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Abstract Smart precision farming combines IoT, cloud computing, and big data to optimize 
agricultural productivity, reduce costs, and advance sustainability through digitalization and 
intelligent approaches. However, precision farming grapples with challenges like managing 
complex variables, addressing multicollinearity, handling outliers, ensuring model robustness, and 
improving accuracy, particularly with smaller or medium-sized datasets. Reducing retraining time 
and solving the calamity of complexity are necessary to overcome these obstacles and improve 
machine learning algorithms' performance, scalability, and efficiency—especially when working 
with big or high-dimensional datasets. In a recent study with 435 drying parameters and 1914 
observations. In this study, we employed Ridge, Lasso, and Elastic Net regression techniques to 
address the challenges of multicollinearity and heterogeneity within our dataset. Traditional 
regression models, such as ordinary least squares (OLS), often struggle with multicollinearity, 
leading to unstable and unreliable coefficient estimates. Ridge regression mitigates this issue by 
adding an L2 penalty, stabilizing the coefficients. Lasso regression introduces an L1 penalty, which 
further enhances the model by performing variable selection. Elastic Net, a combination of L1 and 
L2 penalties, effectively handles both multicollinearity and heterogeneity by selecting relevant 
variables and capturing varying patterns across different subgroups. Our study's use of Ridge, 
Lasso, and Elastic Net regression techniques has broad practical applications across various 
fields. In economics, they help identify key indicators for economic forecasting; in healthcare, they 
improve predictions of patient outcomes for personalized treatment; in finance, they create more 
stable models for market behavior; and in social sciences, they reveal influential factors in 
behavioral studies. These methods effectively manage multicollinearity and heterogeneity, making 
them valuable tools for decision-making and policy development across these domains. The 
objective was to identify significant drying parameters both before and after heterogeneity, while 
selecting varying numbers of variables (50, 100, 150, 200, 250, 300) based on validation metrics 
such as MAPE, MSE, SSE, and R2. The results revealed that the Ridge model demonstrated the 
highest efficiency, exhibiting the smallest values for MAPE, MSE, SSE, and the largest value for 
R2, both before and after heterogeneity. 
Keywords: Machine learning, lasso, ridge, elastic net, validation metrics, smart farming. 

 

 
Introduction 
 
Smart farming, also referred to as smart agriculture, entails the utilization of cutting-edge technologies 
and data-driven strategies to enhance efficiency and sustainability in agricultural practices. This 
approach integrates artificial intelligence (AI), automation, and the Internet of Things (IoT) to optimize 
various aspects of farming operations [1]. In Smart Farming technology, IoT involves linking smart 
machines and sensors throughout agricultural operations, enabling data-driven and data-enabled 
farming processes [2]. Solar dryers in precision farming offer energy efficiency, environmental benefits, 
precise control over drying conditions, and economic advantages. These benefits collectively contribute 
to the sustainability and profitability of agricultural practices, making solar dryers a valuable tool in 
precision farming [3, 4, 5, 6, 7]. 
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In agriculture and aquaculture, producing high-value end products requires several phases, including 
cultivation, pre and post-harvest. Drying is synonym for post-harvest. Drying and dehydration play pivotal 
roles in agriculture. These processes involve the removal of moisture from food materials, enhancing 
their longevity, preventing spoilage, and elevating their overall quality [8]. Drying is a widely recognized 
technique for food preservation, achieved by lowering the moisture content to an ideal level. Different 
techniques are utilized to dry food, such as direct exposure to sunlight, oven drying, warmth pump drying, 
and solar energy-based drying processes [9]. 
 
The conventional method open-air drying in the sun remains a popular alternative because of its low 
cost. However, this approach is very sensitive to ambient circumstances and is at risk of pollution by 
dust, storms, moisture, diseases, and rodents in particular which leads to lower product quality. In 
contrast, the hybrid solar drier provides a quicker, better performing, and cleaner alternative, causing 
lower losses to crop than typical in the open drying in the sunlight. In the sunlight's air-drying process, 
moisture is taken from raw agricultural materials using all three of the modes of heat transmission [10]. 
 
A solar dryer is an efficient method for preserving agricultural products by utilizing solar radiation for 
drying. Various studies have focused on designing and evaluating solar dryers for different agricultural 
commodities. For instance, studies have developed solar dryers with components like solar collectors, 
drying chambers, and fans to enhance drying efficiency [11, 12, 13]. solar dryers offer a sustainable and 
cost-effective solution for post-harvest preservation of agricultural products. 
 
A solar drier has been studied in various kinds of fields, including seaweed. Ibidoja study has 
demonstrated that solar drying technologies are useful in retaining high-quality seaweed biomass for 
food and feed markets [14, 15, 16, 17]. Solar-assisted warmth pump drying systems have been created 
to minimize time to drying, consumption of energy, and drier performance, making them a sustainable 
and energy-saving alternative to traditional drying techniques [18].  
 
The existing problems in dryer/IoT systems issues related to traditional drying, such as limited resources 
leading to the leading to not efficient drying systems. Additionally, challenges like unpredictable weather 
affecting the drying process have been highlighted, prompting the need for cost-effective solutions. 
Furthermore, the impact of high temperatures on the efficiency of solar panels used in solar dryers, 
leading to utilize excess heat for drying purposes while maintaining panel efficiency. Moreover, the 
importance of monitoring and maintaining specific parameters like temperature, humidity, solar radiation, 
and air velocity in dryers to ensure food quality and safety has been emphasized, necessitating real-time 
alerts and control systems in IoT-based dryers [19]. 
 
The Internet of Things (IoT) entails managing numerous parameters and their interplay, resulting in 
substantial complexity in handling big data when recording in a cloud database. In the dryer, 29 sensors 
were strategically placed to gather data on drying parameters. Due to the sheer quantity of sensors, it 
becomes challenging to pinpoint significant variables and construct an effective predictive model [20]. 
Drying processes can benefit significantly from IoT technology, as seen in various studies. IoT-based 
systems allow for real-time monitoring and control of drying parameters like temperature, relative 
humidity, and air velocity, ensuring food quality and safety [21, 22].  Overall, integrating IoT into drying 
processes enhances efficiency, quality control, and automation capabilities.  
 
Dealing with numerous sensor variables is a significant challenge in IoT systems for agriculture [23, 24, 
25]. These systems aim to enhance farm productivity and quality by monitoring various parameters like 
soil pH, humidity, temperature, water salinity, and environmental conditions [26]. Implementing precision 
farming using IoT and IIoT infrastructure involves fusion of multiple sensors to collect critical data for 
decision-making, including monitoring weather variability, automating irrigation, and extracting soil 
properties [27]. Smart farming methods based on IoT offer high precision crop control and automated 
farming techniques, monitoring soil humidity, temperature, and automating irrigation system without 
constant manual intervention. The data obtained from sensors aids in improving cultivation precision, 
optimizing watering, pesticide application, and adjusting environmental variables for optimal plant 
growth. In land or water as mentioned in SDG 13. So, we need to focus more on how to dealt with 
complex variables. 
 
Heterogeneity refers to the quality or state of being diverse or varied. In the context of data, it describes 
a dataset that contains differing elements or characteristics. This could involve variations in data types 
(numerical, categorical, textual), sources (different sensors, surveys, experiments), scales (different units 
of measurement), or distributions (skewness, kurtosis). In complex systems like socio-ecological 
systems, understanding the diverse interactions and feedbacks across time and space is key. Analyzing 
this heterogeneity is essential for sustainability analysis and governance, as it aids in effectively modeling 
non-linearities and system dynamics [28]. The data in this study is continuous data and does not contain 
any missing values. 



