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Abstract Dual-Objective Optimization model is vital in automotive supply chains (ASC) to 
emphasize multi-modal transportation under disruption scenarios at minimizing costs and 
disruption risks. In this context, the study evaluated the hypothetical and real-world data based on 
the deployment of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to understand the 
efficacy of incorporating multi-modal transportation to balance cost reduction and risk mitigation. 
The findings of Dual-Objective Optimization model revealed the model's superiority in identifying 
cost-effective transportation modes, offering a significant improvement over previous model. This 
research contributes to the mathematical modelling by providing a comprehensive framework for 
automotive supply chains, addressing operational efficiency and resilience against disruptions. 
Keywords: Dual-objective optimization, automotive supply chains, (NSGA-II), multi-modal 
transportation, disruption risks. 

 

 
Introduction 
 
In the complex world of automotive supply chain management, managing frequent and complicated 
disruptions presents a growing challenge to optimizing profitability and minimizing costs. Operational 
stability, financial health, and market competitiveness are all significantly affected by disruption risk. 
Production can be disrupted and risks such as technological changes, supplier failures, and natural 
disasters can erode customer trust. It is necessary to effectively manage these risks to ensure the 
automotive supply chain's sustained success and resilience. This study builds upon foundational work 
by  [1] by integrating economic factors into supply chain modeling. They revealed that the industry's 
primary issue is the frequent termination of commercial relationships between suppliers and distributors, 
which is often caused by external factors such as natural disasters, man-made incidents, and production 
line disruptions. These challenges not only impede trust-based relationships between suppliers and 
customers, but they also have a significant impact on the financial and operational stability of supply 
chains. 
 
In this regard, optimizing a model to perform and address such challenges using the lens of multi-
objective optimization (MOO), associated with the specific focus on multi-modal networks under 
disruption risk, is important in the automotive supply chain [2]. Pushpamali et al. [3] acknowledge the 
significance of integrating economic, environmental, and social factors into supply chain modeling. 
Several researchers [4-7] have contributed to recent literature, demonstrating the escalating need for 
resilient supply chain strategies. These studies revealed a growing inclination towards MOO for 
addressing the challenges in automotive supply chains, particularly emphasizing the need for resilience 
strategies such as resource allocation and business continuity planning [8]. 
 
On the other hand, the novel approach proposed by  [9] was demonstrated by the foraging behaviour of 
natural Physarum, highlighting the potential of artificial intelligence (AI)-driven tools in improving the 
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robustness of logistics networks. Artificial intelligence (AI)-driven tools have a tremendous deal of 
potential to strengthen logistics networks [10] as it can dynamically analyzes large datasets to forecast 
disruptions, improve routing and inventory control, and suggest the most reliable and affordable 
transportation modes [11]. The incorporation of artificial intelligence (AI) into multimodal transportation 
systems can enhance supply chains' flexibility, effectiveness, and ability to resist disruptions [12]. 
 
This study aims to develop a dual-objective mathematical model that integrates the minimization of 
supply chain costs and disruption risk reduction. It implements the Non-dominated Sorting Genetic 
Algorithm II (NSGA-II), utilizing iterative genetic operations to efficiently enhance decision-making. This 
approach sorts of solutions into levels of non-domination, forming a Pareto front that facilitates optimal 
trade-offs between costs and risks. From the results, the research will formulate strategies to significantly 
reduce supply chain costs and improve disruption risk management. 
 
Literature Review 
 
The contemporary automotive supply chain is a complex network that extends beyond the physical flow 
of goods, encompassing information and financial flows. This complexity necessitates the integration of 
economic, environmental, and social considerations into supply chain decisions [3]. To enhance the 
operational efficient, the automotive supply chain management sector must undergo major evolution 
which is propelled by the urgent need to consider objectives such as: minimizing the total cost and 
reducing the risks of disruption. Our research extends existing knowledge by focusing on a dual-objective 
optimization model that integrates both supply chain cost minimization and disruption risk reduction, with 
a special emphasis on multi-modal transportation networks as we recognize their critical role in reducing 
costs and mitigating risks associated with supply chain disruptions. 
 
Silva et al. [13] highlight the importance of integrating safety stock and safety time decisions in multi-
supplier, multi-item industrial supply chains. Their decision support system (DSS) optimizes upstream 
inventory holding costs and service levels, underscoring the relevance of multi-objective approaches in 
dynamic and uncertain supply chain environments. 
 
Mohebban-Azad et al. [1], presents a robust optimization approach for designing a reliable multi-level, 
multi-product, and multi-period location-inventory-routing three-echelon supply chain network that 
considers disruption risks and uncertainty in the inventory system. Unlike our study, which integrates 
multi-modal transportation strategies to minimize overall supply chain costs and disruption risks, the 
article focuses on a mixed-integer nonlinear programming multi-objective model without explicitly 
addressing multi-modal transportation options.  
 
The model presented by [1] shares similarities with our study in addressing supply chain optimization. 
However, their approach does not incorporate the multi-modal transportation network strategy that 
characterizes our model. This distinction highlights our contribution in exploring transportation mode 
flexibility to enhance supply chain resilience and efficiency, a dimension not developed in their research. 
 
