𝑅𝑅), listed in order from 1 to 14, are 
(0,2), (1, 2), (0, 4), (1, 4), (0, 6), (1, 6), (0, 8), (1, 8), (0, 10), (1, 10), (0, 3), (1, 3), (0, 9) and (1, 9). Figure 1 
depicts the graph of 𝑊𝑊Г𝐼𝐼(𝑅𝑅). We can see that 𝑊𝑊Г𝐼𝐼(𝑅𝑅) ≠ Г𝐼𝐼(𝑅𝑅) (e.g., ((0, 2), (0, 3)) ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)) but 
((0, 2), (0, 3)) ∉ 𝐸𝐸(Г𝐼𝐼(𝑅𝑅))).    
 

 

 
                                           Figure 1. The graph of 𝑊𝑊Г𝐼𝐼(𝑅𝑅) 

 
 

(ii)  Let 𝑅𝑅 = ℤ24 and 𝐼𝐼 = 〈8〉. The graph 𝑊𝑊Г𝐼𝐼(𝑅𝑅)  is complete while Г𝐼𝐼(𝑅𝑅) is not complete, as shown in 
Figure 2. 

 

 
 

                                           Figure 2. The graph of Г𝐼𝐼(𝑅𝑅) 
 
 
The next result shows when 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is empty and when it is identical to 𝑊𝑊Г(𝑅𝑅). 

 
Proposition 19. Let 𝐼𝐼 be an ideal of 𝑅𝑅. 

 
(1) If 𝐼𝐼 = (0), then 𝑊𝑊Г𝐼𝐼(𝑅𝑅) = 𝑊𝑊Г(𝑅𝑅). 
(2) If 𝐼𝐼 ≠ (0), then 𝑊𝑊Г𝐼𝐼(𝑅𝑅) = ∅ iff 𝐼𝐼 is a prime ideal of 𝑅𝑅. 
Proof.   (1) If 𝐼𝐼 = (0), then 𝑉𝑉(𝑊𝑊Г𝐼𝐼(𝑅𝑅)) = 𝑉𝑉(𝑊𝑊Г(𝑅𝑅)) = 𝑍𝑍(𝑅𝑅)∗ and (𝐼𝐼: 𝑎𝑎) = 𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎). Thus (𝑎𝑎,𝑏𝑏) ∈
𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)) iff (𝑎𝑎, 𝑏𝑏) ∈ 𝐸𝐸(𝑊𝑊Г(𝑅𝑅)).  
(2) Assume that 𝐼𝐼 is prime. Then 𝑎𝑎𝑎𝑎 ∈ 𝐼𝐼 implies 𝑎𝑎 ∈ 𝐼𝐼 or 𝑏𝑏 ∈ 𝐼𝐼. Hence 𝑉𝑉(𝑊𝑊Г𝐼𝐼(𝑅𝑅)) = ∅.  

 
Conversely, assume that 𝑊𝑊Г𝐼𝐼(𝑅𝑅) = ∅. Therefore, if 𝑎𝑎 ∈ 𝑅𝑅 − 𝐼𝐼 and 𝑎𝑎𝑎𝑎 ∈ 𝐼𝐼 for some 𝑏𝑏 ∈ 𝑅𝑅, then 𝑏𝑏 ∈ 𝐼𝐼 
(otherwise, 𝑎𝑎 ∈ 𝑉𝑉(𝑊𝑊Г𝐼𝐼(𝑅𝑅)). Hence 𝐼𝐼 is prime.                          
     
Since 𝐼𝐼 is prime iff 𝑅𝑅/𝐼𝐼 is an integral domain, it follows from Proposition 19 that 𝑊𝑊Г𝐼𝐼(𝑅𝑅) = ∅ iff 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) =
∅. We will investigate how 𝑊𝑊Г𝐼𝐼(𝑅𝑅) and 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) are related.  
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Some useful properties of 𝑊𝑊Г𝐼𝐼(𝑅𝑅) are given in the next lemma which is needed in the proof of the 
theorem following it.  

 
Lemma 20. Let 𝐼𝐼 be an ideal of 𝑅𝑅.  

 
(1) If (𝑎𝑎,𝑏𝑏) ∈ 𝐸𝐸(Г𝐼𝐼(𝑅𝑅)), then (𝑎𝑎, 𝑏𝑏) ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)). 

 
(2) If 𝑎𝑎 ∈ √𝐼𝐼\𝐼𝐼, then (𝑎𝑎, 𝑏𝑏) ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅))∀𝑏𝑏 ∈ 𝑉𝑉(𝑊𝑊Г𝐼𝐼(𝑅𝑅)). 

 
(3) √𝐼𝐼\𝐼𝐼 is complete. 

 
Proof. (1) Let (𝑎𝑎, 𝑏𝑏) ∈ 𝐸𝐸(Г𝐼𝐼(𝑅𝑅)), for distinct 𝑎𝑎, 𝑏𝑏 ∈ 𝑉𝑉(Г𝐼𝐼(𝑅𝑅)). Then 𝑎𝑎𝑎𝑎 ∈ 𝐼𝐼 and clearly 𝑏𝑏 ∈ (𝐼𝐼: 𝑎𝑎) and 𝑎𝑎 ∈
(𝐼𝐼: 𝑏𝑏). Hence (𝑎𝑎, 𝑏𝑏) ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)).  
    (2) Let 𝑎𝑎 ∈ √𝐼𝐼\𝐼𝐼. Let 𝑏𝑏 ∈ 𝑉𝑉(𝑊𝑊Г𝐼𝐼(𝑅𝑅)) and 𝑟𝑟 ∈ (𝐼𝐼: 𝑏𝑏). Since 𝑎𝑎 ∈ √𝐼𝐼, ∃𝑛𝑛 ∈ ℕ such that 𝑎𝑎𝑛𝑛 ∈ 𝐼𝐼 and 𝑎𝑎𝑖𝑖 ∉ 𝐼𝐼, 
∀𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. Clearly 𝑎𝑎𝑛𝑛−1 ∈ (𝐼𝐼:𝑎𝑎). If 𝑎𝑎𝑛𝑛−1𝑟𝑟 ∈ 𝐼𝐼, then (𝑎𝑎, 𝑏𝑏) ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)). If 𝑎𝑎𝑛𝑛−1𝑟𝑟 ∉ 𝐼𝐼, then 𝑎𝑎𝑛𝑛−1𝑟𝑟 ∈
(𝐼𝐼:𝑎𝑎) ∩ (𝐼𝐼: 𝑏𝑏) and 𝑎𝑎𝑛𝑛−1𝑟𝑟𝑎𝑎𝑛𝑛−1𝑟𝑟 ∈ 𝐼𝐼. Thus, (𝑎𝑎, 𝑏𝑏) ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)).  
    (3)  It is clear, by part (ii).                     

       
Next, the diameter and girth of 𝑊𝑊Г𝐼𝐼(𝑅𝑅) are found by using Lemma 20 and Theorem 1. 
 
Theorem 21. Let 𝐼𝐼 be an ideal of 𝑅𝑅. Then 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is connected with diam(𝑊𝑊Г𝐼𝐼(𝑅𝑅)) ≤ 2. If gr(𝑊𝑊Г𝐼𝐼(𝑅𝑅)) ≠
∞, then gr(𝑊𝑊Г𝐼𝐼(𝑅𝑅)) ≤ 4. 
 
Proof. By Lemma 20, if (𝑎𝑎, 𝑏𝑏) ∈ 𝐸𝐸(Г𝐼𝐼(𝑅𝑅)), then (𝑎𝑎, 𝑏𝑏) ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)). Thus, it follows from Theorem 1 that 
𝑊𝑊Г𝐼𝐼(𝑅𝑅) is connected and gr(𝑊𝑊Г𝐼𝐼(𝑅𝑅)) ≤ 4. Suppose that (𝑎𝑎, 𝑏𝑏) ∉ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)), for distinct 𝑎𝑎, 𝑏𝑏 ∈
𝑉𝑉(WГ𝐼𝐼(𝑅𝑅)). Then 𝑟𝑟𝑟𝑟 ∉ 𝐼𝐼, for every 𝑟𝑟 ∈ (𝐼𝐼:𝑎𝑎) and 𝑠𝑠 ∈ (𝐼𝐼: 𝑏𝑏). Since 𝑟𝑟𝑟𝑟𝑟𝑟 ∈ 𝐼𝐼 and 𝑟𝑟𝑟𝑟𝑟𝑟 ∈ 𝐼𝐼, we have a path 
𝑎𝑎   ̶ 𝑟𝑟𝑟𝑟   ̶ 𝑏𝑏 in 𝑊𝑊Г𝐼𝐼(𝑅𝑅). Thus, diam(𝑊𝑊Г𝐼𝐼(𝑅𝑅)) ≤ 2.       
 