 

e-ISSN 2289-599X | DOI: https://doi.org/10.11113/mjfas.v20n6.3564 1346 

Abu Afouna and Majahar Ali | Malaysian Journal of Fundamental and Applied Sciences, Vol. 20 (2024) 1344-1362 

Literature Review 
Anam Javaid et al. (2019a) [29] conducted a study to analyze the impacts of interactions among key 
factors within a drier integrated with an IoT system. The research focused on five variables, including 
one dependent variable—moisture ratio (Y)—and four independent variables: chamber temperature 
(X1), chamber humidity (X2), solar radiation (X3), and collector efficiency (X4). Using multiple regression 
analysis, this research studied interactions until to the third degree, yielding a total of 32 possible models. 
This comprehensive investigation provided valuable insights into the drying process facilitated by solar 
driers, emphasizing the significance of considering intricate interactions among variables. The same 
author in (2019b) [30] examined the influencing factors on collector efficiency in solar driers. Their study 
focused on five variables, including one response variable—collector efficiency (Y)—and four predictor 
variables: time (X1), inlet temperature (X2), collector average temperature (X3), and solar radiation (X4). 
They explored interactions until to the third level across 32 models, comparing the outcomes of two 
regression analyses. In ordinary least squares (OLS) regression, the final model had three individual 
variables and three association variables, whereas with LASSO regression, it included of three individual 
variables and five association factors that contributed to predicting solar drier collector performance. 
However, identified the outlier. 
 
Anam Javaid et al. (2020) [31] undertook a study aimed at selecting the most effective model for 
predicting collector efficiency in solar dryers. They employed a hybrid approach combining LASSO 
(Least Absolute Shrinkage and Selection Operator) and robust regression to address outliers, as robust 
methods are essential for outlier detection and removal. Additionally, Ridge regression was utilized to 
mitigate multicollinearity, although it can be influenced by outliers. The study focused on five variables, 
including collector efficiency (Y) as the response variable, and time (X1), inlet temperature (X2), collector 
average temperature (X3), and solar radiation (X4) as predictor variables. After investigating interactions 
until to the third level among 32 various models, they determined that using LASSO with the Huber M 
estimator generated the most efficiency model compared to other approaches. Consequently, they 
identified significant variables such as time, collector average temperature, solar radiation, the 
association between time and solar radiation, and the association between time, collector average 
temperature, and solar radiation as key determinants for forecasting collector efficiency in solar dryers. 
This model is well-prepared for predicting the collector efficiency of solar dryers and decreasing outlier. 
 
Next, Hui Yin Lim et al. (2020) [32] examined the accurate model selection and prediction of fish drying 
using Ridge regression against OLS. The study focused on six variables, including one response 
variable—fish moisture content (Y)—and five predictor variables: inlet temperature chamber (X1), outlet 
temperature chamber (X2), outlet humidity chamber (X3), inlet humidity chamber (X4), and solar 
radiation (X5). Their findings revealed that Ridge regression was the best way for creating the most 
effective prediction model for fish drying with the V-Groove Hybrid Solar Drier. 
 
Again, Anam Javaid et al. (2021) [33] focused on the efficient selection of models for removing moisture 
ratio from seaweed, utilizing a hybrid approach combining sparse and robust regression analysis. The 
dataset utilized was sourced from a solar drier, with moisture ratio removal (%) serving as the response 
variable. Predictor variables included ambient temperature, chamber temperature, collector temperature, 
chamber relative humidity, ambient relative humidity, and solar radiation. The analysis considered a total 
of 192 models, aiming to identify the significant factors affecting solar drier efficiency and moisture ratio 
removal, including their interaction effects. The hybrid of LASSO and robust regression emerged as an 
effective method for pinpointing these significant factors and interaction terms within the dataset. 
 
In their paper, Mukhtar et al. (2022a) [34] analyze the effect of three distinct machine learning algorithms 
on variable selection: random forest, support vector machine, and boosting. Furthermore, outliers were 
dealt with using M robust regression approaches. Use a set of 1924 data to examine the effects of 29 
different predictor variables on one response variable. The data follows a secondary interaction 
procedure. This dataset includes the effects in 435 different interaction predictor factors on the response 
variable. They showed that the random forest-Hampel's model is the best one to use for food safety and 
sustainable farming. 
 
Mukhtar et al. (2022b) [35] three variable selection strategies were used with regularization methods of 
regression to examine the effect on seaweed drying data. They focused simply on the data's second-
order interaction, which included 435 different predictor interaction factors. Following this analysis, they 
compared the effectiveness of these techniques. Subsequently, they employed robust regression 
methods, including Tukey Bi-Square, Hampel, and Huber, to further evaluate their findings. Their study 
concluded that the Lasso-Hampel method demonstrated reliability in accurately assessing large datasets 
derived from both regularization and robust regression approaches. 
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In 2023 study, Ibidoja et al. [36] using a dataset comprising 435 parameters with 1914 observations 
each. Initially, they used four ML algorithms—random forest, support vector machine, bagging, and 
boosting—to identify relevant parameters, choosing 15, 25, 35, and 45 parameters, respectively. 
Subsequently, they crafted a hybrid model integrating robust methodologies like M. Bi-Square, M. 
Hampel, and M. Huber. Their findings showed that using the hybrid approach to handle impacted 
seaweed large data resulted in a significant reduction in outliers and improved predictive skills. 
Additionally, as the most important variable, which included 45 crucial seaweed drying factors, the 
bagging M. Bi-Square hybrid model outperformed the others. 
 
In their 2023(b) study, Ibidoja et al. [20] initially worked with 29 drying factors, each boasting 1914 data. 
By considering interactions until to the second order, they expanded the variables to 435 from the original 
29. This expansion posed a challenge due to having fewer observations than variables in high-
dimensional data. To solve this, the researchers proposed an approach that uses the variance inflation 
factor to detect heterogeneous parameters. They used seven forecasting models—ridge, random forest, 
support vector machine, bagging, boosting, LASSO, and elastic net—to identify 15, 25, 35, and 45 
relevant drying factors for removing seaweed moisture content. Subsequently, they crafted hybrid 
models incorporating robust statistical techniques. Their findings indicated that for pre-heterogeneity 
analysis, the hybrid model, which combined random forest and M. Hampel, outperformed the other 
models. In post-heterogeneity analysis, the hybrid model mixing boosting and M. Hampel outperformed 
their alternatives. As shown in Table 1. 
 

Table 1. Summary for literature review 
 

# Authors Variables Problems Solving 
1. Anam 

Javaid et 
al., 
(2019a) 

1 response variable 
4 predictor (single) variables 
28 interaction  
Total 32 with interaction 
-temperature chamber (X1), 
humidity chamber (X2) , 
solar radiation (X3) 
collector efficiency (X4) 

 Analysed the impact of interactions 
between primary components. 

 multicollinearity 
 outliers 
 check assumption  

normality  
independent,  
randomness,   
homogeneous 

Using multiple regression 
models 

2. Anam 
Javaid et 
al., 
(2019b) 

1 response variable 
4 predictor (single) variables 
28 interaction  
Total 32 with Interaction 
- time (X1 ) ,inlet temperature 
(X2) ,collector average 
temperature(X3), solar radiation 
(X4) 

 Examined the primary components 
and their interactions impacting 
collector efficiency. 

 multicollinearity 
 
 

Using 8SC for LASSO and 
multiple regression models. 