Almasi [14] develops a multi-objective mathematical model for sustainable supplier selection and order 
allocation, incorporating risk and inflation considerations. This approach is closely related to our 
research's objective of optimizing supplier selection and transportation mode decisions under uncertain 
conditions. 
 
Feng and Gong [15] introduce an integrated model combining linguistic entropy weight method (LEWM) 
with multi-objective programming for green supplier selection and order allocation. Their framework, 
which aims to minimize total cost, carbon emissions, and maximize procurement value, provides insights 
into the potential of multi-objective optimization in enhancing green supply chain management practices 
in the automotive industry. 
 
Methodology 
 
This research integrates the strengths of dual-objective optimization for cost reduction and disruption 
risk minimization with the sophisticated capabilities of the Non-dominated Sorting Genetic Algorithm II 
(NSGA-II). The focus in the methodology is on selecting the optimal multi-modal network, tailored to 
withstand disruption risks in the automotive supply chain. By employing NSGA-II, our model navigates 
through the complexities of various transportation modes, enabling decision-makers to effectively 
balance cost efficiency with robust disruption risk management. This strategic solution addresses the 
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dynamic challenges and uncertainties prevalent in the automotive industry's supply chain networks. 
Figure 1 shows the conceptual framework for MOO in ASC for a visual representation of the 
methodology's foundation. 
 

 
 

Figure 1. The conceptual framework for MOO in ASC 
 
 

Supply Chain Network Design Based on Developed Model 
This study has used three supply chain factors in terms of design, such as network structure, focus on 
reliable location inventory, and multi-modal transportation, as shown in Figure 2. 
 
(a) Network Structure: The study employs a two-echelon supply chain network, encompassing 

suppliers, distribution centers, and customers. 
(b) Focus on Reliable Location Inventory: Emphasizing the importance of strategic inventory 

placement and management. 
(c) Multi-modal Transportation: Considering the risks associated with different transportation modes 

under potential disruptions. 
 

 
 

Figure 2. Structure of supply chain problem 



 

e-ISSN 2289-599X | DOI: https://doi.org/10.11113/mjfas.v20n6.3545 1264 

Almadani and Aziz | Malaysian Journal of Fundamental and Applied Sciences, Vol. 20 (2024) 1261-1273 

Optimization Model Development 
Herewith, the detailed formulation of sets, parameters, and variables relevant to the automotive supply 
chain regarding define problem notation have been mentioned in Tables 1, 2, and 3. 
 

Table 1. Sets in formulation of the model 
 

 Sets 
𝐴𝐴 Customers 
𝐽𝐽 Distribution centres (DC) 
𝐼𝐼 Suppliers 
𝐿𝐿𝑚𝑚 Transportation modes, 𝑚𝑚=1,2,3,4  
𝐺𝐺 Products 
𝑇𝑇 Periods 
𝐾𝐾 Service levels 
𝐹𝐹 available facilities 
𝑁𝑁𝑁𝑁 Non-available facilities 

 
 

Table 2. Parameters in formulation of the model 
 

 Description 
𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙: Number of visits by each type of transportation 𝑙𝑙 in period 𝑡𝑡 
𝜃𝜃𝑘𝑘: The likelihood of DC disruption in service level 𝑘𝑘 
𝛽𝛽𝑖𝑖𝑖𝑖: The likelihood of supplier disruption 𝑖𝑖 in period t 
𝑐𝑐𝐿𝐿𝑙𝑙: Capacity of transportation mode 𝑙𝑙 
𝑓𝑓𝑓𝑓𝑙𝑙: Fixed cost for using transportation mode 𝑙𝑙 
𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎: Transportation cost between nodes 
𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗: Cost of scarcity for DC 𝑗𝑗 in period 𝑡𝑡 
𝑓𝑓𝑓𝑓𝑗𝑗𝑗𝑗: Fixed cost of opening DC 𝑗𝑗 in period 𝑡𝑡 
𝐶𝐶𝐶𝐶ℎ1𝑗𝑗𝑗𝑗: Cost of shipping from DC 𝑗𝑗 to customer 𝑎𝑎 
𝐶𝐶𝐶𝐶ℎ2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: Cost of shipping from supplier 𝑖𝑖 to DC 𝑗𝑗 for product 𝑔𝑔 in period 𝑡𝑡 
𝐶𝐶ℎ𝑗𝑗𝑗𝑗𝑗𝑗: Cost of holding in DC 𝑗𝑗 for product 𝑔𝑔 in period 𝑡𝑡 
𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎: Customer 𝑎𝑎 demand for product 𝑔𝑔 from DC 𝑗𝑗 in period 𝑡𝑡; 
𝑔𝑔𝑔𝑔𝑗𝑗𝑗𝑗 Product 𝑔𝑔 price for DC 𝑗𝑗 
𝑁𝑁𝑁𝑁𝑗𝑗𝑗𝑗: Initial Inventory of DC 𝑗𝑗 for product 𝑔𝑔 
𝑓𝑓𝑓𝑓𝑗𝑗𝑗𝑗: Fixed cost for employing the additional capacity of DC 𝑗𝑗 in period 𝑡𝑡 
𝑂𝑂𝑂𝑂𝑗𝑗: The overall budget of DC 𝑗𝑗 
𝑎𝑎𝑎𝑎𝑗𝑗: The additional capacity of DC 𝑗𝑗  
𝑡𝑡𝑡𝑡𝑗𝑗: The typical capacity of DC 𝑗𝑗 
𝐶𝐶𝑙𝑙𝑙𝑙: Cost of transporting product 𝑔𝑔 using transportation mode 𝑙𝑙 

