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Abstract A class of partial differential equations with fractional derivatives in the spatial 
variables are called space-fractional diffusion equations. They can be applied to simulate 
anomalous diffusion, in which the classical diffusion equation does not accurately describe how a 
plume of particles disperses. Analytically solving fractional diffusion equations can be problematic 
due to the typically complex structures of fractional derivative models. Hence, this study proposes 
the utilisation of a satisfier function in combination with the Ritz method to effectively address 
fractional diffusion equations in the Caputo sense. By employing this approach, the equations are 
transformed into an algebraic system, so facilitating their solution and providing a numerical result. 
This method can achieve a high level of accuracy in solving the Caputo fractional diffusion 
equations by utilising only a small number of terms from the shifted Legendre polynomials in two 
variables. The precision and effectiveness of our approach may be evaluated, as it yielded 
dependable approximations of the solutions. 
Keywords: Fractional diffusion equation, Ritz method, Caputo derivative, Legendre polynomials. 

 

 

Introduction 
 
A generalisation of differential equations to any (non-integer) order is known as a fractional differential 
equation (FDE). Due to its capacity to represent and explain complex phenomena, FDEs have garnered 
a great deal of attention. FDEs have found wide-ranging applications in science and engineering, such 
as physics, biology, and chemistry, which has led to a major global increase in research in this field. 
 
One of the main challenges in solving FDEs is the ‘non-locality’ of the fractional operator. This means 
that the fractional derivative at a specific point depends on the behaviour of the function across its entire 
domain. In a way, FDE is about considering the history of the function entirely, not just its behaviour at 
a single point. 
 
The fractional diffusion equation is a type of FDEs. In a standard diffusion process, the rate of change of 
a quantity with respect to time is proportional to the second derivative of that quantity with respect to 
space. The space-fractional diffusion equation introduces fractional derivatives in the spatial variable. 
The general form of the space-fractional diffusion equation is 
 
                                                        𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝜓𝜓 𝜕𝜕𝛼𝛼𝜕𝜕

𝜕𝜕𝑥𝑥𝛼𝛼
, (𝑥𝑥, 𝑡𝑡) ∈ 𝐶𝐶                                                                      (1) 

 
where 𝜓𝜓 is the diffusion coefficient. 𝑢𝑢 is the function to be computed, and 𝐶𝐶 = [0,1] × [0,1] ⊂ ℝ2 is a 
bounded domain. In fractional diffusion, the order of the derivative, 𝛼𝛼 is a non-integer, allowing for more 
flexibility in modeling anomalous diffusion phenomena. Applications of fractional diffusion equations can 
be found in physics fields such as fluid flow [1] and wave solutions [2, 3]. In biology, fractional diffusion 
equation is demonstrated in the transmission of Lassa fever disease [4, 5], where the results may be 
applied to stop the disease’s spread. In finance, it is important in predicting financial and market stability 
[6]. 
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Solving fractional diffusion equations is computationally demanding because the non-local nature of 
fractional derivatives means that each point in time depends on a range of past times, complicating the 
numerical approximation. Creating precise, quick, and cost-effective numerical algorithms for solving 
them is necessary. For this reason, [7] applied a numerical method using a stabilized finite element 
formulation, finite difference method and Newton-Raphson method to find accurate approximation of 
convection-advection diffusion equation. The time-space fractional diffusion problem has been solved in 
[8] using the Fourier spectral approach and the Spectral Deferred Correction. Other numerical method 
is meshless method where it can be found in [9] and [10]. Gaining motivation and inspiration from the 
above mentioned work, in this article, a framework has been introduced to solve the space-fractional 
diffusion equation numerically. 
 
We present a method for solving space-fractional diffusion equations by combining the Ritz method with 
a satisfier function. This method effectively transforms the equations into a set of algebraic equations 
system, making it easier to solve and obtain the derivation of numerical solutions. The method’s efficacy 
lies in its ability to generate highly accurate solutions by employing a limited number of shifted Legendre 
polynomial terms involving two variables. Hence a complete investigation on convergence and stability 
analysis is presented for the proposed numerical method. The numerical example presented at the later 
section shows the efficiency, stability and comparability of our proposed method with existing 
approaches. 
 