3. Anam 
Javaid et 
al., (2020) 

1 response variable 
4 predictor (single) variables 
28 interaction  
Total 32 with 
Interaction 
- time (X1 )  
- inlet temperature (X2) 
-collector average temperature 
(X3) 
- solar radiation (X4) 

 Comparison of ordinary least 
squares (OLS) after 
multicollinearity and coefficient 
tests vs ridge regression analysis. 

Using a mix of LASSO and 
robust regression (Huber M 
estimator), and comparing to 
OLS and ridge regression 
analysis 

4. Hui Yin 
Lim 
et al., 
(2020) 

1 response variable moisture 
content of fish: Y) 
5 predictor (single) variables 
75 interaction  
Total 80 models with 
Interaction 
-inlet temperature chamber (X1) 
-outlet temperature chamber 
(X2) 
-outlet humidity chamber (X3) 
-inlet humidity chamber (X4)  
- solar radiation (X5) 

 Determine the most appropriate 
model for predicting the moisture 
content of dried fish. 

 Multicollinearity 
 coefficient test 
 outliers 
 check assumption 

normality, randomness, independent, 
homogeneous 
 

- Using ordinary least squares 
(OLS) regression and ridge 
regression with 8SC for model 
construction 



 

e-ISSN 2289-599X | DOI: https://doi.org/10.11113/mjfas.v20n6.3564 1348 

Abu Afouna and Majahar Ali | Malaysian Journal of Fundamental and Applied Sciences, Vol. 20 (2024) 1344-1362 

# Authors Variables Problems Solving 
5. Anam 

Javaid et 
al., (2021) 

1 response variable 
6 predictor (single) variables 
186 interaction  
Total 192 with 
Interaction 
- ambient temperature( X1 )   
- temperature chamber( X2) 
- collector temperature(X3) 
- chamber relative humidity (X4) 
- ambient relative humidity(X5) 
- solar radiation(X6) 

 examined main factors with their 
interaction terms on the moisture 
ratio removal by considering a 
large data 

 multicollinearity 
 coefficient test 
 outliers 

 

-Using LASSO with robust 
regression (Huber M, Hampel 
M, Bi square M) 
 
- Following the multicollinearity 
and coefficient tests, the 
approaches are compared 
using ridge regression and 
OLS (ordinary least squares). 

6. Mukhtar et 
al.,(2022a) 

1 response variable (moisture: 
Y)) 
29 predictor variables  
Total 435 models with 
Interaction  

 Examining the effectiveness of 
three variable selection strategies 
with machine learning techniques 

 Examine the impact of 435 
independent factors on a single 
dependent variable, selecting 30 
important variables. 

 determine the irrelevant variables 
for big data. 

 determine the outliers for big data 

- Hybrid models incorporate 
machine learning 
methodologies like random 
forest (RF), support vector 
machines (SVM) and boosting 
techniques. 
-M-bi square, M-Hampel, and 
M-Huber are used for robust 
regression. 

7. Mukhtar et 
al.,(2022b) 

1 response variable (moisture: 
Y) 
29 predictor variables  
Total 435 models with 
Interaction 

 Determine the impact of three 
variable selection techniques and 
regularization regression 
algorithms on seaweed drying 
performance. 

 Selecting importance variable (30 
variables)  

 Outliers) 

-Using ML such as (LASSO, 
Elastic net, Ridge) 
-Using robust regression with 
Tukey- Bi Square, Hampel, 
and Huber 

8. Ibidojaa et. 
al., 
(2023a) 

1 response variable (moisture: 
Y) 
29 predictor variables  
Total 435 models with 
Interaction 

Identify significant parameters by 
choosing 15, 25, 35, and 45 
Outliers for big data 

- Using four machine learning 
algorithms: random forest, 
support vector machine, 
bagging, and boosting 
- hybrid model was created 
utilizing strong approaches like 
M. Bi-Square, M. Hampel, and 
M. Huber. 

9. Ibidojaa et. 
al., 
(2023b) 

1 response variable (moisture 
content: Y) 
29 predictor variables  
Total 435 models with 
Interaction 

identify the heterogeneity 
parameters 
Determine the relevant drying 
parameters (15, 25, 35, and 45) for 
before and after heterogeneity. 
outliers for big data before and 
after heterogeneity 

-Using the variance inflation 
factor 
- Using seven models for 
prediction, including ridge, 
random forest, support vector 
machine, bagging, boosting, 
LASSO, and elastic net 
- The hybrid model was 
constructed using robust 
methodologies like M. Bi-
Square, M. Hampel, and M. 
Huber (MM). 

 
 
Most prior studies, as outlined in Table 1, focus on the implementation of a few variables using statistical 
and machine learning methods. Current literature underscores that multicollinearity and outliers continue 
to be significant challenges in big data analysis. Additionally, there is a scarcity of studies investigating 
the effects of interaction variables, particularly within ultra-dimensional contexts. Addressing these 
issues in greater detail is essential for developing accurate prediction models for the drying process. 
Moreover, there is a noticeable research gap concerning the impact of significant variables in high-
ranking datasets, such as those involving 435 factors, especially in the context of seaweed. Furthermore, 
there is a limited body of research dedicated to identifying the most effective prediction models using 
existing frameworks for high-ranking variables. In this work, we attempted to examine the effect of 435 
predictor factors on a one response variable using a dataset of 1924 observations. There are various 
challenges with big data, including irrelevant factors. the research specifically delved into the analysis 
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and comparison of outcomes using three distinct variable selection methods grounded in machine 
learning techniques. Three machine learning algorithms—Ridge, LASSO and Elastic Net regression 
methods are utilized due to their ability to address issues like multicollinearity, overfitting, and model 
complexity [37, 38]. Ridge regression reduces overfitting by applying a penalty equal to the square of 
the size of the coefficients, allowing all predictors to remain in the model [39]. Lasso regression, on the 
other hand, introduces sparsity by shrinking some coefficients to zero, aiding in feature selection and 
model simplification. Elastic Net combines the sparsity of Lasso with the grouping effect of Ridge, offering 
a balance between variable selection and model interpretability [40]. These methods collectively 
enhance prediction accuracy, handle multicollinearity issues, and provide more interpretable models, 
making them valuable tools in various research domains. were applied to identify significant parameters 
considering selections of 50, 100, 150, 200, 250, and 300 variables, both before and after accounting for 
heterogeneity and comparing the effect of three different machine learning techniques for predicting the 
efficient model: mean absolute percentage error (MAPE), mean square error (MSE), sum squares of 
error (SSE), and R-squared (R2). 
 
Data Description 
Data were collected during the drying process of seaweed using a v-Groove Hybrid Solar Drier (v-
GHSD). Key factors examined included temperature, ambient relative humidity, chamber relative 
humidity, and solar radiation. Table 2 presents the 29 primary parameters, each with 1,914 data points. 
Due to time and complexity constraints, the system needs to be simplified by treating each observation 
area as a single parameter. The addition of second-order interactions among the initial 29 parameters 
increased the total number to 435. The optimization process involved identifying the top 50, 100, 150, 
200, 250, and 300 most significant factors. Building on the work of Ibidoja et al. (2023a), who selected 
up to 45 variables, this study will extend the analysis to 50 variables. Additionally, the number of variables 
will be doubled to evaluate the impact of adding another 50 variables to the models, thus selecting 100, 
150, 200, 250, and 300 variables. 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1. v-GHSD simulation diagram [41] 
 
 

Figure 1 provides additional details on the drying parameters. Some parameters are missing and are not 
in sequential order due to measurement errors in the sensors used for data collection. The dataset in 
this study comprises 1914 data points, featuring 29 predictor variables and one response variable. 
Interaction effects among various factors are explored, such as T2*T5 representing the interaction 
between T2 and T5. The dataset encompasses main effects of 29 variables along with interaction effects 
of 406 variables, all contributing to the determination of the moisture content represented by the 
dependent variable Y. In total, there are 435 predictor variable models that influence the moisture content 
Y. 
 