 
 
Where 𝐶𝐶𝑙𝑙𝑙𝑙 is a new parameter Introduced to provide a detailed cost metric for transporting 
product 𝑔𝑔 using mode 𝑙𝑙, enhancing the model’s ability to perform fine-grained cost analysis and 
comparison across different transportation modes. 
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Table 3. Variables in formulation of the model 
 

Variables Description 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 1 if product g was assigned to DC 𝑗𝑗 by supplier 𝑖𝑖 during period 𝑡𝑡, 0 otherwise  
𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗: 1 If DC 𝑗𝑗 received customer 𝑎𝑎 for product 𝑔𝑔 at service level 𝑘𝑘, 0 otherwise 
𝐾𝐾𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗: 1 if shipping mode 𝑙𝑙 in period 𝑡𝑡 at service level 𝑘𝑘 connects 𝑎𝑎 to 𝑗𝑗, 0 otherwise 
𝑆𝑆𝑗𝑗𝑗𝑗𝑗𝑗: 1 if the product 𝑔𝑔 is subject to 𝑎𝑎 scarcity in 𝑗𝑗 during the time 𝑡𝑡, 0 otherwise 
𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗𝑗𝑗: 1 if additional capacity is needed in DC 𝑗𝑗 for product 𝑔𝑔 during period 𝑡𝑡, 0 

otherwise 
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: Order quantity of DC 𝑗𝑗 for product 𝑔𝑔 in period 𝑡𝑡 from supplier 𝑖𝑖 
𝑁𝑁𝑁𝑁𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗: Number of products 𝑔𝑔 that is shipped from DC 𝑗𝑗 to customer 𝑎𝑎 during 𝑡𝑡 
𝑁𝑁𝑁𝑁𝑗𝑗𝑗𝑗𝑗𝑗: Number of shortages allowing for Product 𝑔𝑔 in Period 𝑡𝑡 in DC 𝑗𝑗 
𝑁𝑁𝑁𝑁𝑁𝑁𝑗𝑗𝑗𝑗𝑗𝑗: Number of additional capacity use from product 𝑔𝑔 in period 𝑡𝑡 in DC 𝑗𝑗  
𝐻𝐻𝐻𝐻𝑗𝑗𝑗𝑗𝑗𝑗: In-hand inventory for item 𝑔𝑔 in period 𝑡𝑡 in DC 𝑗𝑗 
𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗: 1 if DC 𝑗𝑗 open in period 𝑡𝑡, 0 otherwise 
𝑀𝑀𝑔𝑔 Auxiliary variable representing the minimum transportation cost for product 𝑔𝑔 
𝑃𝑃𝒍𝒍𝒍𝒍: 1 if mode 𝑙𝑙 has the minimum cost for product 𝑔𝑔, 0 otherwise 

Where the 𝑀𝑀𝑔𝑔 and 𝑃𝑃𝑙𝑙𝑙𝑙 are new variables added to the existing model variables to capture and enforce the most 
cost-effective transportation options within the supply chain. 
 
 
Objective Functions 
This model incorporates two objectives, as shown below. 
 
(a) Minimizing overall supply chain costs, including transportation, inventory, and operational costs 
 

Minimize 𝑍𝑍1 =  Transportation & Shipping Costs + Inventory and Stocking Costs
+ Distribution Centre Setup & Operational Costs + Supplier Disruption Costs 
+ Minimum Transportation Cost 

 
The objective function 𝑍𝑍1 is designed to minimize costs in various key areas of the automotive supply 
chain. The system combines the costs of transportation and shipping, including expenses related to all 
transportation activities. It also includes inventory and stocking costs, which encompass the costs of 
holding, additional stocking, and shortages. Additionally, it considers the setup and operational costs of 
distribution centers for maintaining efficient operations. The system also takes into account potential 
supplier failures and the associated costs. Lastly, it focuses on optimizing the least expensive routes to 
minimize transportation costs. This comprehensive approach attempts to improve the efficiency of the 
supply chain and decrease overall operational costs by improving each individual cost category. 
 
1. Transportation and Shipping Costs:  

 
��� � �((𝐶𝐶𝑙𝑙𝑙𝑙𝐾𝐾𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 + �𝐶𝐶𝐶𝐶ℎ1𝑗𝑗𝑗𝑗𝐾𝐾𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗� + (𝐶𝐶𝐶𝐶ℎ2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))

𝑘𝑘∈𝐾𝐾𝑙𝑙∈𝐿𝐿𝑚𝑚𝑎𝑎∈𝐴𝐴𝑗𝑗∈𝐽𝐽𝑡𝑡∈𝑇𝑇

 

 
This equation combines all transportation-related costs (including shipping from suppliers to DCs, 
from DCs to customers, and transportation costs for different modes) into one category. 
This term consolidates all transportation-related costs (shipping from suppliers to DCs and DCs to 
customers across different modes). The innovative use of 𝑪𝑪𝒍𝒍𝒍𝒍 ensures that the most cost-effective 
transportation mode is selected for each product, significantly enhancing the model's ability to 
minimize overall supply chain costs by leveraging a multi-modal strategy. 
 