The structure of this article is as follows. In the following sections, we will briefly introduce a few 
preliminary concepts, such as the Caputo fractional derivative and the Legendre polynomials. The details 
of the proposed method are presented in a subsequent section. Following that, some examples are 
provided to demonstrate the application of the suggested method in solving fractional-order diffusion 
equations using the Caputo derivative. We also presented the numerical experiments that show the 
accuracy and validity of the proposed method. The final section emphasises the conclusion and we made 
some recommendations. 

 
Preliminaries 
 
We will concentrate on the following space-fractional order diffusion equation in the form of: 
 

   𝐷𝐷𝜕𝜕 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜓𝜓𝐷𝐷𝑥𝑥𝛼𝛼 𝑢𝑢(𝑥𝑥, 𝑡𝑡) + 𝑓𝑓(𝑥𝑥, 𝑡𝑡),       0 ≤  𝑥𝑥,  𝑡𝑡  ≤  1                                                          (2) 
 
with initial and boundary conditions 
 

𝑢𝑢(𝑥𝑥, 0) = 𝑔𝑔0(𝑥𝑥), 
𝑢𝑢𝜕𝜕(𝑥𝑥, 0) = 𝑔𝑔1(𝑥𝑥), 
𝑢𝑢(0, 𝑡𝑡) = ℎ0(𝑡𝑡), 
𝑢𝑢(1, 𝑡𝑡) = ℎ1(𝑡𝑡). 

 
The fractional derivative 𝐷𝐷𝛼𝛼𝑢𝑢(𝑥𝑥, 𝑡𝑡) is defined in the Caputo sense. The parameter 𝛼𝛼 denotes the fractional 
order of the space derivative, with 1 < 𝛼𝛼 ≤ 2 and 𝑓𝑓(𝑥𝑥, 𝑡𝑡) is the source term. 𝑔𝑔0(𝑥𝑥),𝑔𝑔1(𝑥𝑥), ℎ0(𝑡𝑡) and  ℎ1(𝑡𝑡) 
are assumed to be sufficiently smooth functions on their domains. 

 
Caputo Derivatives 
Some definitions relating to the Caputo fractional derivative will be briefly discussed in this section. 
 
Definition 1. The one-parameter Mittag-Leffler function is defined as [11] 
 

                                                                         𝐸𝐸α(𝑧𝑧) = ∑ 𝑧𝑧𝑘𝑘

Γ(α𝑘𝑘+1)
∞
𝑘𝑘=0 , 𝛼𝛼 ∈ ℝ+, 𝑧𝑧 ∈ ℝ                                                                                        (3) 

 
Definition 2. The three-parameter generalization of Mittag-Leffler function is given by [11] 
 

                                                                         𝐸𝐸α,β
γ (𝑧𝑧) = ∑ Γ(γ+𝑘𝑘)

Γ(γ)Γ(α𝑘𝑘+β)
𝑧𝑧𝑘𝑘

𝑘𝑘!
∞
𝑘𝑘=0 , 𝛼𝛼,𝛽𝛽, 𝛾𝛾 ∈ ℝ+, 𝑧𝑧 ∈ ℝ                                                                            (4) 

 
Definition 3. The Caputo fractional derivative 𝐷𝐷α is given as [12] 
 

                                                                         𝐷𝐷𝛼𝛼𝑓𝑓(𝑡𝑡) = 1
𝛤𝛤(𝑛𝑛−𝛼𝛼)∫

𝑓𝑓𝑛𝑛(𝜏𝜏)
(𝜕𝜕−𝜏𝜏)𝛼𝛼−𝑛𝑛+1𝑑𝑑𝜏𝜏

𝜕𝜕
0 , 𝑛𝑛 − 1 < 𝛼𝛼 ≤ 𝑛𝑛, 𝑛𝑛 ∈ ℕ                                                             (5) 
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The followings are some properties of the Caputo derivatives: 
 