In the next few results, it is investigated how 𝑊𝑊Г𝐼𝐼(𝑅𝑅) and 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) are related.  
 
Theorem 22. Let 𝑎𝑎, 𝑏𝑏 ∈ 𝑅𝑅\𝐼𝐼. Then: 
 
(1) If (𝑎𝑎,𝑏𝑏) ∈ 𝐸𝐸(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)), then (𝑎𝑎, 𝑏𝑏) ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)). 
(2) If (𝑎𝑎, 𝑏𝑏) ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)) and 𝑎𝑎 ≠ 𝑏𝑏, then (𝑎𝑎, 𝑏𝑏) ∈ 𝐸𝐸(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)). 
(3) If (𝑎𝑎, 𝑏𝑏) ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅))  and 𝑎𝑎 = 𝑏𝑏, then ∃𝑟𝑟,  𝑠𝑠 ∈ (𝐼𝐼: 𝑎𝑎) (= (𝐼𝐼: 𝑏𝑏)) such that 𝑟𝑟𝑟𝑟 ∈ 𝐼𝐼.     
 
Proof. (1) and (2) are clear. We prove (3).  
 
Let 𝑎𝑎 = 𝑏𝑏 and 𝑝𝑝 ∈ (𝐼𝐼: 𝑎𝑎). Then 𝑏𝑏𝑏𝑏 = 𝑏𝑏. 𝑝𝑝 = 𝑎𝑎. 𝑝𝑝 = 𝑎𝑎𝑎𝑎 = 𝐼𝐼 and so 𝑏𝑏𝑏𝑏 ∈ 𝐼𝐼. Thus (𝐼𝐼: 𝑎𝑎) ⊆ (𝐼𝐼: 𝑏𝑏). Similarly, 
(𝐼𝐼: 𝑏𝑏) ⊆ (𝐼𝐼:𝑎𝑎). Therefore, (𝐼𝐼: 𝑎𝑎) = (𝐼𝐼: 𝑏𝑏). Since (𝑎𝑎, 𝑏𝑏) ∈ 𝐸𝐸(𝑊𝑊𝛤𝛤𝐼𝐼(𝑅𝑅)), ∃𝑟𝑟, 𝑠𝑠 ∈ (𝐼𝐼: 𝑎𝑎) such that 𝑟𝑟𝑟𝑟 ∈ 𝐼𝐼.                  
 
The following corollary is a direct consequence of Theorem 22.                                                                                                                              
 
Corollary 23. If (𝑎𝑎, 𝑏𝑏) ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)), 𝑎𝑎 ≠ 𝑏𝑏 then (𝑎𝑎 + 𝑖𝑖, 𝑏𝑏 + 𝑗𝑗) ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅))∀𝑖𝑖, 𝑗𝑗 ∈ 𝐼𝐼. If ∃𝑟𝑟,  𝑠𝑠 ∈ (𝐼𝐼: 𝑎𝑎) such 
that 𝑟𝑟𝑟𝑟 ∈ 𝐼𝐼, then (𝑎𝑎 + 𝑖𝑖, 𝑎𝑎 + 𝑗𝑗) ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅))∀𝑖𝑖, 𝑗𝑗 ∈ 𝐼𝐼, 𝑖𝑖 ≠ 𝑗𝑗. 
For a graph 𝐺𝐺, {𝐺𝐺𝛿𝛿}𝛿𝛿∈𝛥𝛥 is a collection of disjoint subgraphs of 𝐺𝐺 if, for each 𝐺𝐺𝛿𝛿, 𝑉𝑉(𝐺𝐺𝛿𝛿) ⊂ 𝐺𝐺, 𝐸𝐸(𝐺𝐺𝛿𝛿) ⊂ 𝐺𝐺 and 
there is no common vertex between any two 𝐺𝐺𝛿𝛿′𝑠𝑠.  

 
Proposition 24. Let 𝐼𝐼 be an ideal of 𝑅𝑅. The graph 𝑊𝑊Г𝐼𝐼(𝑅𝑅) has |𝐼𝐼| disjoint subgraphs isomorphic to 
𝑊𝑊Г(𝑅𝑅/𝐼𝐼).  
 
Proof. Consider {𝑎𝑎𝜆𝜆 ∈ 𝑅𝑅 ∶  𝑎𝑎𝜆𝜆 + 𝐼𝐼 ∈ 𝑉𝑉(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)), 𝜆𝜆 ∈ 𝛬𝛬} and if 𝜆𝜆 ≠ 𝛽𝛽, then 𝑎𝑎𝜆𝜆��� ≠ 𝑎𝑎𝛽𝛽. For 𝑖𝑖 ∈ 𝐼𝐼, a graph 𝐺𝐺𝑖𝑖 
can be defined whose vertices are {𝑎𝑎𝜆𝜆 + 𝑖𝑖: 𝜆𝜆 ∈ 𝛬𝛬} and (𝑎𝑎𝜆𝜆 + 𝑖𝑖,𝑎𝑎𝛽𝛽 + 𝑖𝑖) ∈ 𝐸𝐸(𝐺𝐺𝑖𝑖) whenever (𝑎𝑎𝜆𝜆���, 𝑎𝑎𝛽𝛽) ∈
𝐸𝐸(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)); i.e., whenever ∃𝑟𝑟 ∈ (𝐼𝐼: 𝑎𝑎𝜆𝜆), 𝑠𝑠 ∈ (𝐼𝐼: 𝑎𝑎𝛽𝛽) such that 𝑟𝑟𝑟𝑟 ∈ 𝐼𝐼. By Theorem 22, 𝐺𝐺𝑖𝑖 ⊆ 𝑊𝑊Г𝐼𝐼(𝑅𝑅). Also, 
𝐺𝐺𝑖𝑖 ≅ 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑉𝑉(𝐺𝐺𝑖𝑖)⋂ 𝑉𝑉�𝐺𝐺𝑗𝑗� = ∅ if 𝑖𝑖 ≠ 𝑗𝑗.                  

 
There is a significant relation between 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) and 𝑊𝑊Г𝐼𝐼(𝑅𝑅). The graph 𝑊𝑊Г𝐼𝐼(𝑅𝑅) can be constructed by 
the method that follows. Let {𝑎𝑎𝜆𝜆}𝜆𝜆∈𝛬𝛬 ⊆ 𝑅𝑅 and 𝐺𝐺𝑖𝑖 (𝑖𝑖 ∈ 𝐼𝐼) be as in the proof of Proposition 24. Define the 
graph 𝐺𝐺 with 𝑉𝑉(𝐺𝐺) = ⋃𝑖𝑖∈𝐼𝐼𝐺𝐺𝑖𝑖.  𝐸𝐸(𝐺𝐺) is defined to be: (1) ⋃𝑖𝑖∈𝐼𝐼𝐸𝐸(𝐺𝐺𝑖𝑖), (2) for distinct 𝜆𝜆,𝛽𝛽 ∈ 𝛬𝛬 and for any 
𝑖𝑖, 𝑗𝑗 ∈ 𝐼𝐼, (𝑎𝑎𝜆𝜆 + 𝑖𝑖, 𝑎𝑎𝛽𝛽 + 𝑗𝑗) ∈ 𝐸𝐸(𝐺𝐺) iff (𝑎𝑎𝜆𝜆���, 𝑎𝑎𝛽𝛽) ∈ 𝐸𝐸(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) (i.e., ∃𝑟𝑟 ∈ (𝐼𝐼: 𝑎𝑎𝜆𝜆), 𝑠𝑠 ∈ (𝐼𝐼: 𝑎𝑎𝛽𝛽) such that 𝑠𝑠𝑠𝑠 ∈ 𝐼𝐼), (3) 
for 𝜆𝜆 ∈ 𝛬𝛬 and distinct 𝑖𝑖, 𝑗𝑗 ∈ 𝐼𝐼, (𝑎𝑎𝜆𝜆 + 𝑖𝑖, 𝑎𝑎𝜆𝜆 + 𝑗𝑗) ∈ 𝐸𝐸(𝐺𝐺) iff ∃𝑟𝑟, 𝑠𝑠 ∈ (𝐼𝐼: 𝑎𝑎𝜆𝜆) such that 𝑟𝑟𝑟𝑟 ∈ 𝐼𝐼.  
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Remark 25. By Proposition 2, |𝑉𝑉(Г𝐼𝐼(𝑅𝑅))| < ∞ iff |𝑅𝑅| < ∞ or 𝐼𝐼 is prime. Since 𝑉𝑉(𝑊𝑊Г𝐼𝐼(𝑅𝑅)) = 𝑉𝑉(Г𝐼𝐼(𝑅𝑅)), it 
follows that |𝑉𝑉(𝑊𝑊Г𝐼𝐼(𝑅𝑅))| < ∞ iff |𝑅𝑅| < ∞ or 𝐼𝐼 is prime. Moreover, the above construction shows that if 
|𝑉𝑉(𝑊𝑊Г(𝑅𝑅/𝐼𝐼))| = 𝑛𝑛, then |𝑉𝑉(𝑊𝑊Г𝐼𝐼(𝑅𝑅))| = 𝑛𝑛 ∙ |𝐼𝐼|. 
 