2. Inventory and Stocking Costs:  
 

�����𝐻𝐻𝐻𝐻𝑗𝑗𝑗𝑗𝑗𝑗𝐶𝐶ℎ𝑗𝑗𝑗𝑗𝑗𝑗� + �𝑓𝑓𝑓𝑓𝑗𝑗𝑗𝑗𝑁𝑁𝑁𝑁𝑁𝑁𝑗𝑗𝑗𝑗𝑗𝑗𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗� + �𝑁𝑁𝑁𝑁𝑗𝑗𝑗𝑗𝑗𝑗𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗𝑆𝑆𝑗𝑗𝑗𝑗𝑗𝑗��
𝑔𝑔∈𝐺𝐺𝑡𝑡∈𝑇𝑇𝑗𝑗∈𝐽𝐽
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This equation includes inventory holding costs at DCs, additional stocking costs, and costs due to 
shortages. 
 

3. Distribution Centres’ Setup and Operational Costs:  
 

���𝑓𝑓𝑓𝑓𝑗𝑗𝑗𝑗𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗�
𝑗𝑗∈𝐽𝐽𝑡𝑡∈𝑇𝑇

 

 
This equation remains a separate category as it distinctly impacts the cost structure at the 
distribution centres. 
 

4. Supplier Disruption Costs:  
 

�����𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔𝑗𝑗𝑗𝑗�
𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖

 

 
This equation Includes the costs related to supplier disruptions. 
 

5. Minimum Transportation Costs:  
 

��𝑀𝑀𝑔𝑔�
𝑔𝑔∈𝐺𝐺

 

 
This remains as a separate entity as it captures the lowest possible transportation costs. 

 
(b) Reducing the risk of disruption in the supply chain. 
     
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍2 =  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝐷𝐷𝐷𝐷 𝑎𝑎𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹)

+ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡 𝐷𝐷𝐷𝐷 𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠 (𝑁𝑁𝑁𝑁)
+  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
+  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑖𝑖𝑖𝑖 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  

 
Objective function 𝑍𝑍2 aims to minimize disruption risks within the automotive supply chain by accounting 
for various types of disruption-related costs. This function is segmented into four main cost components: 
 
1. Disruption Costs in Shipping from supplier to DC at Available Facilities (F): 

 
������𝐶𝐶𝐶𝐶ℎ2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃𝑘𝑘𝐾𝐾𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑘𝑘𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖

 

 
This term captures the disruption risk and cost of shipping products from suppliers (𝑖𝑖) to available 
distribution centers (𝑗𝑗𝜖𝜖𝜖𝜖) for product 𝑔𝑔 in period 𝑡𝑡 at service level 𝑘𝑘. 
 

2. Disruption Costs from Supplier to DC at Non-Available Facilities (NF): 
 

� � ����𝐶𝐶𝐶𝐶ℎ2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃𝑘𝑘(1 − 𝜃𝜃𝑘𝑘)𝐾𝐾𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�
𝑘𝑘𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖

 

 
This term captures the compounded disruption risk of shipping from suppliers to non-available 
facilities (𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗), where disruption risks are higher due to the unavailability of these DCs. The factor 
(1 − 𝜃𝜃𝑘𝑘) amplifies the disruption risk. 
 

3. Disruption Cost in Shipping to Customers from Available Facilities: 
 

������𝐶𝐶𝐶𝐶ℎ1𝑗𝑗𝑗𝑗𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃𝑘𝑘𝐾𝐾𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑡𝑡∈𝑇𝑇𝑘𝑘∈𝐾𝐾𝑔𝑔∈𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗

 

 
This term captures the disruption risk and costs associated with shipping products from available 
facilities (𝑗𝑗𝑗𝑗𝑗𝑗) to customers (𝑎𝑎) for product 𝑔𝑔 at service level 𝑘𝑘 during period 𝑡𝑡. This focuses on 
customer-facing disruption risks. 
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4. Disruption Risks in Shipping to Customers from Non-Available Facilities: 
 

� �����𝐶𝐶𝐶𝐶ℎ1𝑗𝑗𝑗𝑗𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃𝑘𝑘(1 − 𝜃𝜃𝑘𝑘)𝐾𝐾𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎ϵ𝐴𝐴𝑗𝑗∈𝑁𝑁𝑁𝑁

 

 
This term accounts for the increased disruption risk of shipping from non-available facilities 𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁) to 
customers. The risk is compounded by the factor (1 − 𝜃𝜃𝑘𝑘), reflecting the higher likelihood of disruptions 
due to the non-availability of the facility. 
 