Definition 4. The Caputo derivative of power function is given as [12]   
 

                                                                          𝐷𝐷α𝑡𝑡𝑝𝑝 = Γ(𝑝𝑝+1)
Γ(𝑝𝑝−α+1) 𝑡𝑡

𝑝𝑝−α, 𝑝𝑝 ∈ ℝ                                                                                                 (6) 
 
Definition 5. The Caputo derivative of exponential function is given as [12] 
 
                      𝐷𝐷α𝑒𝑒𝜆𝜆𝜕𝜕 = λ𝑚𝑚𝑡𝑡𝑚𝑚−α𝐸𝐸1,𝑚𝑚−α+1(λ𝑡𝑡), λ ≥ 0                                                                                   (7) 
 
Definition 6. The Caputo derivative of trigonometric functions is given as [12]   
 
           𝐷𝐷α sin λ𝑡𝑡 = 1

2𝑖𝑖
(𝑖𝑖λ)𝑚𝑚𝑡𝑡𝑚𝑚−α �𝐸𝐸1,𝑚𝑚−α+1(𝑖𝑖λ𝑡𝑡) − (−1)𝑚𝑚𝑡𝑡𝑚𝑚−α𝐸𝐸1,𝑚𝑚−α+1(−𝑖𝑖λ𝑡𝑡)� , λ ≥ 0                                       

                                                              𝐷𝐷α cos λ𝑡𝑡 = 1
2𝑖𝑖

(𝑖𝑖λ)𝑚𝑚𝑡𝑡𝑚𝑚−α �𝐸𝐸1,𝑚𝑚−α+1(𝑖𝑖λ𝑡𝑡) + (−1)𝑚𝑚𝑡𝑡𝑚𝑚−α𝐸𝐸1,𝑚𝑚−α+1(−𝑖𝑖λ𝑡𝑡)� , λ ≥ 0                                     (8) 
    

These definitions are important, and they are essential in the calculation of the Caputo diffusion equation 
later. The calculation using Maple 2023 is performed by applying these definitions. 
 
Legendre Polynomials 
The Legendre polynomials serve as the fundamental basis function in the Ritz method. The Legendre 
polynomials, denoted as 𝐿𝐿𝑛𝑛(𝑥𝑥), are the coefficients of a formal expansion of the generating function in 
powers of 𝑡𝑡: 
 
                             1

√1−2𝑥𝑥𝜕𝜕+𝜕𝜕2
= ∑ 𝐿𝐿𝑛𝑛(𝑥𝑥)𝑡𝑡𝑛𝑛∞

𝑛𝑛=0                                                                                                 (9) 
 
The Legendre polynomials, 𝐿𝐿𝑛𝑛(𝑥𝑥,𝑦𝑦) (or shifted Legendre polynomials, 𝑃𝑃𝑛𝑛(𝑥𝑥,𝑦𝑦)) can be extended in in 
two variables in a number of different ways. For example, in [13], the two-variable Legendre polynomials 
can be expressed as 

 
1

�1−2𝑥𝑥𝜕𝜕+𝑦𝑦𝜕𝜕2
= ∑ 𝐿𝐿𝑛𝑛(𝑥𝑥,𝑦𝑦)𝑡𝑡𝑛𝑛∞

𝑛𝑛=0 .                                                                                                  (10) 
 

The shifted Legendre polynomials in two dimensions are defined according to the reference [14]: 
 

𝑃𝑃𝑛𝑛(𝑥𝑥,𝑦𝑦) = 𝑃𝑃𝑛𝑛(𝑥𝑥)𝑃𝑃𝑘𝑘(𝑦𝑦),                                                                                               (11) 
 

and the Legendre Polynomials which having two-variables is written as 
                               
                            1

�1−2𝑥𝑥𝑥𝑥+𝑥𝑥2−2𝑦𝑦𝜕𝜕+𝜕𝜕2
= ∑ ∑ 𝐿𝐿𝑛𝑛,𝑘𝑘(𝑥𝑥,𝑦𝑦)𝑠𝑠𝑛𝑛∞

𝑘𝑘=0 𝑡𝑡𝑘𝑘∞
𝑛𝑛=0 .                                                               (12) 