Planar Property 
Now, the planar property of the graph 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is discussed. Some restraints on the size of the ideal 𝐼𝐼 
and the girth of 𝑊𝑊𝑊𝑊(𝑅𝑅/𝐼𝐼) will be provided. 
 
Restraints on |𝑰𝑰| 
First, some restraints on the size of the ideal 𝐼𝐼 of 𝑅𝑅 are discussed. 
 
Proposition 26. Let 𝐼𝐼 be an ideal of 𝑅𝑅. If 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is planar, then |𝐼𝐼| ≤ 2 or |𝑉𝑉(Г(𝑅𝑅/𝐼𝐼))| ≤ 1. 
 
Proof. Suppose that 𝑊𝑊𝛤𝛤𝐼𝐼(𝑅𝑅) is planar. Then Г𝐼𝐼(𝑅𝑅) is planar since Г𝐼𝐼(𝑅𝑅) ⊆ 𝑊𝑊Г𝐼𝐼(𝑅𝑅). By Proposition 3, 
|𝐼𝐼| ≤ 2 or |𝑉𝑉(Г(𝑅𝑅/𝐼𝐼))| ≤ 1. Since 𝑉𝑉(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = 𝑉𝑉(Г(𝑅𝑅/𝐼𝐼)), the result follows. 
 
Proposition 27. Let 𝐼𝐼 be an ideal of 𝑅𝑅. If |𝑉𝑉(𝑊𝑊Г(𝑅𝑅/𝐼𝐼))| = 1, then 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is planar iff 1 ≤ |𝐼𝐼| ≤ 4.  
 
Proof. Suppose |𝑉𝑉(𝑊𝑊Г(𝑅𝑅/𝐼𝐼))| = 1. Then |𝑉𝑉(Г(𝑅𝑅/𝐼𝐼))| = 1 since 𝑉𝑉(Г(𝑅𝑅/𝐼𝐼)) = 𝑉𝑉(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)). By Lemma 11, 
Г𝐼𝐼(𝑅𝑅) = 𝐾𝐾|𝐼𝐼|. Since 𝑉𝑉(𝑊𝑊Г𝐼𝐼(𝑅𝑅)) = 𝑉𝑉(Г𝐼𝐼(𝑅𝑅)), it follows from Lemma 20 that 𝑊𝑊Г𝐼𝐼(𝑅𝑅) = 𝐾𝐾|𝐼𝐼|. By Theorem 
15, 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is planar iff 1 ≤ |𝐼𝐼| ≤ 4. 

 
The following theorem gives a restriction on |𝑉𝑉(𝑊𝑊Г(𝑅𝑅/𝐼𝐼))| when 𝑅𝑅/𝐼𝐼 is non-reduced. 
 
Proposition 28. Let 𝐼𝐼 be an ideal of 𝑅𝑅 and let 𝑅𝑅/𝐼𝐼 be non-reduced. If 𝐼𝐼 ≠ {0} and |𝑉𝑉(𝑊𝑊Г(𝑅𝑅/𝐼𝐼))| > 2, then 
𝑊𝑊Г𝐼𝐼(𝑅𝑅) is not planar.  
 
Proof. Since 𝑅𝑅/𝐼𝐼 is non-reduced, ∃𝑎𝑎 ∈ 𝑅𝑅\𝐼𝐼 such that 𝑎𝑎2 ∈ 𝐼𝐼. Since 𝑎𝑎 is a looped vertex of Г(𝑅𝑅/𝐼𝐼) and 
|𝑉𝑉(Г(𝑅𝑅/𝐼𝐼))| = |𝑉𝑉(𝑊𝑊Г(𝑅𝑅/𝐼𝐼))| > 2, 𝑎𝑎 is not an end vertex of Г(𝑅𝑅/𝐼𝐼) by Theorem 4. Thus, ∃𝑏𝑏, 𝑐𝑐 ∈ 𝑅𝑅\𝐼𝐼 such 
that 𝑎𝑎 ≠ 𝑏𝑏, 𝑎𝑎 ≠ 𝑐𝑐, 𝑏𝑏 ≠ 𝑐𝑐 and 𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎 ∈ 𝐼𝐼. Since 𝐼𝐼 is nonzero, choose 0 ≠ 𝑙𝑙 ∈ 𝐼𝐼. Then 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎 ∈ 𝐼𝐼 implies that 
𝑎𝑎(𝑏𝑏 + 𝑙𝑙), (𝑎𝑎 + 𝑙𝑙)𝑏𝑏, (𝑎𝑎 + 𝑙𝑙)(𝑏𝑏 + 𝑙𝑙) and (𝑎𝑎 + 𝑙𝑙)𝑐𝑐 are all in 𝐼𝐼. Thus, (𝑎𝑎, 𝑏𝑏), (𝑎𝑎, 𝑏𝑏 + 𝑙𝑙), (𝑎𝑎, 𝑐𝑐), (𝑎𝑎 + 𝑙𝑙, 𝑏𝑏), (𝑎𝑎 + 𝑙𝑙, 𝑏𝑏 +
𝑙𝑙) and (𝑎𝑎 + 𝑙𝑙, 𝑐𝑐) are all in 𝐸𝐸(Г𝐼𝐼(𝑅𝑅)) and hence in 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)). Since 𝑎𝑎𝑎𝑎, 𝑎𝑎(𝑏𝑏 + 𝑙𝑙), 𝑎𝑎𝑎𝑎 and 𝑎𝑎2 are all in 𝐼𝐼, we 
have that (𝑏𝑏, 𝑐𝑐), (𝑏𝑏 + 𝑙𝑙, 𝑐𝑐) and (𝑏𝑏, 𝑏𝑏 + 𝑙𝑙) are all in 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)). Also, (𝑎𝑎, 𝑎𝑎 + 𝑙𝑙) ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)) since (𝑎𝑎, 𝑎𝑎 +
𝑙𝑙) ∈ 𝐸𝐸(Г𝐼𝐼(𝑅𝑅)).  Thus, {𝑎𝑎, 𝑎𝑎 + 𝑙𝑙, 𝑏𝑏, 𝑏𝑏 + 𝑙𝑙, 𝑐𝑐} is a subgraph of 𝑊𝑊Г𝐼𝐼(𝑅𝑅) isomorphic to 𝐾𝐾5. Hence 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is 
non-planar.  
 
Remark 29. (1) Suppose that |𝑅𝑅| < ∞, 𝐼𝐼 ≠ {0} and 𝐼𝐼 is a nonprime ideal of 𝑅𝑅. If 𝑅𝑅/𝐼𝐼 is non-reduced and 
gr(Г(𝑅𝑅/𝐼𝐼)) = ∞, then 𝑅𝑅/𝐼𝐼 ≅ 𝐵𝐵 or 𝑅𝑅/𝐼𝐼 ≅ ℤ2 × 𝐵𝐵, where 𝐵𝐵 = ℤ4 or ℤ2[𝑋𝑋]/(𝑋𝑋2), or Г(𝑅𝑅/𝐼𝐼) is star by 
Theorem 8. If 𝑅𝑅/𝐼𝐼 ≅ ℤ4 or ℤ2[𝑋𝑋]/(𝑋𝑋2), then |𝑉𝑉(𝑊𝑊Г(𝑅𝑅/𝐼𝐼))| = |𝑉𝑉(Г(𝑅𝑅/𝐼𝐼))| = 1 by Theorem 12. By 
Proposition 27, 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is planar iff 1 ≤ |𝐼𝐼| ≤ 4.  
 