Overall, the enhance model uses a multi-modal transportation strategy to minimize supply chain disruption 
risks by optimizing shipments from suppliers to distribution centres (DCs) and from DCs to customers, 
considering both available and non-available facilities.  Objective function_2 incorporate multiple 
transportation modes, represented by 𝐾𝐾𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗, it allows for flexible and dynamic adjustments to disruptions, 
enhancing overall resilience. The disruption likelihood 𝜃𝜃𝑘𝑘 is used to account for varying levels of risk, 
ensuring robust and cost-effective decision-making throughout the supply chain. 
 
Constraints 
The model considers constraints in customer allocation, inventory management, routing, and 
transportation mode selection. 
 
∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗∈𝐽𝐽 + ∑ ∑ �𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝑁𝑁𝑁𝑁 = 1 ∀𝑎𝑎 ∈ 𝐴𝐴, 𝑔𝑔 ∈ 𝐺𝐺, 𝑘𝑘 = 0 … . 𝑗𝑗 − 1        (1) 
∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑘𝑘∈𝐾𝐾 ≤ 1 ∀𝑎𝑎 ∈ 𝐴𝐴, 𝑔𝑔 ∈ 𝐺𝐺, 𝑗𝑗 ∈ 𝐽𝐽  (2) 
∑ �𝐾𝐾𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�𝑗𝑗𝑗𝑗𝑗𝑗 − 𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 ≤ 1 ∀ 𝑙𝑙 ∈ 𝐿𝐿𝑚𝑚, 𝑎𝑎 ∈ 𝐴𝐴, 𝑡𝑡 ∈ 𝑇𝑇, 𝑔𝑔 ∈ 𝐺𝐺, 𝑘𝑘 ∈ 𝐾𝐾  (3) 
∑ ∑ ∑ �𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�𝑘𝑘∈𝐾𝐾𝑔𝑔∈𝐺𝐺𝑗𝑗∈𝐽𝐽 = 1 ∀𝑎𝑎 ∈ 𝐴𝐴  (4) 
∑ ∑ ∑ �𝑤𝑤𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�𝑘𝑘∈𝐾𝐾𝑔𝑔∈𝐺𝐺𝑎𝑎∈𝐴𝐴 ≤ 𝑡𝑡𝑡𝑡𝑗𝑗𝐷𝐷𝐷𝐷𝑗𝑗 + 𝑎𝑎𝑎𝑎𝑗𝑗𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗 ∀𝑗𝑗 ∈ 𝐽𝐽, 𝑡𝑡 ∈ 𝑇𝑇  (5) 
∑ �𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗𝑗𝑗�𝑔𝑔∈𝐺𝐺 + 𝑆𝑆𝑗𝑗𝑗𝑗𝑗𝑗 ≤ 1 ∀𝑗𝑗 ∈ 𝐽𝐽, 𝑡𝑡 ∈ 𝑇𝑇  (6) 
∑ ∑ ∑ ∑ �𝑁𝑁𝑁𝑁𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�𝑡𝑡∈𝑇𝑇𝑔𝑔∈𝐺𝐺𝑎𝑎∈𝐴𝐴𝑗𝑗∈𝐽𝐽 = 𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎∀𝑎𝑎 ∈ 𝐴𝐴  (7) 
∑ ∑ ∑ �𝑁𝑁𝑁𝑁𝑁𝑁𝑗𝑗𝑗𝑗𝑗𝑗�𝑡𝑡𝑔𝑔𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗  (8) 
∑ �𝐻𝐻𝐻𝐻𝑗𝑗𝑗𝑗𝑗𝑗�𝑔𝑔∈𝐺𝐺 − 𝑁𝑁𝑁𝑁𝑗𝑗𝑗𝑗𝑗𝑗 = ∑ 𝐻𝐻𝐻𝐻𝑗𝑗𝑗𝑗(𝑡𝑡−1)𝑔𝑔∈𝐺𝐺 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑗𝑗𝑗𝑗𝑗𝑗 + ∑ ∑ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼𝑔𝑔∈𝐺𝐺 − 𝑤𝑤𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 ∀𝑗𝑗 ∈ 𝐽𝐽, 𝑡𝑡 ∈ 𝑇𝑇   (9) 
∑ ∑ ∑ ∑ �𝐾𝐾𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�𝑔𝑔∈𝐺𝐺𝑘𝑘∈𝐾𝐾𝑡𝑡∈𝑇𝑇𝑙𝑙∈𝐿𝐿𝑚𝑚 ≤ ∑ ∑ �𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�𝑘𝑘∈𝐾𝐾𝑔𝑔∈𝐺𝐺 ∀𝑗𝑗 ∈ 𝐽𝐽, 𝑎𝑎 ∈ 𝐴𝐴  (10) 
∑ ∑ ∑ �𝐾𝐾𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�𝑘𝑘∈𝐾𝐾𝑙𝑙∈𝐿𝐿𝑚𝑚𝑎𝑎∈𝐴𝐴 = 1∀𝑎𝑎 ∈ 𝐴𝐴, 𝑡𝑡 ∈ 𝑇𝑇  (11) 
∑ ∑ ∑ �𝐾𝐾𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�𝑘𝑘∈𝐾𝐾𝑎𝑎∈𝐴𝐴𝑗𝑗∈𝐽𝐽 ≤ 1 ∀𝑙𝑙 ∈ 𝐿𝐿𝑚𝑚, 𝑡𝑡 ∈ 𝑇𝑇  (12) 
∑ ∑ ∑ �𝑤𝑤𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝐾𝐾𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�𝑎𝑎∈𝐴𝐴𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽 ≤ 𝑐𝑐𝑐𝑐𝑙𝑙 ∀𝑙𝑙 ∈ 𝐿𝐿𝑚𝑚, 𝑡𝑡 ∈ 𝑇𝑇  (13) 
∑ ∑ ∑ 𝐾𝐾𝑗𝑗𝑗𝑗′𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙∈𝐿𝐿𝑚𝑚𝑘𝑘∈𝐾𝐾𝑡𝑡∈𝑇𝑇 = 0 ∀𝑗𝑗, 𝑗𝑗′ ∈ 𝐽𝐽       (14) 
𝑀𝑀𝑔𝑔 ≤ 𝐶𝐶𝑙𝑙𝑙𝑙 + 𝑀𝑀. �1 − 𝑃𝑃𝒍𝒍𝒍𝒍� ∀ 𝑙𝑙 ∈ 𝐿𝐿𝑚𝑚, 𝑔𝑔 ∈ 𝐺𝐺  (15) 
∑ �𝑃𝑃𝒍𝒍𝒍𝒍� = 1∀  𝑔𝑔 ∈ 𝐺𝐺𝑙𝑙∈𝐿𝐿𝑚𝑚   (16) 
�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗, 𝐾𝐾𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗, 𝑆𝑆𝑗𝑗𝑗𝑗𝑗𝑗, 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗𝑗𝑗, 𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗, 𝐿𝐿𝐿𝐿1𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝐿𝐿𝐿𝐿2𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗, 𝐿𝐿𝐿𝐿1𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝐿𝐿𝐿𝐿2𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗� ∈
{0 𝑜𝑜𝑜𝑜 1}  ∀𝑖𝑖, 𝑗𝑗, 𝑡𝑡, 𝑔𝑔, 𝑎𝑎, 𝑘𝑘, 𝑙𝑙, 𝑐𝑐  