Materials and Methods 
 
Three machine learning algorithms—Ridge, LASSO, and Elastic Net— were used to identify important 
features. The study involved selecting subsets of 50, 100, 150, 200, 250, and 300 variables, both before 
and after adjusting for heterogeneity. The primary goal was to compare the effectiveness of these 
algorithms in forecasting the most efficient model. The procedure and methodology followed in this 
investigation are outlined in the flowchart depicted in Figure 2. 
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Figure 2. Methodology of the flowchart 
 
 
Figure 2 presents the flowchart outlining the study's progression. The dataset, consisting of 1914 
observations and 29 features, underwent first-order interactions, resulting in 435 distinct features for the 
dependent variable. The methodology begins by collecting data from the v-Groove Hybrid Solar Drier, 
incorporating various critical parameters for analysis. The next step involves assessing the heterogeneity 
of the data using several techniques: The Variance Inflation Factor (VIF) to identify multicollinearity, the 
coefficient of determination (R²) to assess model fit, and boxplots to visualize data distribution and detect 
potential outliers. To address multicollinearity and perform variable selection, sparse regression 
techniques such as Ridge, LASSO, and Elastic Net are employed. Ridge regression is particularly useful 
when multicollinearity is present, as it adds a penalty equal to the square of the coefficients’ magnitude 
to the loss function. LASSO (Least Absolute Shrinkage and Selection Operator) introduces a penalty 
based on the absolute value of the coefficients' magnitude, which helps in variable selection. Elastic Net 
combines the penalties from both Ridge and LASSO to manage multicollinearity and variable selection 
effectively with dealing high ranking variable. Following this, the process involves selecting variables 
based on predefined thresholds (50, 100, 150, 200, 250, 300), ensuring that only the most significant 
variables are included in the model. The model’s performance is then evaluated using validation metrics 
such as Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), R², and Sum of Squared 
Errors (SSE). These metrics are crucial for assessing the model’s accuracy before and after adjustments 
for heterogeneity. Once refined, the model’s performance is monitored over time using a control run 
chart with two and three sigma limits, ensuring stability and consistency within acceptable control 
boundaries. Finally, the best-performing model is selected based on its performance in the optimized 
control run chart, resulting in a model that is both accurate and reliable for predicting outcomes in the v-
Groove Hybrid Solar Drier system. The study’s impact could be substantial, offering significant 
improvements in the reliability, efficiency and accuracy of precision farming in high-ranking variables. By 
tackling critical issues like environmental dependency, analytical complexity, and errors in prediction 
models, the research has the potential to deliver valuable insights and practical solutions. These 
advancements could drive the evolution of precision farming, leading to more sustainable and productive 
agricultural practices that benefit both farmers and the wider agricultural sector. In the context of Ridge, 
Lasso and elastic net regression, the focus is on predicting continuous values rather than classifying 
instances into discrete categories. Thus, classification metrics like ROC, AUC, and F1 scores are not 
suitable for evaluating regression models. Instead, metrics tailored for regression are used to assess the 
accuracy and performance of the model in predicting continuous outcomes. 
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Multiple Linear Regression  
Consider a multiple regression model: 
 
                                                          𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝜀𝜀                                                   (1)  
 
where 𝑦𝑦 is a n × 1 vector of response variables, 𝑋𝑋 is known as the design matrix of order n × p, 𝛽𝛽 is a 
𝑝𝑝 × 1 vector of unknown parameters and 𝜀𝜀 is a n × 1 vector of identically and independent distributed 
errors. The Ordinary Least Squares (OLS) is popularly used to estimate the unknown parameters in a 
regression model. According to [42, 43] the ordinary least squares (OLS) estimator of 𝛽𝛽 is obtained as 
follows: 
 
By minimizing 𝜀𝜀𝜀𝜀′ = (𝑦𝑦 − 𝑋𝑋𝑋𝑋)′(𝑦𝑦 − 𝑋𝑋𝑋𝑋) =𝑦𝑦′𝑦𝑦 − 2𝛽𝛽′𝑋𝑋′𝑦𝑦 + 𝛽𝛽′𝑋𝑋′𝑋𝑋𝑋𝑋 

𝛿𝛿( 𝜀𝜀𝜀𝜀′)
𝛿𝛿𝛿𝛿 = −2𝑋𝑋′𝑦𝑦 + 2𝑋𝑋′𝑋𝑋𝑋𝑋 = 0 

𝑋𝑋′𝑋𝑋𝑋𝑋 = 𝑋𝑋′𝑦𝑦 
                                                               𝛽̂𝛽 = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑦𝑦               (2) 
 
Heterogeneity Identification and Variance Inflation Factor (VIF) 
Heterogeneity refers to the variation of observations. The variability lead to incompatible forecasts and 
affects results [44]. Consider multiple linear regression (MLR):    
 
                       𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑖𝑖,1 + 𝛽𝛽2𝑇𝑇𝑖𝑖,2 + ⋯+ 𝑎𝑎𝑗𝑗 + 𝜀𝜀𝑖𝑖                                            (3)  
 
where 𝑌𝑌𝑖𝑖, 𝑖𝑖 = 1, 2, … ,𝑛𝑛 is the response value for the 𝑖𝑖th case moisture content, estimates 𝛽𝛽′𝑠𝑠 are the 
regression coefficients for the predictor variables (drying parameter ) 𝑇𝑇′𝑠𝑠, 𝑎𝑎𝑗𝑗 denote heterogeneity, for 
𝑗𝑗 = 1, 2, … , 𝑓𝑓. That is, the parameters that exhibit heterogeneity and 𝜀𝜀 is the random error. In the equation 
above, if the estimates of the regression equation are computed and a crucial variable is omitted, then 
the estimate 𝛽𝛽 will be biased and inconsistent. It is also possible that some variables are correlated with 
the error term, which violates the assumption of regression. According to [45] the variance inflation factor 
in multiple regression is used to quantify the level of severity. The coefficient of determination can be 
written as  𝑅𝑅2 = 1 − 1

𝑉𝑉𝑉𝑉𝑉𝑉
 .If the R2 satisfied certain conditions, then the parameter is said to exhibit 

heterogeneity. [45] stated that variance inflation factor in multiple regression is used to quantify the level 
of severity. It can be computed with 𝑅𝑅𝑙𝑙2 where 𝑅𝑅𝑙𝑙2 for 𝑙𝑙 = 1,2, … , 𝑝𝑝 denote the quantity of determination 
between the 𝑙𝑙𝑡𝑡ℎ variable 𝑥𝑥𝑙𝑙 in the predictors matrix and the variables not related to it.  
 