If 𝑅𝑅/𝐼𝐼 ≅ 𝑍𝑍2 × 𝑍𝑍4 or 𝑍𝑍2 × 𝑍𝑍2[𝑋𝑋]/(𝑋𝑋2), then Г(𝑅𝑅/𝐼𝐼) ≅ 𝐾𝐾1,3 (see Figure 3). Since |𝑉𝑉(𝑊𝑊Г(𝑅𝑅/𝐼𝐼))| =
|𝑉𝑉(Г(𝑅𝑅/𝐼𝐼))| > 2, the graph 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is not planar by Proposition 28. However, if |𝐼𝐼| = 2, then Г𝐼𝐼(𝑅𝑅) is 
planar by Theorem 7. Note that the vertex of degree three in Figure 3 is the only vertex of Г(𝑅𝑅/𝐼𝐼) whose 
square is zero. Let 𝑎𝑎 be the vertex of degree three and let 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ 𝑅𝑅\𝐼𝐼 such that 𝑎𝑎,𝑏𝑏, 𝑐𝑐,𝑑𝑑 are all distinct 
and (𝑎𝑎, 𝑏𝑏), (𝑎𝑎, 𝑐𝑐), (𝑎𝑎,𝑑𝑑) ∈ 𝐸𝐸(Г(𝑅𝑅/𝐼𝐼)). By Figure 3, one of 𝑏𝑏, 𝑐𝑐 and 𝑑𝑑 has degree 2 in Г(𝑅𝑅/𝐼𝐼). Let deg(𝑐𝑐) =
2. Let 𝑒𝑒 ∈ 𝑅𝑅\𝐼𝐼 such that 𝑎𝑎 ≠ 𝑒𝑒, 𝑐𝑐 ≠ 𝑒𝑒 and (𝑐𝑐, 𝑒𝑒) ∈ 𝐸𝐸(Г(𝑅𝑅/𝐼𝐼)) (by Figure 3, deg�𝑒𝑒� = 1 in Г(𝑅𝑅/𝐼𝐼)). By 
Lemma 13, we have that (𝑎𝑎, 𝑏𝑏), (𝑎𝑎, 𝑐𝑐), (𝑎𝑎,𝑑𝑑) and (𝑎𝑎, 𝑒𝑒) are all in 𝐸𝐸(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)). Also, (𝑏𝑏, 𝑐𝑐), (𝑏𝑏,𝑑𝑑) and (𝑐𝑐,𝑑𝑑) 
are all in 𝐸𝐸(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) since 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎 and 𝑎𝑎2 are all in 𝐼𝐼. Since 𝑐𝑐𝑐𝑐, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎 and 𝑎𝑎𝑎𝑎 are all in 𝐼𝐼, we have that 
(𝑏𝑏, 𝑒𝑒), (𝑑𝑑, 𝑒𝑒) ∈ 𝐸𝐸(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)). By Lemma 13, (𝑐𝑐, 𝑒𝑒) ∈ 𝐸𝐸(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) since (𝑐𝑐, 𝑒𝑒) ∈ 𝐸𝐸(Г(𝑅𝑅/𝐼𝐼)). Thus, 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) 
is complete (and so gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = 3). Then (𝑎𝑎 + 𝑙𝑙, 𝑏𝑏 + 𝑚𝑚), (𝑎𝑎 + 𝑙𝑙, 𝑐𝑐 + 𝑚𝑚), (𝑎𝑎 + 𝑙𝑙,𝑑𝑑 + 𝑚𝑚), (𝑎𝑎 + 𝑙𝑙, 𝑒𝑒 + 𝑚𝑚), 
(𝑏𝑏 + 𝑙𝑙, 𝑐𝑐 + 𝑚𝑚), (𝑏𝑏 + 𝑙𝑙,𝑑𝑑 + 𝑚𝑚), (𝑏𝑏 + 𝑙𝑙, 𝑒𝑒 + 𝑚𝑚), (𝑐𝑐 + 𝑙𝑙,𝑑𝑑 + 𝑚𝑚), (𝑐𝑐 + 𝑙𝑙, 𝑒𝑒 + 𝑚𝑚) and (𝑑𝑑 + 𝑙𝑙, 𝑒𝑒 + 𝑚𝑚) are all in 
𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)), ∀𝑙𝑙,𝑚𝑚 ∈ 𝐼𝐼 by Corollary 23. Also, 𝑎𝑎𝑎𝑎 ∈ 𝐼𝐼 implies that 𝑎𝑎(𝑏𝑏 + 𝑙𝑙) ∈ 𝐼𝐼 ∀𝑙𝑙 ∈ 𝐼𝐼. Since 𝑎𝑎2 ∈ 𝐼𝐼, we have 
that (𝑏𝑏 + 𝑙𝑙,𝑏𝑏 + 𝑚𝑚) ∈ 𝐸𝐸(𝑊𝑊𝑊𝑊𝐼𝐼(𝑅𝑅)) ∀𝑙𝑙,𝑚𝑚 ∈ 𝐼𝐼, 𝑙𝑙 ≠ 𝑚𝑚. Similarly, (𝑐𝑐 + 𝑙𝑙, 𝑐𝑐 + 𝑚𝑚), (𝑑𝑑 + 𝑙𝑙,𝑑𝑑 + 𝑚𝑚) ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)), 
∀𝑙𝑙,𝑚𝑚 ∈ 𝐼𝐼, 𝑙𝑙 ≠ 𝑚𝑚, since 𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎 and 𝑎𝑎2 ∈ 𝐼𝐼. By Lemma 20, (𝑎𝑎 + 𝑙𝑙, 𝑎𝑎 + 𝑚𝑚) ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)) since (𝑎𝑎 + 𝑙𝑙, 𝑎𝑎 +
𝑚𝑚) ∈ 𝐸𝐸(Г𝐼𝐼(𝑅𝑅)) ∀𝑙𝑙,𝑚𝑚 ∈ 𝐼𝐼, 𝑙𝑙 ≠ 𝑚𝑚. Thus, 𝑎𝑎 ∪ 𝑏𝑏 ∪ 𝑐𝑐 ∪ 𝑑𝑑 ∪ {𝑒𝑒} is a complete subgraph of 𝑊𝑊Г𝐼𝐼(𝑅𝑅). Since 𝑒𝑒 is 
not adjacent to any vertex other than 𝑐𝑐 in Г(𝑅𝑅/𝐼𝐼), it follows that (𝐼𝐼: 𝑒𝑒 + 𝑙𝑙) = 𝑐𝑐 ∀𝑙𝑙 ∈ 𝐼𝐼. If (𝑐𝑐 + 𝑙𝑙)(𝑐𝑐 + 𝑚𝑚) ∈ 𝐼𝐼 
for some 𝑙𝑙,𝑚𝑚 ∈ 𝐼𝐼, 𝑙𝑙 ≠ 𝑚𝑚, then 𝑐𝑐2 ∈ 𝐼𝐼, a contradiction. Since (𝐼𝐼: 𝑒𝑒 + 𝑙𝑙) = 𝑐𝑐∀𝑙𝑙 ∈ 𝐼𝐼, it follows that 𝑟𝑟𝑟𝑟 ∉ 𝐼𝐼, for 
every 𝑟𝑟 ∈ (𝐼𝐼: 𝑒𝑒 + 𝑙𝑙) and 𝑠𝑠 ∈ (𝐼𝐼: 𝑒𝑒 + 𝑚𝑚) and so (𝑒𝑒 + 𝑙𝑙, 𝑒𝑒 + 𝑚𝑚) ∉ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)) ∀𝑙𝑙,𝑚𝑚 ∈ 𝐼𝐼, 𝑙𝑙 ≠ 𝑚𝑚.  
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Suppose that Г(𝑅𝑅/𝐼𝐼) is a star graph. Since 𝑅𝑅/𝐼𝐼 is non-reduced, |𝑉𝑉(Г(𝑅𝑅/𝐼𝐼))| ≤ 3 by Remark 9. If Г(𝑅𝑅/𝐼𝐼) =
𝐾𝐾1,1 with vertices 𝑎𝑎 and 𝑏𝑏, then 𝑎𝑎2, 𝑏𝑏2 ∈ 𝐼𝐼 by Lemma 11 since 𝑅𝑅/𝐼𝐼 is non-reduced. Then 
(𝑎𝑎 + 𝑙𝑙, 𝑎𝑎 + 𝑚𝑚), (𝑏𝑏 + 𝑙𝑙, 𝑏𝑏 + 𝑚𝑚) ∈ 𝐸𝐸(Г𝐼𝐼(𝑅𝑅))∀𝑙𝑙,𝑚𝑚 ∈ 𝐼𝐼, 𝑙𝑙 ≠ 𝑚𝑚. Also, 𝑎𝑎𝑎𝑎 ∈ 𝐼𝐼 implies that (𝑎𝑎 + 𝑙𝑙)(𝑏𝑏 + 𝑚𝑚) ∈ 𝐼𝐼 and 
so (𝑎𝑎 + 𝑙𝑙)(𝑏𝑏 + 𝑚𝑚)∀𝑙𝑙,𝑚𝑚 ∈ 𝐼𝐼. Thus, Г𝐼𝐼(𝑅𝑅) is complete and so 𝑊𝑊Г𝐼𝐼(𝑅𝑅) = Г𝐼𝐼(𝑅𝑅). If |𝐼𝐼| = 2, then 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is 
planar by Theorem 7. Suppose that Г(𝑅𝑅/𝐼𝐼) = 𝐾𝐾1,2. By Proposition 28, 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is not planar. However, if 
|𝐼𝐼| = 2, then Г𝐼𝐼(𝑅𝑅) is planar by Theorem 7. Since 𝑅𝑅/𝐼𝐼 is non-reduced, ∃𝑎𝑎 ∈ 𝑅𝑅\𝐼𝐼 such that 𝑎𝑎2 ∈ 𝐼𝐼. By 
Lemma 11, 𝑎𝑎 is the center of Г(𝑅𝑅/𝐼𝐼). If 𝑏𝑏 and 𝑐𝑐 are distinct non-central vertices of Г(𝑅𝑅/𝐼𝐼), then 
(𝑎𝑎, 𝑏𝑏), (𝑎𝑎, 𝑐𝑐) ∈ 𝐸𝐸(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) since (𝑎𝑎,𝑏𝑏), (𝑎𝑎, 𝑐𝑐) ∈ 𝐸𝐸(Г(𝑅𝑅/𝐼𝐼)). Also (𝑏𝑏, 𝑐𝑐) ∈ 𝐸𝐸(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) since 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎 and 
𝑎𝑎2 ∈ 𝐼𝐼. Thus, 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) = 𝐾𝐾3 (and so gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = 3). By Corollary 23, (𝑎𝑎 + 𝑙𝑙, 𝑏𝑏 + 𝑚𝑚), (𝑎𝑎 + 𝑙𝑙, 𝑐𝑐 + 𝑚𝑚) and 
(𝑏𝑏 + 𝑙𝑙, 𝑐𝑐 + 𝑚𝑚) are all in 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅))∀𝑙𝑙,𝑚𝑚 ∈ 𝐼𝐼. Since 𝑎𝑎𝑎𝑎, 𝑎𝑎2 ∈ 𝐼𝐼, we have that (𝑏𝑏 + 𝑙𝑙, 𝑏𝑏 + 𝑚𝑚) ∈
𝐸𝐸(𝑊𝑊𝛤𝛤𝐼𝐼(𝑅𝑅))∀𝑙𝑙,𝑚𝑚 ∈ 𝐼𝐼, 𝑙𝑙 ≠ 𝑚𝑚 by Corollary 23. Also, (𝑐𝑐 + 𝑙𝑙, 𝑐𝑐 + 𝑚𝑚) ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅))∀𝑙𝑙,𝑚𝑚 ∈ 𝐼𝐼, 𝑙𝑙 ≠ 𝑚𝑚, since 
𝑎𝑎𝑎𝑎, 𝑎𝑎2 ∈ 𝐼𝐼. Finally, since 𝑎𝑎2 ∈ 𝐼𝐼, we have that (𝑎𝑎 + 𝑙𝑙, 𝑎𝑎 + 𝑚𝑚) ∈ 𝐸𝐸(Г𝐼𝐼(𝑅𝑅))∀𝑙𝑙,𝑚𝑚 ∈ 𝐼𝐼, 𝑙𝑙 ≠ 𝑚𝑚. By Lemma 20, 
(𝑎𝑎 + 𝑙𝑙, 𝑎𝑎 + 𝑚𝑚) ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)) ∀𝑙𝑙,𝑚𝑚 ∈ 𝐼𝐼, 𝑙𝑙 ≠ 𝑚𝑚. Thus, 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is complete.  
 