(17) 

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡, 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡,𝑁𝑁𝑁𝑁𝑗𝑗𝑗𝑗𝑗𝑗, 𝑁𝑁𝑁𝑁𝑁𝑁𝑗𝑗𝑗𝑗𝑗𝑗, 𝐻𝐻𝐻𝐻𝑗𝑗𝑗𝑗𝑗𝑗, 𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐   ≥ 0  (18) 
 
Succinctly, the constraints for the dual-objective optimization model in automotive supply chain 
management is defined as following:  
 
Customer Allocation Constraints: These constraints ensure effective customer-service management. 
Constraint (1) guarantees each customer is assigned to a single distribution center, fulfilling all demands. 
Constraint (2) limits customers to one service level per DC, while Constraint (3) ensures a customer is 
allocated to a DC only if on the same logistical path. Constraint (4) mandates unique distributor 
assignments for each customer to avoid overlapping services. 
 
Inventory Constraints: These constraints focus on inventory management efficiency. Constraint (5) 
stipulates that customer demand from each DC must not surpass its combined normal and safety stock 
capacity. Constraint (6) specifies that the choice must be made between either experiencing a stock-out 
or utilizing the safety stock capacity, but not both. Constraint (7) aligns customer demand from each DC 
with product shipments, and Constraint (8) ties the additional capacity used for a product to the DC’s 
additional capacity. Constraint (9) computes the total product inventory per DC, accounting for 
authorized shortages and inventory variances. 
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Routing Constraints: These constraints optimize the distribution network. Constraint (10) establishes 
routes between customers and distributors upon allocation. Constraint (11) ensures each transportation 
route is assigned a single mode of transport. Constraint (12) limits distribution to one path per route, 
while Constraint (13) controls the transportation system’s maximum carrying capacity. Constraint (14) 
prohibits direct routes connecting two distributors, ensuring logistical integrity 
 
Transportation Mode Cost Constraints: Constraint (15) determines the minimum cost 𝑴𝑴𝒈𝒈 for each 
product 𝒈𝒈  defining it as a new constraint added to optimize cost-efficiency across the supply chain. This 
constraint is pivotal for ensuring that the calculated minimum cost accurately reflects the most 
economical transportation mode available. Constraint (16), another new addition, mandates that exactly 
one transportation mode is selected as the cost-minimal option. It guarantees the chosen mode for each 
combination of distribution center, customer, time period, and product are the most cost-effective option 
for transporting the product and crucial for maintaining cost-efficiency within the multi-modal 
transportation network. 
 
These constraints are important to realizing the model’s objectives of cost reduction and disruption risk 
minimization, particularly in the context of complex multi-modal transportation networks in automotive 
supply chains. 
 
NSGA-II for Dual-Objective Optimization 
Our research extensively employs the Non-dominated Sorting Genetic Algorithm II (NSGA-II) for solving 
the multi-objective optimization problem focusing on the automotive supply chain. The NSGA-II algorithm 
is renowned for its effectiveness in handling complex optimization tasks, particularly those involving 
conflicting objectives. In our context, these objectives are twofold: minimizing supply chain costs and 
reducing disruption risks. Figure 3 depicts a flowchart of the NSGA-II process for implementing the 
proposed dual-objective optimization problem. 
 