Let 𝑿𝑿∗ =

⎣
⎢
⎢
⎡
1 𝑋𝑋11 … 𝑋𝑋1,𝑝𝑝−1
1 𝑋𝑋21 ⋯ 𝑋𝑋2,𝑝𝑝−1
⋮ ⋮ ⋮ ⋮
1 𝑋𝑋𝑛𝑛1 ⋯ 𝑋𝑋𝑛𝑛,𝑝𝑝−1⎦

⎥
⎥
⎤
 . We can define 𝑿𝑿∗′𝑿𝑿∗ = �𝑛𝑛 0′

0 𝑟𝑟𝑋𝑋𝑋𝑋
� ,So that  𝑟𝑟𝑥𝑥𝑥𝑥 will be the correlation matrix 

representing the 𝑿𝑿 variables. Since 
 

 𝜎𝜎2�𝛽̂𝛽� = 𝜎𝜎2(𝑿𝑿∗′𝑿𝑿∗)−1 = 𝜎𝜎2 �
1
𝑛𝑛

0′

0 𝑟𝑟𝑋𝑋𝑋𝑋−1
�. The 𝑉𝑉𝑉𝑉𝑉𝑉𝑙𝑙 for 𝑙𝑙 = 1,2,3, … , 𝑝𝑝 − 1 stands for the 𝑙𝑙𝑡𝑡ℎ   diagonal element 

of  𝑟𝑟𝑿𝑿𝑿𝑿−1. If we can show the proof for  𝑙𝑙 = 1, then the rows and columns  𝑟𝑟𝑿𝑿𝑿𝑿 can be permutated to obtain 
the result for the remaining 𝑙𝑙. 
 

Let  𝑿𝑿(−1) =

⎣
⎢
⎢
⎡
𝑋𝑋12 ⋯ 𝑋𝑋1,𝑝𝑝−1
𝑋𝑋22 ⋯ 𝑋𝑋2,𝑝𝑝−1
⋮ ⋮ ⋮
𝑋𝑋𝑛𝑛2 ⋯ 𝑋𝑋𝑛𝑛,ℎ−1⎦

⎥
⎥
⎤
, 𝑋𝑋1 = �

𝑋𝑋11
𝑋𝑋21
⋮
𝑋𝑋𝑛𝑛1

�. By applying Schur’s complement,   𝑟𝑟𝑋𝑋𝑋𝑋−1(1,1) = �𝑟𝑟11 −

𝑟𝑟1𝑋𝑋(−1)𝑟𝑟𝑋𝑋(−1)𝑋𝑋(−1)
−1 𝑟𝑟𝑋𝑋(−1)1�

−1
   = �𝑟𝑟11 − �𝑟𝑟1𝑋𝑋(−1)𝑟𝑟𝑋𝑋(−1)𝑋𝑋(−1)

−1 � 𝑟𝑟𝑋𝑋(−1)𝑋𝑋(−1) �𝑟𝑟𝑋𝑋(−1)𝑋𝑋(−1)
−1 𝑟𝑟𝑋𝑋(−1)1��

−1
 = �1 −

𝛽𝛽1𝑋𝑋(−1)
′ 𝑋𝑋(−1)

′ 𝑋𝑋(−1)𝛽𝛽1𝑋𝑋(−1)�
−1

,where 𝛽𝛽1𝑋𝑋(−1) means the regression coefficient of 𝑋𝑋1 on 𝑋𝑋2, … ,𝑋𝑋𝑝𝑝−1 except the 

intercept. For clarity, 𝑅𝑅12 and 𝑉𝑉𝑉𝑉𝑉𝑉1 can be written as 𝑅𝑅12 = 𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

=
𝛽𝛽1𝑋𝑋(−1)
′ 𝑋𝑋(−1)

′ 𝑋𝑋(−1)𝛽𝛽1𝑋𝑋(−1)

1
= 𝛽𝛽1𝑋𝑋(−1)

′ 𝑋𝑋(−1)𝛽𝛽1𝑋𝑋(−1) 
and 𝑉𝑉𝑉𝑉𝑉𝑉1 = 𝑟𝑟𝑋𝑋𝑋𝑋−1(1,1) = 1

1−𝑅𝑅12
 . 
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Ridge Regression 
In Equation 2, if the explanatory variables are nearly dependent, the matrix 𝑋𝑋′𝑋𝑋 becomes ill conditioned. 
The ridge parameter 𝑘𝑘 is important to manage the bias towards the mean of the dependent variable[46]. 
The standard errors are reduced and variance of the estimated parameters are reduced [47]. According 
to [47], suppose 𝑌𝑌 be the response vector and 𝑋𝑋 predictor matrix, the ridge regression coefficient can be 
given by : 
 
                                                    𝛽̂𝛽(𝐾𝐾) = (𝑋𝑋′𝑋𝑋𝑋𝑋𝑋𝑋)−1𝑋𝑋′𝑌𝑌                                                           (4) 
 
where 𝑘𝑘 denote the ridge parametr and I is the identity matrix. If 𝑘𝑘 = 0, the estimate is (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑌𝑌 and 
if 𝑘𝑘 = 1, 𝛽̂𝛽(𝑘𝑘) = 0. If we chose little positive values for 𝑘𝑘 , it will improve the problem of conditioning and 
the variance of the estimates are reduced. The quantity of the shrinkage depends on 𝑘𝑘, it is the ridge 
penalty. If chose large values for 𝑘𝑘, it means more shrinkage. This means we are going to have different 
coefficient estimates for different values of 𝑘𝑘. One of the challenges in using the ridge regression is how 
to choose the value of 𝑘𝑘. Many authors have proposed how to select value for 𝑘𝑘 in the literature. See for 
instance [48, 49, 50, 51, 52, 53, 54]; stated that a graphic can be used and called it the ridge trace. The 
plot may show the ridge coefficients to be a function of 𝑘𝑘. During the inspection of the ridge trace, 𝑘𝑘 is 
chosen and the regression coefficients have a satisfactory magnitude, stability and sign, also the mean 
squared error (MSE) is not clearly inflated. Furthermore, 
 
                                                                            𝐾𝐾� = 𝜎𝜎�2

𝛽𝛽�𝑚𝑚𝑚𝑚𝑚𝑚
2                                                   (5) 

 
The value of 𝑘𝑘 selected is small enough, where the mean squared error of ridge estimator, is smaller 
than the mean squared error of OLS estimator. 
                     

                           𝜎𝜎�2 = �𝑌𝑌−𝑋𝑋𝛽𝛽��
′
�𝑌𝑌−𝑋𝑋𝛽𝛽��

𝑛𝑛−𝑝𝑝−1
      (Hoerl & Kennard, 1970)               (6) 

 
LASSO Regression 
LASSO  combines shrinkage and variable selection[55] and [56]. It can shrink the coefficients towards 0 
when λ increases. Similarly, many coefficients shrink to exact value 0 when λ is sufficiently big. However, 
shrinkage improves the forecast accuracy because of bias variance tarde off. Though LASSO is a good 
method for achieving optimal prediction and consistent variable selection [57]. Let assume that we have 
data 𝑋𝑋𝑖𝑖 = �𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑖𝑖�

𝑇𝑇 , 𝑖𝑖 = 1,2,3, … ,𝑛𝑛 are the explanatory variables and 𝑦𝑦𝑖𝑖 are the dependent 
variables. The assumption is that the observations are independent or the conditionality independent of 
𝑦𝑦𝑖𝑖𝑠𝑠 given the 𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠. Also, 𝑥𝑥𝑖𝑖𝑖𝑖 is assumed to be standardised so that  
 
                                                   ∑ xiji

n
= 0,∑ xij2 = 1i , i = 1,2,3, … , n                                      (7) 

                               β�(LASSO) =argmin�y −∑ xjβj
p
j=1 �

2
+ λ∑ �βj�

p
j=1                                  (8) 

 
where λ  is a regularization parameter that is positive,the l1 is the second part which is important for the 
LASSO [58]. 
 