(2) Suppose that |𝑅𝑅| < ∞ and {0} ≠ 𝐼𝐼 is a nonprime ideal of 𝑅𝑅. Since Г(𝑅𝑅/𝐼𝐼) ⊆ 𝑊𝑊Г(𝑅𝑅/𝐼𝐼), we deduce that 
gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) ≤ 𝑔𝑔𝑔𝑔(Г(𝑅𝑅/𝐼𝐼)). Thus, if nil(𝑅𝑅/𝐼𝐼) ≠ {0} and 𝑔𝑔𝑔𝑔(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = ∞, then 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) has at most two 
vertices by (1) (otherwise, gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = 3 by (1)).  
 
(3) Assume that 𝐼𝐼 ≠ {0} and 𝑅𝑅/𝐼𝐼 is non-reduced. If Г(𝑅𝑅/𝐼𝐼) is an infinite star graph, then, by Remark 9,  
nil(𝑅𝑅/𝐼𝐼) ≠ {0,𝑎𝑎}, where 𝑍𝑍(𝑅𝑅/𝐼𝐼) = 𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎). Then 𝑎𝑎 is the center of Г(𝑅𝑅/𝐼𝐼) and 𝑎𝑎2 ∈ 𝐼𝐼. By the reasoning in 
(1), it can be shown that 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) and 𝑊𝑊Г𝐼𝐼(𝑅𝑅) are complete graphs. Note that 𝑊𝑊𝑊𝑊𝐼𝐼(𝑅𝑅) is not planar by 
Proposition 28. 

  

 
 

Figure 3.  𝐾𝐾�1,3 
 
 

Restraints on gr(𝑾𝑾𝑾𝑾(𝑹𝑹/𝑰𝑰)) 
Now, some restraints on gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) are given.   
 
Proposition 30. Let 𝐼𝐼 be an ideal of 𝑅𝑅. If gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = 4, then 𝑊𝑊𝛤𝛤𝐼𝐼(𝑅𝑅) is non-planar.  
 
Proof. Assume that gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = 4. By Theorem 15, 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) = Г(𝑅𝑅/𝐼𝐼), and so gr(Г(𝑅𝑅/𝐼𝐼)) = 4. By 
Theorem 7, Г𝐼𝐼(𝑅𝑅) is non-planar. Since Г𝐼𝐼(𝑅𝑅) ⊆ 𝑊𝑊Г𝐼𝐼(𝑅𝑅) and Г𝐼𝐼(𝑅𝑅) is not planar, 𝑊𝑊𝑊𝑊𝐼𝐼(𝑅𝑅) is non-planar. 
 
In the next result it is shown that if gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = 4, then 𝑊𝑊Г𝐼𝐼(𝑅𝑅) = Г𝐼𝐼(𝑅𝑅).  
 
Proposition 31. Let 𝐼𝐼 be an ideal of 𝑅𝑅. If gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = 4, then 𝑊𝑊Г𝐼𝐼(𝑅𝑅) = Г𝐼𝐼(𝑅𝑅).  
      