 
One important benefit of the two variables Legendre Polynomials that M. A. Khan and M. P. Singh 
derived in [14] is that the polynomials can be produced by using a generating function in the two 
variables form, as equation (12) illustrates. The definition of two variables shifted Legendre Polynomials, 
𝑃𝑃𝑛𝑛,𝑘𝑘(𝑥𝑥,𝑦𝑦) are defined as follows using the definition of two variables Legendre Polynomials derived by 
them: 
 
                            1

�1−2(2𝑥𝑥−1)𝑥𝑥+𝑥𝑥2−2(2𝑦𝑦−1)𝜕𝜕+𝜕𝜕2
= ∑ ∑ 𝑃𝑃𝑛𝑛,𝑘𝑘(𝑥𝑥,𝑦𝑦)𝑠𝑠𝑛𝑛∞

𝑘𝑘=0 𝑡𝑡𝑘𝑘∞
𝑛𝑛=0 .                                                (13) 

 
Following Section 3 in [14], we have the following analytical expression for two variables shifted 
Legendre Polynomials: 
 

𝑃𝑃𝑛𝑛,𝑘𝑘(𝑥𝑥,𝑦𝑦) = ∑ ∑ (1/2)𝑛𝑛+𝑘𝑘−𝑟𝑟−𝑗𝑗(4𝑥𝑥−2)𝑛𝑛−2𝑟𝑟(4𝑦𝑦−2)𝑘𝑘−2𝑗𝑗(−1)𝑟𝑟+𝑗𝑗

𝑟𝑟!𝑗𝑗!(𝑛𝑛−2𝑟𝑟)!(𝑘𝑘−2𝑗𝑗)!

�𝑘𝑘2�
𝑗𝑗=0

�𝑛𝑛2�
𝑟𝑟=0                                    (14) 

 
where (1/2)𝑛𝑛+𝑘𝑘−𝑟𝑟−𝑗𝑗 denotes the falling factorial. It should be noted that the well-known shifted 
Legendre polynomials can be expressed as 𝑃𝑃𝑛𝑛,0(𝑥𝑥,𝑦𝑦) = 𝑃𝑃𝑛𝑛(𝑥𝑥). These two variables shifted Legendre 
Polynomials can also be expressed using the following hypergeometric function: 
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                                                               𝑃𝑃𝑛𝑛,𝑘𝑘(𝑥𝑥,𝑦𝑦) = 2𝑛𝑛+𝑘𝑘(1/2)𝑛𝑛+𝑘𝑘(2𝑥𝑥−1)𝑛𝑛(2𝑦𝑦−1)𝑘𝑘

𝑛𝑛!𝑘𝑘!
× 𝐹𝐹1,0,0

0,1,1 �
−; −𝑛𝑛

2
, 1−𝑛𝑛
2

; −𝑘𝑘
2

, 1−𝑘𝑘
2

;
1−2𝑛𝑛−2𝑘𝑘

2
; −; −;

1
(2𝑥𝑥−1)2

1
(2𝑦𝑦−1)2� .       (15) 

 
For function 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑥𝑥𝑎𝑎𝑦𝑦𝑏𝑏 with 𝑎𝑎, 𝑏𝑏 are positive integers, it is clear that one can obtain it by 
 

𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑥𝑥𝑎𝑎𝑦𝑦𝑏𝑏 = 1
(𝑎𝑎+1)(𝑏𝑏+1)

∑ ∑ 𝑐𝑐𝑛𝑛,𝑘𝑘
∞
𝑘𝑘=0

∞
𝑛𝑛=0 𝑃𝑃𝑛𝑛,𝑘𝑘(𝑥𝑥,𝑦𝑦)                                                               (16) 

 
where 
 

𝑐𝑐𝑛𝑛,𝑘𝑘 = ∫ ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑃𝑃𝑛𝑛,𝑘𝑘(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦1
0