 
 

Figure 3. NSGA-II Flowchart 
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NSGA-II's Key Features in Our Implementation: 
 
1. Population-Based Approach: Our implementation initializes a diverse population of solutions, 

facilitating concurrent exploration of various optimization paths. This diversity is critical for 
identifying efficient supply chain configurations under different scenarios, such as varying supplier 
reliability and transportation efficiency. 

2. Non-Dominated Sorting: We employ non-dominated sorting to rank solutions, enabling us to 
focus on those that offer a balanced compromise between cost minimization and risk reduction. 
This method helps in categorizing solutions according to their dominance levels, ensuring a 
comprehensive evaluation. 

3. Crowding Distance: To avoid convergence on a narrow part of the solution space, crowding 
distance is calculated, ensuring a broad and diverse set of solutions. This diversity is essential for 
considering all possible supply chain configurations, from transportation modes to inventory 
strategies. 

4. Crossover and Mutation Operators: Through crossover and mutation, our algorithm introduces 
new solution traits, enhancing the search for innovative strategies that could potentially offer better 
performance in terms of cost and risk. 

5. Iterative Evolutionary Process: The NSGA-II algorithm in our study evolves through generations, 
systematically refining solutions. Each generation is assessed, and superior solutions form the 
basis for the next, gradually advancing towards an optimal set. 

6. Visualization of Pareto-Front: The Pareto-front visualization provides a clear depiction of the 
trade-offs between objectives, aiding decision-makers in understanding the balance between 
minimizing costs and reducing disruption risks. 

7. Python Implementation: Leveraging Python and its DEAP library, our NSGA-II implementation 
benefits from efficient computation and flexibility, allowing for the effective handling of the complex 
multi-objective optimization problem of the automotive supply chain. 

 
By integrating NSGA-II into our methodology, we aim to develop an adaptable model that effectively 
balances cost reduction and disruption risk minimization in automotive supply chains, ensuring resilience 
and efficiency in dynamic market conditions. 
 
Computational Results and Discussion 

 
This section explores the effectiveness of a multi-modal transportation strategy under disruption risk. 
We analyzed synthetic small-scale benchmark data of the automotive supply chain problem using the 
NSGA-II algorithm within Python to evaluate the performance of the proposed model. The study's focal 
point is the innovative incorporation of multi-modal transportation to achieve dual objectives: cost 
reduction and disruption risk minimization. 
 
The analysis begins with the problem setup, highlighting various dimensions of small-scale problems, 
including the number of suppliers, distribution centers (DCs), customers, transportation modes, goods, 
periods, and the classification of DCs based on their failure risk. Subsequently, problem parameters 
generated using a uniform distribution function are detailed, laying the foundation for the linearized 
model's solution. Table 4 displays the dimensions of the randomly generated problems. 

 
Table 4. Dimensions of sets in small scale 
 

Synopsis small-scale 
Quantity of suppliers  2 

Quantity of DCs  3 
Quantity of customers  5 

Quantity of transportation modes 4 
Quantity of goods  2 

Quantity of Periods 2 
Total number of DCs that can fail  2 

Total non-failable DC 3 
 
 
The problem parameters that have been produced to be solved in the linearized model by uniform 
distribution function in Python are presented in Table 5 
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Table 5. The range of the parameters value 
 

Parameter small-scale 
𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙: U (1, 10) 
𝜃𝜃𝑘𝑘: U (0, 1) 
𝛽𝛽𝑖𝑖𝑖𝑖: U (0, 1) 
𝑐𝑐𝐿𝐿𝑙𝑙: U (100, 1000) 
𝑓𝑓𝑓𝑓𝑙𝑙: U (500, 1000 
𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎 U (50, 200) 
𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗: U (50, 100) 
𝑓𝑓𝑓𝑓𝑗𝑗𝑗𝑗: U (0, 1) 
𝐶𝐶𝐶𝐶ℎ1𝑗𝑗𝑗𝑗: U (50, 200) 
𝐶𝐶𝐶𝐶ℎ2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: U (50, 200 
𝐶𝐶ℎ𝑗𝑗𝑗𝑗𝑗𝑗: U (50, 200) 
𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎: U (800, 1400) 
𝑔𝑔𝑔𝑔𝑗𝑗𝑗𝑗 U (50, 200) 
𝑁𝑁𝑁𝑁𝑗𝑗𝑗𝑗: U (20, 50) 
𝑓𝑓𝑓𝑓𝑗𝑗𝑗𝑗: U (50, 200) 
𝑂𝑂𝑂𝑂𝑗𝑗: U (1000, 100000) 
𝑎𝑎𝑎𝑎𝑗𝑗: U (500, 1000) 
𝑡𝑡𝑡𝑡𝑗𝑗: U (1500, 3000) 
𝐶𝐶𝑙𝑙𝑙𝑙 U (50, 200) 

 
 

Small Data Problems  
In this study, the NSGA-II approach does not have the termination criteria. However, based on the 
results obtained, it is shown that this approach converges after 95 generations. The algorithm kept 
running until the Pareto front's fitness values changed by less than 0.01, which was set as the minimum 
change allowed. This happened for 10 generations in a row, making sure that the solutions were stable 
and the best ones for minimizing costs and disruption risk. Tables 3, 4, and 5 display the variables and 
the parameters value that contributed to achieving the Pareto-front of the objectives. The results section 
highlights the Pareto-optimal solutions obtained after 95 generations, emphasizing the critical role of 
binary and integer variables in deriving these solutions. Special attention is given to the decision 
variables 𝑀𝑀𝑔𝑔 and 𝑷𝑷𝒍𝒍𝒍𝒍hich determine the most cost-effective transportation modes for different products. 
This analysis shows the model's capacity to identify optimal transportation strategies that balance cost 
and risk, a significant advancement over previous models that did not differentiate between 
transportation mode cost. 
 