Proof. Suppose that gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = 4. Then, by Theorem 15, 𝑅𝑅/𝐼𝐼 is reduced and 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) = Г(𝑅𝑅/𝐼𝐼). 
Assume that 𝑊𝑊Г𝐼𝐼(𝑅𝑅) ≠ Г𝐼𝐼(𝑅𝑅). Then ∃𝑎𝑎, 𝑏𝑏 ∈ 𝑉𝑉(𝑊𝑊Г𝐼𝐼(𝑅𝑅)),𝑎𝑎 ≠ 𝑏𝑏, such that (𝑎𝑎, 𝑏𝑏) ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)) and (𝑎𝑎, 𝑏𝑏) ∉
𝐸𝐸(Г𝐼𝐼(𝑅𝑅)). Then 𝑎𝑎𝑎𝑎 ∉ 𝐼𝐼 and there exist 𝑟𝑟 ∈ (𝐼𝐼: 𝑎𝑎) and 𝑠𝑠 ∈ (𝐼𝐼: 𝑏𝑏) such that 𝑟𝑟𝑟𝑟 ∈ 𝐼𝐼. Assume that 𝑎𝑎 = 𝑟𝑟. Then 
𝑟𝑟 = 𝑎𝑎 + 𝑙𝑙 for some 𝑙𝑙 ∈ 𝐼𝐼. Then 𝑎𝑎𝑎𝑎 ∈ 𝐼𝐼 implies that 𝑎𝑎2 ∈ 𝐼𝐼 and so nil(𝑅𝑅/𝐼𝐼) ≠ {0}. This is a contradiction as 
𝑅𝑅/𝐼𝐼 is reduced. Thus, 𝑎𝑎 ≠ 𝑟𝑟. Similarly, 𝑟𝑟 ≠ 𝑠𝑠 and 𝑠𝑠 ≠ 𝑏𝑏. If 𝑎𝑎 =  𝑠𝑠, then, since 𝑏𝑏𝑏𝑏 ∈ 𝐼𝐼, we have 𝑎𝑎𝑎𝑎 =  𝑎𝑎.𝑏𝑏 =
𝑠𝑠.𝑏𝑏 = 𝑏𝑏𝑏𝑏 = 𝐼𝐼 and so 𝑎𝑎𝑎𝑎 ∈ 𝐼𝐼. This is a contradiction. Thus 𝑠𝑠 ≠ 𝑎𝑎. If 𝑎𝑎 ≠ 𝑏𝑏, then (𝑎𝑎,𝑏𝑏) ∈ 𝐸𝐸(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) by 
Theorem 22 since (𝑎𝑎, 𝑏𝑏) ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)). Then (𝑎𝑎, 𝑏𝑏) ∈ 𝐸𝐸(Г(𝑅𝑅/𝐼𝐼)) since 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) = Г(𝑅𝑅/𝐼𝐼). Thus, 𝑎𝑎𝑎𝑎 ∈ 𝐼𝐼, 
a contradiction. Therefore 𝑎𝑎 = 𝑏𝑏. Then 𝑎𝑎𝑎𝑎 = 𝑎𝑎. 𝑠𝑠 = 𝑏𝑏. 𝑠𝑠 = 𝑏𝑏𝑏𝑏 = 𝐼𝐼 and so 𝑎𝑎𝑎𝑎 ∈ 𝐼𝐼. Thus, 𝑎𝑎, 𝑟𝑟 and 𝑠𝑠 is a 
triangle in Г(𝑅𝑅/𝐼𝐼), a contradiction as gr(Г(𝑅𝑅/𝐼𝐼)) = gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = 4. Thus, 𝑊𝑊Г𝐼𝐼(𝑅𝑅) = Г𝐼𝐼(𝑅𝑅).  
  
Proposition 32. Let 𝐼𝐼 be an ideal of 𝑅𝑅. If gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = 3, then 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is not planar.  
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Proof. Suppose that gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = 3. If gr(Г(𝑅𝑅/𝐼𝐼)) is finite, then Г𝐼𝐼(𝑅𝑅) is non-planar by Theorem 7 and 
so 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is non-planar. Suppose gr(Г(𝑅𝑅/𝐼𝐼)) = ∞. We claim that nil(𝑅𝑅/𝐼𝐼) ≠ {0}. Suppose nil(𝑅𝑅/𝐼𝐼) =
{0}. Then, by Theorem 16, Г(𝑅𝑅/𝐼𝐼) ≅ 𝐾𝐾1,𝑛𝑛 for some 𝑛𝑛 ≥ 2. Let 𝑐𝑐 be the center of Г(𝑅𝑅/𝐼𝐼) and let 𝑎𝑎, 𝑏𝑏 ∈
𝑉𝑉(Г(𝑅𝑅/𝐼𝐼))\{𝑐𝑐}, 𝑎𝑎 ≠ 𝑏𝑏. Then 𝑎𝑎𝑎𝑎𝑎𝑎{𝑎𝑎} = 𝑎𝑎𝑎𝑎𝑎𝑎{𝑏𝑏} = {0, 𝑐𝑐}. Since 𝑐𝑐2 ∉ 𝐼𝐼, (𝑎𝑎,𝑏𝑏) ∉ 𝐸𝐸(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)). Therefore 
𝑊𝑊Г(𝑅𝑅/𝐼𝐼) = Г(𝑅𝑅/𝐼𝐼), a contradiction. Thus, 𝑅𝑅/𝐼𝐼 is non-reduced. By Proposition 28, 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is not planar.  
 
Proposition 33. Let 𝐼𝐼 be an ideal of 𝑅𝑅. If gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = ∞ and |𝐼𝐼| = 2, then 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is planar.  
 
Proof. If 𝐼𝐼 = 𝑅𝑅 or 𝐼𝐼 is prime, then both 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) and 𝑊𝑊Г𝐼𝐼(𝑅𝑅) are empty, and so they are both planar. 
Suppose that 𝐼𝐼 ⊊ 𝑅𝑅 and 𝐼𝐼 is non-prime. Then 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) is nonempty. The case |𝑉𝑉(𝑊𝑊Г(𝑅𝑅/𝐼𝐼))| = 1 has 
been handled in Proposition 27. Suppose that |𝑉𝑉(𝑊𝑊Г(𝑅𝑅/𝐼𝐼))| ≥ 2. If nil(𝑅𝑅/𝐼𝐼) ≠ {0}, then, by (2) of Remark 
29, |𝑉𝑉(𝑊𝑊Г(𝑅𝑅/𝐼𝐼))| = 2. By (1) of Remark 29, 𝑊𝑊𝑊𝑊𝐼𝐼(𝑅𝑅) is planar. If nil(𝑅𝑅/𝐼𝐼) = {0}, then Г(𝑅𝑅/𝐼𝐼) ≅  𝐾𝐾1,𝑛𝑛 for 
some 𝑛𝑛 ≥ 1 by Theorem 16 since gr(Г(𝑅𝑅/𝐼𝐼)) = ∞. We claim that 𝑊𝑊Г𝐼𝐼(𝑅𝑅) = 𝑊𝑊Г𝐼𝐼(𝑅𝑅). Assume that 
𝑊𝑊Г𝐼𝐼(𝑅𝑅) ≠ 𝑊𝑊Г𝐼𝐼(𝑅𝑅). Then ∃𝑎𝑎, 𝑏𝑏 ∈ 𝑉𝑉(𝑊𝑊Г𝐼𝐼(𝑅𝑅)) such that (𝑎𝑎, 𝑏𝑏) ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)) and (𝑎𝑎, 𝑏𝑏) ∉ 𝐸𝐸(Г𝐼𝐼(𝑅𝑅)). Since 
(𝑎𝑎, 𝑏𝑏) ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)),∃𝑟𝑟 ∈ (𝐼𝐼: 𝑎𝑎) and 𝑠𝑠 ∈ (𝐼𝐼: 𝑏𝑏) such that 𝑟𝑟𝑟𝑟 ∈ 𝐼𝐼. Suppose that 𝑎𝑎 ≠ 𝑏𝑏. Then (𝑎𝑎,𝑏𝑏) ∉
𝐸𝐸(Г(𝑅𝑅/𝐼𝐼)) since 𝑎𝑎𝑎𝑎 ∉ 𝐼𝐼. Thus, neither 𝑎𝑎 nor 𝑏𝑏 is the central vertex of Г(𝑅𝑅/𝐼𝐼). If 𝑟𝑟 = 𝑎𝑎, then 𝑟𝑟 = 𝑎𝑎 + 𝑙𝑙 for 
0 ≠ 𝑙𝑙 ∈ 𝐼𝐼. Then 𝑎𝑎𝑎𝑎 ∈ 𝐼𝐼 implies that 𝑎𝑎2 ∈ 𝐼𝐼. This is a contradiction since 𝑅𝑅/𝐼𝐼 is reduced and 𝑎𝑎 ∉ 𝐼𝐼. 
Therefore 𝑎𝑎 ≠ 𝑟𝑟. Similarly, 𝑏𝑏 ≠ 𝑠𝑠 and 𝑟𝑟 ≠ 𝑠𝑠. Also, (𝑟𝑟,𝑎𝑎), (𝑠𝑠,𝑏𝑏) ∈ 𝐸𝐸(Г(𝑅𝑅/𝐼𝐼)) since 𝑟𝑟𝑟𝑟 ∈ 𝐼𝐼 and s𝑏𝑏 ∈ 𝐼𝐼. Since 
𝑎𝑎 and 𝑏𝑏 are non-central vertices of Г(𝑅𝑅/𝐼𝐼), we must have 𝑟𝑟 = 𝑠𝑠 = 𝑐𝑐, where 𝑐𝑐 is the center of Г(𝑅𝑅/𝐼𝐼). This 
is a contradiction. Assume that 𝑎𝑎 = 𝑏𝑏. Then (𝑠𝑠,𝑎𝑎) ∈ 𝐸𝐸(Г(𝑅𝑅/𝐼𝐼)) since (𝑠𝑠,𝑏𝑏) ∈ 𝐸𝐸(Г(𝑅𝑅/𝐼𝐼)). Since 
(𝑟𝑟,𝑎𝑎), (𝑠𝑠,𝑎𝑎) ∈ 𝐸𝐸(Г(𝑅𝑅/𝐼𝐼)), it follows that 𝑟𝑟 and 𝑠𝑠 are non-central vertices of Г(𝑅𝑅/𝐼𝐼), a contradiction as 𝑟𝑟𝑟𝑟 ∈
𝐼𝐼. Thus, 𝑊𝑊Г𝐼𝐼(𝑅𝑅) = Г𝐼𝐼(𝑅𝑅). By Theorem 7, 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is planar.  
 