Elastic Net Regression 
Let 𝑝𝑝 be the covariates with 𝑛𝑛 observations. If  𝑦𝑦 = �𝑥𝑥1𝑗𝑗 , 𝑥𝑥2𝑗𝑗 , … , 𝑥𝑥𝑛𝑛𝑛𝑛�

𝑇𝑇be dependent variables and the 

matrix of the model 𝑋𝑋 = �𝑋𝑋1⃒…⃒𝑋𝑋𝑝𝑝�, 𝑥𝑥𝑗𝑗 = �𝑥𝑥1𝑗𝑗 , 𝑥𝑥2𝑗𝑗 , … , 𝑥𝑥𝑛𝑛𝑛𝑛�
𝑇𝑇, 𝑗𝑗 = 1,2, … , 𝑓𝑓 are the independent variables. 

The assumption is that the dependent varaiable is centred. According to [59], the Elastic Net is explained 
as follows: 
 
∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = 0𝑛𝑛
𝑖𝑖=1  , ∑ 𝑦𝑦𝑖𝑖 = 0𝑛𝑛

𝑖𝑖=1  and ∑ 𝑥𝑥𝑖𝑖𝑖𝑖2 = 1𝑛𝑛
𝑖𝑖=1 , for 𝑗𝑗 = 1,2,3, … , 𝑝𝑝  .If 𝜆𝜆1 and 𝜆𝜆2 are fixed and positive, the 

Elastic Net criterion is given as 
  
                                                     𝐿𝐿(𝜆𝜆1, 𝜆𝜆2,𝛽𝛽) = ‖𝑦𝑦 − 𝑋𝑋𝑋𝑋‖2 + 𝜆𝜆1‖𝛽𝛽‖1 + 𝜆𝜆2‖𝛽𝛽‖2                          (9) 
 
Where ‖𝛽𝛽‖1 = ∑ �𝛽𝛽𝑗𝑗�

𝑝𝑝
𝑗𝑗=1  and ‖𝛽𝛽‖2 = ∑ 𝛽𝛽𝑗𝑗2

𝑝𝑝
𝑗𝑗=1 . 
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The estimator  𝛽̂𝛽 for the Elastic Net minimized the equation 
 
                                                                         𝛽̂𝛽 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

𝛽𝛽
{𝐿𝐿(𝜆𝜆1, 𝜆𝜆2,𝛽𝛽)}                                     (10) 

 
The method used here is the penalised least square method. If  𝜆𝜆2

𝜆𝜆1+𝜆𝜆2
=  𝛼𝛼, 𝛽̂𝛽 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

𝛽𝛽
‖𝑦𝑦 − 𝑋𝑋𝑋𝑋‖2. This 

is the same with the problem of optimization 𝛽̂𝛽 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝛽𝛽
‖𝑦𝑦 − 𝑋𝑋𝑋𝑋‖2, subject to 𝛼𝛼‖𝛽𝛽‖2+ (1 − 𝛼𝛼)‖𝛽𝛽‖1 ≤ 𝑡𝑡 

for some 𝑡𝑡. 𝛼𝛼‖𝛽𝛽‖2+ (1 − 𝛼𝛼)‖𝛽𝛽‖1 is the Elastic Net penalty  and it combines LASSO and Ridge. 
 
Control Limit  
Control limits are crucial components of statistical process control (SPC) charts, serving as akin to traffic 
lanes that indicate whether a process is stable and predictable. Control charts apply control limits to 
assist determine whether a process has dramatically altered or to isolate an unexpected occurrence. 
Because control limits are calculated from data, you won't know what they are until you've collected a 
representative set of data. A control chart always has the following types of lines, which are determined 
from previous data. 
 
1) A central line (CL) is a horizontal graphical line that represents the mean or median of process 

measurements.  
2) The upper control limit (UCL) is shown by a horizontal red line above the process average. Generally 

thought to be three times the standard variation of process measurements. 
3) Lower line (LCL) is the lower control limit. This is shown as a horizontal red line below the process 

average. Generally thought to be three times the standard variation of process measurements. 
’These control limits, determined from historical data, aid in identifying significant process changes 
or unusual events, enabling effective monitoring and improvement efforts [60]. 

 
Evaluation Metric 
Evaluation metrics are critical in measuring the performance of machine learning models in regression 
analysis. These metrics, including Mean Absolute Percentage Error (MAPE), Mean Squared Error 
(MSE), Sum Squares of Error (SSE), and Coefficient of Determination (R2), have been specifically 
developed for this purpose. Leveraging the R package 'metric' provides a comprehensive toolkit for 
evaluating prediction performance in regression models, which in turn streamlines model validation and 
assessment processes. These metrics are indispensable for ensuring the reproducibility and 
predictability of regression algorithms. Further elaboration on the benefits of each error metric is provided 
in their respective sections below. 
 
Mean Absolute Percentage Error 
The Mean Absolute Percentage Error (MAPE) is a significant metric of accurate predictions in a variety 
of industries, including agricultural forecasting. MAPE is calculated by considering the absolute 
percentage difference between predicted and actual values, making it a useful tool for evaluating the 
precision of forecasting methods [61]. The formula for MAPE is: 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛��

𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖
𝑌𝑌𝑖𝑖

� ∗ 100
𝑛𝑛

𝑖𝑖=1

 

 
Where, 
𝑌𝑌𝑖𝑖 is the actual value for observation 𝑖𝑖 
𝑌𝑌�𝑖𝑖 is the predicted (estimated) value for observation 𝑖𝑖  
𝑛𝑛 is the total number of observations 
 
Mean Squared Error 
The MSK evaluation metric, while not a widely recognized acronym, might refer to a specific context or 
could be related to the well-known Mean Squared Error (MSE), a common metric used to assess the 
performance of predictive models. In the realm of statistical analysis, the Dynamic Linear Model (DLM) 
method plays a crucial role, especially in time series analysis. DLMs are valuable because they allow 
model parameters to change over time, making them particularly useful for analysing data in dynamic 
environments where underlying processes evolve, such as in financial modelling or precision farming. 
By continuously updating predictions with new data, DLMs provide adaptive and accurate insights, 
helping to refine decision-making processes.in this study, using Mean Squared Error (MSE) is a crucial 
metric in statistical analysis, reflecting both the bias (accuracy) and variance (precision) of an estimator 
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[62]. It calculates the average squared difference between the estimated values and the actual values of 
a parameter, providing a measure of how close the estimator is to the actual value [63, 64]. MSE is 
particularly valuable in regression analysis, where it helps compare the accuracy of different estimators.  
Furthermore, in image quality assessment, MSE serves as a reliable indicator when comparing images 
with similar bias/variance ratios. The formula for MSE is: 
 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛  
 
where, 
𝑌𝑌𝑖𝑖 is the actual value for observation 𝑖𝑖 
𝑌𝑌�𝑖𝑖 is the predicted (estimated) value for observation 𝑖𝑖  
𝑛𝑛 is the total number of observations 
 
Sum Squares of Error 
The Sum Squares of Error (SSE) is a crucial metric utilized in various fields like optimization and 
clustering to evaluate the accuracy of models or algorithms [65, 66]. Additionally, SSE plays a pivotal 
role in assessing errors, optimizing models, and enhancing the accuracy of various analytical processes. 
SSE simply sums up the squares of the errors between the predicted and actual values. The formula for 
SSE is: 