Regarding the use of minimizing the cost of transportation mode to transport automotive parts, this 
study’s results for the auxiliary variable 𝑀𝑀𝑔𝑔 and the binary variable (𝑷𝑷𝒍𝒍𝒍𝒍as follows:  𝑀𝑀1 = 95 when 
𝑷𝑷(𝟑𝟑,𝟏𝟏) = 1  and 𝑀𝑀2 = 81 when 𝑷𝑷(𝟒𝟒,𝟐𝟐) = 1. This indicates the lowest possible cost of transportation mode 
to transport parts of products (1 and 2) are transportation mode (3) for product 1, and transportation 
mode (4) for product (2). 

 
Results Comparison 
The model is further enhanced by incorporating new variables, parameters, and constraints specifically 
designed to optimize transportation mode costs. Notable additions include the auxiliary variable 𝑀𝑀𝑔𝑔 
which represents the minimum transportation cost for each product, and the binary variable 𝑃𝑃𝒍𝒍𝒍𝒍 which 
identifies if mode 𝑙𝑙 offers the lowest cost for transporting product 𝑔𝑔 The parameter 𝐶𝐶𝑙𝑙𝑙𝑙 has been 
introduced to provide a detailed cost analysis for each transportation mode used for product 𝑔𝑔. 
Furthermore, new constraints (17, 18) ensure that the model selects the most cost-effective 
transportation mode, thereby enhancing the model’s efficiency in cost optimization across the supply 
chain. 
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In the enhanced model, the minimum cost of transportation to transport part is considered, where the 
objective-functions are modified based on the new developing of the problem, where the enhanced 
model as shown in the model above. 
 
Regarding the modification of the model we discussed above, the results of the objective functions 
(minimizing overall cost (𝑍𝑍1), and reducing disruption risk (𝑍𝑍2)), in initial model are greater than the 
same objective function results (𝑍𝑍1, 𝑍𝑍2) of enhanced model for all Pareto-front points, as shown in 
Table 6. 
 
The comparative analysis shows that the enhanced model demonstrates superior performance in 
minimizing the objective functions. We quantitatively substantiate this improvement by comparing the 
objective function values between the enhanced and initial models across various Pareto-front points, 
conclusively demonstrating the enhanced efficiency of the proposed approach. This section discusses 
and displays Table 6's differences between the pareto-front results of the problem's initial model and 
the developed one. The initial model failed to account for the transportation mode's minimum cost, 
resulting in a lack of mode-based transportation cost differentiation. 
 

Table 6. Comparison between enhanced model and existing model in pareto-front results 
 

enhanced model existing model 

point 𝒁𝒁𝟏𝟏 𝒁𝒁𝟐𝟐 𝒁𝒁𝟏𝟏 𝒁𝒁𝟐𝟐 
1 34445446.69 81.515 72440377.62 192.496 
2 32362246.689 575.264 69969524.188 735.371 
3 33346810.689 150.094 71422929.978 344.20 

 
 
Based on the main purpose of the problem to minimize the objective functions, the comparison between 
the enhanced and initial models demonstrates that the enhanced model outperforms the initial model in 
all Pareto-front points for both cost reduction (𝑍𝑍1) and disruption risk mitigation (𝑍𝑍2). The improved model 
consistently demonstrates lower values in both targets, suggesting its increased efficiency and efficacy 
in addressing automotive supply chain difficulties. Figure 4 summarizes the results, confirming the 
model's significant improvement in operational efficiency and risk management. 
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Figure 4. Comparison between enhanced Pareto-front (a) and exiting Pareto-front models (b) in NSGA-II 
 
 

This demonstrates its major contribution to optimizing the supply chain. The study successfully confirmed 
its purpose of enhancing supply chain performance through the strategic utilization of multimodal 
transportation planning. 
 
Conclusion and Recommendations 
 
To conclude, our study delivers an enhanced mathematical model for optimizing automotive supply 
chains by strategically incorporating multi-modal transportation, significantly enhancing cost-efficiency 
and resilience against disruptions. The application of NSGA-II has been pivotal in identifying cost-
effective transportation options, showcasing substantial reductions in logistics expenses and improved 
supply chain robustness. Our findings, backed up by detailed mathematical analysis and empirical 
evaluation, demonstrate the effectiveness of our enhanced model over traditional approaches. Future 
directions include integrating real-time data and advanced AI techniques to refine the model's precision 
and adaptability, promising further breakthroughs in supply chain optimization, and providing actionable 
insights for both academia and industry. 
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