By combining all the previous propositions, the following result is obtained:  
 
Theorem 34. Suppose that |𝑅𝑅| < ∞ and 𝐼𝐼 is non-zero, non-prime ideal of 𝑅𝑅. Then 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is planar iff 
gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = ∞ and either (𝑎𝑎) |𝐼𝐼| = 2 or (𝑏𝑏) |𝑉𝑉(𝑊𝑊Г(𝑅𝑅/𝐼𝐼))| = 1 and |𝐼𝐼| ∈ {2, 3, 4}.  
 
Proof. Suppose that 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is planar. By Proposition 30, gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) ≠ 4 and, by Proposition 32, 
gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) ≠ 3. Thus, gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = ∞ by Theorem 14.  Suppose that |𝐼𝐼| ≠ 2. Then, by Proposition 
26, |𝑉𝑉(𝑊𝑊Г(𝑅𝑅/𝐼𝐼))| ≤ 1. Since 𝐼𝐼 is non-prime, 𝑊𝑊Г𝐼𝐼(𝑅𝑅) ≠ ∅ by Proposition 19. Thus 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) ≠ ∅ and so 
|𝑉𝑉(𝑊𝑊Г(𝑅𝑅/𝐼𝐼))| = 1. Since 𝐼𝐼 ≠ {0} and 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is planar, |𝐼𝐼| ∈ {2, 3, 4} by Proposition 27. For the converse, 
see Proposition 27 and Proposition 33.   
 
Classification  
In this section, finite rings 𝑅𝑅 with planar 𝑊𝑊Г𝐼𝐼(𝑅𝑅) are classified. First, the case √𝐼𝐼 = 𝐼𝐼 is considered. 
  
Proposition 35. Suppose that |𝑅𝑅| < ∞ and 𝐼𝐼 is a non-zero, non-prime ideal of 𝑅𝑅 such that √𝐼𝐼 = 𝐼𝐼. Then 
gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = ∞ and |𝐼𝐼| = 2 iff 𝑅𝑅 is isomorphic to one of the rings from Table 1 (with appropriately 
chosen ideal 𝐼𝐼). 

 
Table 1. Rings for Proposition 34 

 
Ring Ideal 

ℤ2 × 𝐾𝐾 〈2〉 × {0} 
ℤ2[𝑋𝑋]/(𝑋𝑋2) × 𝐾𝐾 〈𝑥𝑥〉 × {0} 
ℤ2 × ℤ2 × 𝐾𝐾 ℤ2 × {0} × {0}, {0} × ℤ2 × {0} or {0} × {0} × 𝐾𝐾 

 
 

Proof. If gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = ∞, then gr(Г(𝑅𝑅/𝐼𝐼)) = ∞ since Г(𝑅𝑅/𝐼𝐼) ⊆ 𝑊𝑊Г(𝑅𝑅/𝐼𝐼). Since √𝐼𝐼 = 𝐼𝐼, the ring 𝑅𝑅/𝐼𝐼 is 
reduced. By [18, Proposition 3.9], 𝑅𝑅 ≅ 𝑆𝑆 for some ring 𝑆𝑆 from Table 1 with corresponding 𝐼𝐼. Conversely 
suppose 𝑅𝑅 ≅ 𝑆𝑆 for some ring 𝑆𝑆 from Table 1 with corresponding ideal. Then, by [18, Proposition 3.9], 
𝑔𝑔𝑔𝑔(Г(𝑅𝑅/𝐼𝐼)) = ∞ and |𝐼𝐼| = 2. By the proof of Proposition 33, 𝑊𝑊𝑊𝑊𝐼𝐼(𝑅𝑅) = 𝛤𝛤𝐼𝐼(𝑅𝑅). If 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) ≠ Г(𝑅𝑅/𝐼𝐼), then 
∃𝑎𝑎, 𝑏𝑏 ∈ 𝑅𝑅\𝐼𝐼 such that 𝑎𝑎 ≠ 𝑏𝑏 and (𝑎𝑎,𝑏𝑏) ∈ 𝐸𝐸(Г(𝑅𝑅/𝐼𝐼)) but (𝑎𝑎,𝑏𝑏) ∉ 𝐸𝐸(Г(𝑅𝑅/𝐼𝐼)). Then (𝑎𝑎, 𝑏𝑏) ∈ 𝐸𝐸(𝑊𝑊Г𝐼𝐼(𝑅𝑅)) by 
Theorem 22. Since 𝑊𝑊Г𝐼𝐼(𝑅𝑅) = Г𝐼𝐼(𝑅𝑅), we have (𝑎𝑎,𝑏𝑏) ∈ 𝐸𝐸(Г𝐼𝐼(𝑅𝑅)). This is a contradiction as 𝑎𝑎𝑎𝑎 ∉ 𝐼𝐼. Thus, 
𝑊𝑊Г(𝑅𝑅/𝐼𝐼) = Г(𝑅𝑅/𝐼𝐼) and so gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = ∞.  

 
The next result determines rings 𝑅𝑅 and ideals 𝐼𝐼 of 𝑅𝑅 with planar 𝑊𝑊Г𝐼𝐼(𝑅𝑅) in the case when √𝐼𝐼 ≠ 𝐼𝐼. 
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Proposition 36. Suppose that |𝑅𝑅| < ∞ and 𝐼𝐼 is a non-zero, non-prime ideal of 𝑅𝑅 such that √𝐼𝐼 ≠ 𝐼𝐼. Then 
gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = ∞ and |𝐼𝐼| = 2 iff 𝑅𝑅 is isomorphic to one of the rings from Table 2 (with appropriately 
chosen ideal 𝐼𝐼). 
 
Proof. nil(𝑅𝑅/𝐼𝐼) ≠ {0} since √𝐼𝐼 ≠ 𝐼𝐼. Suppose that gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = ∞ and |𝐼𝐼| = 2. Then 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) has at 
most two vertices by (2) of Remark 29. If |𝑉𝑉(𝑊𝑊𝑊𝑊(𝑅𝑅/𝐼𝐼)| = 1, then 𝑊𝑊Г𝐼𝐼(𝑅𝑅) = Г𝐼𝐼(𝑅𝑅) ≅ 𝐾𝐾2 by the proof of 
Proposition 27. By [18, Proposition 2.4], 𝑅𝑅 ≅ 𝑆𝑆, where 𝑆𝑆 is one of the first seven rings in Table 2. Suppose 
that |𝑉𝑉(𝑊𝑊Г(𝑅𝑅/𝐼𝐼))| = 2. Then |𝑉𝑉(Г(𝑅𝑅/𝐼𝐼))| = 2. By (1) of Remark 29, Г𝐼𝐼(𝑅𝑅) is complete. By Proposition 2, 
|𝑉𝑉(Г𝐼𝐼(𝑅𝑅)| = |𝐼𝐼||𝑉𝑉(Г(𝑅𝑅/𝐼𝐼))| = 2.2 = 4 and so Г𝐼𝐼(𝑅𝑅) ≅ 𝐾𝐾4. Thus, 𝑊𝑊Г𝐼𝐼(𝑅𝑅) = Г𝐼𝐼(𝑅𝑅) ≅ 𝐾𝐾4. Rings 𝑅𝑅 with 
Г𝐼𝐼(𝑅𝑅) ≅ 𝐾𝐾4, {0} ≠ 𝐼𝐼 < 𝑅𝑅, are classified in section 2.4 of [18]. In the case 2 of section 2.4 in [18], it has 
been shown that if |𝐼𝐼| = 2 and |𝑉𝑉(Г(𝑅𝑅/𝐼𝐼))| = 2, then 𝑅𝑅 ≅ ℤ2 × ℤ9 or ℤ2 × ℤ3[𝑋𝑋]/(𝑋𝑋2).  
The converse is clear.  