𝑆𝑆𝑆𝑆𝑆𝑆 = �(𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 

 
Where, 
𝑌𝑌𝑖𝑖 is the actual value for observation 𝑖𝑖 
𝑌𝑌�𝑖𝑖 is the predicted (estimated) value for observation 𝑖𝑖  
𝑛𝑛 is the total number of observations 
 
Coefficient of Determination 
The Coefficient of Determination, often known as R2, is a statistical metric that quantifies the proportion 
of the variation in a response variable that is foreseeable from the predictor variables in a regression 
model. Simply put, it shows how well the predictor factors explain the variability of the response variable 
[67]. The formula for R2 is: 

R2 = 1 −
∑ �𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1

∑ �𝑌𝑌�𝑖𝑖 − 𝑌𝑌��2𝑛𝑛
𝑖𝑖=1

 

 
Where, 
𝑌𝑌𝑖𝑖 is the actual value for observation 𝑖𝑖 
𝑌𝑌� is the mean value for observation 𝑖𝑖 
𝑌𝑌�𝑖𝑖 is the predicted (estimated) value for observation 𝑖𝑖  
𝑛𝑛 is the total number of observations 
 
R2 varies from 0 to 1. A score closer to 1 implies that the predictor variables account for a greater share 
of the variation in the response variable, implying that the model fits the data better. In contrast, a score 
closer to 0 indicates that the predictor factors do not explain much of the variance in the response 
variable. 
 
Percentage Change 
Percentage change is a metric that expresses the difference between two variables as a percentage of 
one of them. It's calculated using the formula: 
 
Percentage Change (%) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
∗ 100% 

 
This formula gives you the percentage increase or decrease from the old value to the new value. If the 
result is positive, it indicates an increase, while a negative result indicates a decrease [68]. 
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Results and Discussion 
 

Based on the findings presented in Table 3, the variables T6, T7,T8, T11, H1, H5 and PY are 
heterogeneity. The variation inflation factor (VIF) values are increased, with the largest value at 
75,337.29. It demonstrates the high amount of multicollinearity [30]. 
 
Figure 3 represent a box-and-whisker plot, A box-and-whisker plot, also known as a five-number 
summary, including the Minimum, First quartile (Q1), Second quartile (Q2), Third quartile (Q3) and 
Maximum values and whisker line, a visual representation used in statistical analysis to display key 
characteristics of a dataset [69, 70]. It provides insights into central tendency, dispersion, asymmetry, 
and extremes of the data, making it valuable for exploring distributions without assuming normality [71]. 
Box-and-whisker plots are particularly useful in identifying outliers, which can significantly impact 
forecasting accuracy [72]. They offer a practical way to introduce to statistical concepts, encouraging 
exploration and understanding of data properties like medians and means [73]. In educational settings, 
box-and-whisker plots are essential for teaching how to organize and interpret data effectively, 
connecting concepts of centre, spread, outliers, skewness, and measures of dispersion. 
 
Figure 3 displays the distribution of 29 variables before the removal of heterogeneity parameters, 
enabling an assessment of the widest range among variables and the identification of those with 
significant outliers. Notably, variables H1, H5, T11, and T7 demonstrate the highest number of outliers. 
Furthermore, in variable PY, the whiskers extending from the box signify variability beyond the upper 
and lower quartiles, indicating heterogeneity. This suggests that H1, H5, T11, T7, and PY are all affected 
by heterogeneity parameters, thereby impacting forecasting accuracy. 
In Figure 4, the distribution of 22 variables is presented after the removal of heterogeneity parameters. 
It appears that all variables demonstrate statistical significance after this adjustment. Additionally, the 
distribution in the box-and-whisker plots is observed to be positively skewed due to the shorter whisker 
towards the lower end (skewed right). 
 

 
 

Figure 3. Box-and-whisker plot for 29 predictor variables before remove heterogeneity variables 
 

 
Table 2. Heterogeneity variables 

 
Smallest 

VIF 
Largest 

VIF 
Smallest      
     R2 

  Largest  
       R2 

        90% CI Heterogeneity Variables 

3.067297 75337.29 0.67398 0.999987      [0.786375,0.8875918]   T6, T7, T8, T11, H1, H5 , PY 
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Figure 4. Box-and-whisker plot for 22 predictor variables after remove heterogeneity variables 
 
 
Table 3. Evaluation metrics for the 50, 100, 150, 200, 250 and 300 high-ranking variables for before and after heterogeneity model 

     
ML High  

Ranking 
variables 

Before heterogeneity After heterogeneity  
Percentage 

change 
% 

MAPE MSE SSE R2 MAPE MSE SSE R2  

Ridge 50 9.45909 41.5978 79618.2 0.847945 10.0197 45.1986 86510.2 0.834783 -14% 
100 8.30465 33.3634 63857.6 0.878044 8.99888 37.8396 72425.0 0.861682 -10% 
150 7.89390 30.6079 58583.6 0.888117 8.51171 34.4437 65925.2 0.874096 -10% 
200 7.67288 29.1636 55819.2 0.893396 8.19289 31.9777 61205.4 0.883110 -10% 
250 7.62552 28.7248 54979.3 0.895000 8.16304 31.6841 60643.4 0.884183 -9% 

300 7.06351 25.8776 49529.7 0.905408 7.01913 25.7288 49245.0 0.905952 -10% 
LASSO 50 8.95830 38.8604 74378.9 0.857951 8.93358 38.5744 73831.5 0.858996 -14% 

100 8.82383 37.7268 72209.0 0.862095 8.81149 37.6604 72082.1 0.862337 -14% 

150 8.34749 34.2659 65584.9 0.874746 8.37318 34.2922 65635.4 0.874649 -13% 

200 8.33922 33.7814 64657.7 0.876517 8.32850 33.7935 64680.9 0.876472 -12% 
250 8.30830 33.5502 64215.2 0.877362 8.30903 33.6824 64468.2 0.876878 -12% 

300 8.27855 33.1606 63469.4 0.878786 8.23513 33.0172 63195.0 0.879310 -12% 
Elastic 

Net 
50 9.21914 41.1365 78735.3 0.849631 9.39125 42.8362 81988.6 0.843418 -14% 

100 8.90806 38.2638 73237.0 0.860132 8.75290 37.3240 71438.2 0.863567 -14% 
150 8.40840 34.4483 65934.1 0.874079 8.38454 34.3626 65770.0 0.874392 -13% 
200 8.37494 34.3496 65745.1 0.874440 8.34541 34.2235 65503.7 0.874901 -13% 
250 8.28678 33.6327 64373.0 0.877060 8.28987 33.7577 64612.2 0.876603 -12% 
300 8.23751 33.1948 63534.8 0.878661 8.25215 33.4058 63938.7 0.877890 -12% 

 
 
Table 3 provides a summary of the predictive performance of regression algorithms, evaluated 
quantitatively before and after considering heterogeneity. The evaluation metrics include Mean Absolute 
Percentage Error (MAPE), Mean Square Error (MSE), Sum Squares of Error (SSE), and Coefficient of 
Determination (R2). The results are presented for different numbers of high-ranking variables: 50, 100, 
150, 200, 250, and 300. 
 
Before heterogeneity, the Ridge model exhibited decreasing values of MAPE, MSE, and SSE as the 
number of high-ranking variables increased. For instance, for 50 highest ranking variables, the MAPE 
was 9.459094 and the MSE was 41.59782, while for 300 highest ranking variables, the MAPE reduced 
to 7.063511 and the MSE decreased to 25.8776. Similarly, the LASSO and Elastic Net models also 
displayed decreasing trends in MAPE, MSE, and SSE with increasing numbers of high-ranking variables 
before heterogeneity.  
 
After heterogeneity, similar decreasing trends were observed in MAPE, MSE, and SSE for all models 
across different numbers of high-ranking variables. For example, in the Ridge model, after addressing 
heterogeneity, the MAPE decreased from 10.0197 for 50 highest ranking variables to 7.01913 for 300 
highest ranking variables. The same decreasing trends in MAPE, MSE, and SSE were observed in the 
LASSO and Elastic Net models after heterogeneity across varying numbers of high-ranking variables. 
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Before heterogeneity, the 300 high-ranking variables showed that the Ridge model had an R2 value of 
0.905408, Displaying 90.54% of the variance in the response variable was explained by the predictor 
variables. The LASSO model had an R2 value of 0.878786, suggesting that 87.88% of the variance could 
be explained, while the Elastic Net model had an R2 of 0.878661, explaining 87.87% of the variance. 
After heterogeneity, the Ridge model exhibited an improved R2 value of 0.905952, explaining 90.60% of 
the variance. The LASSO model also saw a slight increase to an R2 of 0.879310, explaining 87.93% of 
the variance, whereas the Elastic Net model showed a decrease to an R2 of 0.877890, explaining 87.79% 
of the variance. Comparing these models, the Ridge model, post-heterogeneity, emerges as the best-
performing one due to its highest R2 value. This indicates that the Ridge model provides more significant 
results compared to the others. 
 
The 300 high-ranking variables show a percentage change of -10% for Ridge, indicating a decrease of 
10% before and after heterogeneity. Conversely, both LASSO and Elastic Net exhibit a percentage 
change of -12%, signifying a 12% decrease before and after heterogeneity. In comparison, Ridge stands 
out as the most significant, showcasing its superiority in performance. In statistical modelling, a smaller 
percentage change suggests that the model's performance is more stable and less affected by changes 
in conditions or variables. Therefore, Ridge appears to be more robust and reliable in maintaining its 
effectiveness across different conditions or scenarios. This interpretation suggests that Ridge may offer 
more consistent and dependable results compared to LASSO and Elastic Net in the context of this 
analysis. 
 
In summary, by comparing the measure validation for after and before heterogeneity, the ridge is a good 
comparison among between LASSO and elastic net. The findings of various researchers [25, 
74,75,76,77,78,79, 80] support the notion that Ridge regression stands out when compared to Lasso 
and Elastic Net. It demonstrates efficiency, particularly with larger sample sizes, although it differs from 
Lasso in its inability to shrink coefficients to zero. Ridge is favoured for its adeptness in handling 
multicollinearity while preserving model simplicity. By introducing a penalty term that reduces coefficients 
without eliminating them entirely, Ridge effectively manages multicollinearity. Moreover, it exhibits 
stability in variable selection, especially in high-dimensional datasets marked by collinearity. Notably, 
Ridge outperforms Lasso and Elastic Net in forecasting the moisture content of fish and analysing factors 
influencing fiscal revenue, attributed to its superior goodness of fit, smaller error rates, and enhanced 
model performance. Its reliance on L2 norm penalization proves beneficial in managing multicollinearity 
in complex, high-dimensional settings. Overall, Ridge's ability to handle multicollinearity without reducing 
coefficients to zero makes it advantageous over Lasso and Elastic Net in various analytical contexts. 
 

 
 
Figure 5. Comparison of standardized residuals for the top 300 variables ranked by Ridge before and after accounting for 
heterogeneity 
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Figure 6. Comparison of standardized residuals for the top 300 variables ranked by LASSO before and after accounting for 
heterogeneity 
 
 

 
 
Figure 7. Comparison of standardized residuals for the top 300 variables ranked by elastic net before and after accounting for 
heterogeneity 
 
 

Figures 5, 6, and 7 show standardized residuals plots for Ridge, LASSO, and elastic net before and 
after heterogeneity. Outliers outside of the 3-sigma limit can be noticed. UCL and LCL are the 
upper  -  and lower -class limits of 3 sigma and -3 sigma, respectively.  
 
Figure 5 presents residual plots that demonstrate the impact of addressing heterogeneity in a ridge 
regression model for the 300 highest-ranking variables. Before heterogeneity, the residuals exhibit 
a wider spread with many points fallings outside the control limits, indicating potential outliers and 
a lack of model fit. After heterogeneity, the spread of residuals appears more compact, suggesting 
an improvement in the model's performance. However, some residuals still exceed the control limits, 
and residual patterns persist, implying that while the adjustment has led to some improvements, 
further refinement or alternative modeling techniques may be necessary to fully resolve the 
underlying issues. 
 
Figure 6 displays the residual plots comparing the LASSO regression model's performance before 
and after addressing heterogeneity, focusing on the 300 highest-ranking variables. Initially, for 
before heterogeneity, the residuals are widely dispersed, with many points fallings outside the 
control limits, suggesting potential outliers and inadequate model fit. After heterogeneity, the 
residuals are more tightly clustered around the zero line, indicating improved model accuracy. 
Despite this improvement, some residuals still exceed the control limits, and persistent patterns 
suggest that while the adjustment has enhanced the model, further refinement or alternative 
techniques may be needed to fully address these issues. Figure 7 shows residual plots for 300 
highest-ranking variables using elastic net regression before and after heterogeneity. Both plots 
display the residuals scattered around zero, with the upper and lower control limits (UCL and LCL) 
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indicated by red lines. The residuals appear more dispersed before addressing heterogeneity, with 
several points outside the control limits. After accounting for heterogeneity, the residuals are more 
tightly clustered within the control limits, suggesting that the model fit improved by accounting for 
heterogeneity, resulting in a reduction in unexplained variability.  
 
All three regularization methods—LASSO, Ridge, and Elastic Net—show improvements in model 
performance after addressing heterogeneity, as evidenced by tighter clustering of residuals within 
the control limits (UCL and LCL). Before heterogeneity, the residuals for all methods were widely 
scattered, with several points exceeding the control limits, indicating that the models did not fully 
capture the data's variability. After heterogeneity, the residuals are more contained within the control 
limits, suggesting a better model fit. The reduction in residual spread is noticeable across all 
methods, with Elastic Net and LASSO showing particularly strong improvements. Ridge regression, 
while improved, still exhibits a few more outliers compared to the others, hinting that it might be 
slightly less effective in this scenario. Overall, addressing heterogeneity leads to better residual 
behavior and enhances model accuracy across all three techniques. 
 
Conclusions 
 
This study explores the variability in drying parameters and introduces a heterogeneity model within 
machine learning algorithms to enhance the accuracy of moisture content prediction. Ridge regression, 
LASSO, and Elastic Net were utilized for variable selection, and the performance of these predictive 
models was assessed using metrics like MSE, SSE, MAPE, and R-squared. The results show that the 
Ridge model outperforms the other models in predictive accuracy, both before and after accounting for 
heterogeneity. Future research should consider exploring additional machine learning algorithms, such 
as support vector machines, bagging, boosting, and random forests, for variable selection. These 
approaches could be used to analyse the effects of heterogeneity before and after adjusting for 
heterogeneity parameters. Furthermore, since this study did not address outliers, robust regression 
techniques such as M Huber, M Hampel, M Bi-Square, MM, and S estimators should be considered to 
manage this issue effectively. The developed model could also be applied to various fields, including 
medicine, engineering, and agriculture. 
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