 
Table 2. Non-radical case: gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = ∞ and |𝐼𝐼| = 2 
 

Ring Ideal 
ℤ𝟖𝟖 〈4〉 = {0, 4} 

ℤ𝟒𝟒 × ℤ𝟐𝟐 {0} × ℤ2 
ℤ𝟐𝟐[𝑿𝑿]/(𝑿𝑿𝟐𝟐) × ℤ𝟐𝟐 {0} × ℤ2 
ℤ𝟒𝟒[𝑿𝑿]/(𝑿𝑿𝟐𝟐,𝟐𝟐𝟐𝟐) 〈𝑥𝑥〉, 〈2〉 or 〈𝑥𝑥 + 2〉 

ℤ𝟒𝟒[𝑿𝑿]/(𝟐𝟐𝟐𝟐,𝑿𝑿𝟐𝟐 − 𝟐𝟐) 〈2〉 
ℤ𝟐𝟐[𝑿𝑿]/(𝑿𝑿𝟑𝟑) 〈𝑥𝑥2〉 

ℤ𝟐𝟐[𝑿𝑿,𝒀𝒀]/(𝑿𝑿𝟐𝟐,𝑿𝑿𝑿𝑿,𝒀𝒀𝟐𝟐) 〈𝑥𝑥〉, 〈𝑦𝑦〉 or 〈𝑥𝑥 + 𝑦𝑦〉 
ℤ𝟐𝟐 × ℤ𝟗𝟗 ℤ2 × {0} 

ℤ𝟐𝟐 × ℤ𝟑𝟑[𝑿𝑿]/(𝑿𝑿𝟐𝟐) ℤ2 × {0} 
 
 

Finite Planar Non-Trivial 𝑾𝑾𝑾𝑾𝑰𝑰(𝑹𝑹)  
Finite planar graphs corresponding to non-empty 𝑊𝑊Г𝐼𝐼(𝑅𝑅) are now presented. If √𝐼𝐼 ≠ 𝐼𝐼, gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) =
∞ and |𝐼𝐼| = 2, then 𝑊𝑊Г𝐼𝐼(𝑅𝑅) = Г𝐼𝐼(𝑅𝑅) ≅ 𝐾𝐾2 or 𝐾𝐾4 by the proof of Proposition 36. Also, if |𝑉𝑉(𝑊𝑊𝑊𝑊(𝑅𝑅/𝐼𝐼))| =
1 and |𝐼𝐼| ∈ {3,4}, then 𝑊𝑊𝑊𝑊𝐼𝐼(𝑅𝑅) = 𝛤𝛤𝐼𝐼(𝑅𝑅) ≅ 𝐾𝐾3 or 𝐾𝐾4 by the proof of Proposition 27. Commutative rings 𝑅𝑅 
and ideal 𝐼𝐼 of 𝑅𝑅 with Г𝐼𝐼(𝑅𝑅) ≅ 𝐾𝐾3 and Г𝐼𝐼(𝑅𝑅) ≅ 𝐾𝐾4 have been determined in [18, Proposition 2.6] and [18, 
Proposition 2.7] respectively.  

 
Now consider the case √𝐼𝐼 = 𝐼𝐼 (that is, 𝑅𝑅/𝐼𝐼 is reduced). If 𝑊𝑊𝑊𝑊𝐼𝐼(𝑅𝑅) is a finite planar graph, then 
gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = ∞ and |𝐼𝐼| = 2. Since nil(𝑅𝑅/𝐼𝐼) = {0} and gr(Г(𝑅𝑅/𝐼𝐼)) = ∞, Г(𝑅𝑅/𝐼𝐼) ≅ 𝐾𝐾1,𝑛𝑛,𝑛𝑛 ≥ 1, by 
Theorem 16. By the proof of Proposition 33, 𝑊𝑊Г𝐼𝐼(𝑅𝑅) = Г𝐼𝐼(𝑅𝑅). The graph 𝛤𝛤𝐼𝐼(𝑅𝑅) is given in [18, Figure 3.7] 
which we present in Figure 4.    

  

 
 

Figure 4. Finite planar 𝑊𝑊Г𝐼𝐼(𝑅𝑅),√𝐼𝐼 = 𝐼𝐼, 𝐼𝐼 ≠ {0} 
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Conclusions 
 
In conclusion, an ideal-based weakly zero-divisor graph of 𝑅𝑅, denoted by 𝑊𝑊Г𝐼𝐼(𝑅𝑅), is defined and it is 
shown that Г𝐼𝐼(𝑅𝑅) ⊆ 𝑊𝑊Г𝐼𝐼(𝑅𝑅) and 𝑊𝑊Г𝐼𝐼(𝑅𝑅) = 𝑊𝑊Г(𝑅𝑅) when 𝐼𝐼 = {0}. The results suggested that the graphs 
𝑊𝑊Г𝐼𝐼(𝑅𝑅) and 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) are strongly related. Specifically, it is shown that 𝑊𝑊Г𝐼𝐼(𝑅𝑅) has |𝐼𝐼| disjoint subgraphs 
isomorphic to 𝑊𝑊Г(𝑅𝑅/𝐼𝐼). A similar relationship had already been established between Г𝐼𝐼(𝑅𝑅) and Г(𝑅𝑅/𝐼𝐼) 
in previous research. A method for constructing the graph 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is also presented. In previous 
research, it was established that Г(𝑅𝑅) does not have a looped end point. This result was used to show 
that if the ideal 𝐼𝐼 is non-radical (√𝐼𝐼 ≠ 𝐼𝐼) and |𝑉𝑉(Г(𝑅𝑅/𝐼𝐼))| > 2, then 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is not planar. However, it was 
established in previous research that if |𝐼𝐼| = 2 and gr(Г(𝑅𝑅/𝐼𝐼)) = ∞ (where 𝑅𝑅 is finite), then the subgraph 
Г𝐼𝐼(𝑅𝑅) of 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is planar (regardless of whether or not √𝐼𝐼 ≠ 𝐼𝐼). A result given in an earlier research 
state that if √𝐼𝐼 ≠ 𝐼𝐼 and gr(Г(𝑅𝑅/𝐼𝐼)) = ∞, then Г(𝑅𝑅/𝐼𝐼) is a singleton, a 𝐾𝐾�1,3, or a 𝐾𝐾1,𝑛𝑛, 𝑛𝑛 ≥ 1. This research 
shows that under these assumptions that 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) is complete. It is also shown that under these 
assumptions that 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is complete except when Г(𝑅𝑅/𝐼𝐼) = 𝐾𝐾�1,3. Further, the results showed that if 
gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = 3 or 4, then 𝑊𝑊𝑊𝑊𝐼𝐼(𝑅𝑅) is not planar. However, if 𝑅𝑅 is finite, gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = ∞ and |𝐼𝐼| = 2, 
then 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is planar. The main result states that if {0} ≠ 𝐼𝐼, 𝑅𝑅 is finite and 𝐼𝐼 is non-prime, then 𝑊𝑊𝑊𝑊𝐼𝐼(𝑅𝑅) 
is planar iff gr(𝑊𝑊Г(𝑅𝑅/𝐼𝐼)) = ∞ and either (𝑎𝑎) |𝐼𝐼| = 2 or (𝑏𝑏) |𝑉𝑉(𝑊𝑊Г(𝑅𝑅/𝐼𝐼))| = 1 and |𝐼𝐼| ∈ {2, 3, 4}. Also, finite 
rings 𝑅𝑅 and ideals 𝐼𝐼 of 𝑅𝑅 are determined such that 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is planar. The results showed that if 𝐼𝐼 ≠ {0} 
and √𝐼𝐼 ≠ 𝐼𝐼, then 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is planar iff 𝑊𝑊𝑊𝑊𝐼𝐼(𝑅𝑅) ≅ 𝐾𝐾2,𝐾𝐾3 or 𝐾𝐾4. If 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is planar and √𝐼𝐼 = 𝐼𝐼, then the 
results revealed that 𝑊𝑊Г𝐼𝐼(𝑅𝑅) = Г𝐼𝐼(𝑅𝑅) and 𝑊𝑊Г𝐼𝐼(𝑅𝑅) is not complete. As suggested by these results, the 
graph 𝑊𝑊Г𝐼𝐼(𝑅𝑅) can be studied in relation to some of the existing graphs, namely Г(𝑅𝑅/𝐼𝐼), 𝑊𝑊Г(𝑅𝑅/𝐼𝐼) and 
Г𝐼𝐼(𝑅𝑅). In some previous researches it was investigated how the properties of Г𝐼𝐼(𝑅𝑅) and Г(𝑅𝑅/𝐼𝐼) are 
related (for example, girth, clique number, connectivity, independence number and domination number). 
The results presented in this research motivate one to further study the graphical properties of 𝑊𝑊Г𝐼𝐼(𝑅𝑅) 
in relation to the properties of 𝑊𝑊Г(𝑅𝑅/𝐼𝐼). This will enhance the understanding of the structure of some of 
the existing graphs as well as the structure of the ring.  
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