1
0

∫ ∫ 𝑃𝑃𝑛𝑛,𝑘𝑘(𝑥𝑥,𝑦𝑦)𝑃𝑃𝑛𝑛,𝑘𝑘(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦1
0

1
0

                                                                               (17) 

 
Ritz Method 
 
In this Ritz method approach, a pair of variables is employed, specifically shifted Legendre polynomials, 
𝑃𝑃𝑛𝑛,𝑘𝑘(𝑥𝑥, 𝑡𝑡) as the polynomial basis function for solving the space-fractional diffusion wave equation in 
Caputo sense given in Equation (2). 
 
This method involves transforming fractional order FDEs with initial and boundary conditions into an 
optimisation problem, and then expanding the solution using polynomial basis functions with unknown 
coefficients. In [15], the Ritz approach was employed to solve time-delay fractional optimal control 
problems (TDFOCPs). Function approximations are defined and controlled using initial and boundary 
conditions. The unknown state or control, as well as their delayed functions, are estimated first using the 
Ritz technique on the Müntz-Legendre polynomials basis, and then calculated using the fractional 
differential equation provided. In other study, Ritz approach is used to employ the nonlinear discretized 
motion equations that are constructed in accordance with the Timoshenko beam theory [16]. Combining 
the Ritz and collocation methods allows for the solution of two types of pantograph-type problems: 
pantograph fractional differential equations and pantograph fractional optimum control problems. The 
generalised Pell wavelet basis is chosen as the trial function in the Ritz approach [17]. 
 
As per the initial and boundary conditions, we denoted the approximate solution 𝑢𝑢�(𝑥𝑥, 𝑡𝑡) as follows: 
 
               𝑢𝑢�(𝑥𝑥, 𝑡𝑡) = ∑ ∑ 𝐾𝐾𝑛𝑛𝑘𝑘𝑀𝑀

𝑘𝑘=0
𝑀𝑀
𝑛𝑛=0 𝜔𝜔𝑛𝑛𝑘𝑘(𝑥𝑥, 𝑡𝑡) + ζ(𝑥𝑥, 𝑡𝑡), (𝑥𝑥, 𝑡𝑡) ∈ [0, 𝐿𝐿] × [0,𝑇𝑇],                                                (18) 

 
where 𝜔𝜔𝑛𝑛𝑘𝑘(𝑥𝑥, 𝑡𝑡) = 𝑥𝑥(𝑥𝑥 − 𝐿𝐿)𝑡𝑡2𝑃𝑃𝑛𝑛,𝑘𝑘(𝑥𝑥, 𝑡𝑡). The function by ζ(𝑥𝑥, 𝑡𝑡) is the satisfier function. The expression 
𝑃𝑃𝑛𝑛,𝑘𝑘(𝑥𝑥, 𝑡𝑡) represents pair of Legendre polynomials that have been shifted in terms of two variables, 
whereby the expression 𝐾𝐾𝑛𝑛𝑘𝑘 indicates the coefficient that requires computation. The primary objective of 
employing the satisfier function is to ensure that it satisfies both the initial and boundary conditions. 
 
In the Ritz method, it is important to find a proper satisfier function. The satisfier function is an arbitrary 
equation that satisfies all conditions of the problem. The interpolation method is often used to find the 
satisfier function. In this article, the satisfier equation, 𝜁𝜁(𝑥𝑥, 𝑡𝑡) can be constructed via the steps as in [18]. 
Furthermore, the coefficients 𝐾𝐾𝑛𝑛𝑘𝑘 in Equation (18) can also be achieved by utilizing the inner product 
depicted as follows: 
 
                      < 𝐹𝐹(𝑢𝑢�),𝑃𝑃𝑛𝑛,𝑘𝑘(𝑥𝑥, 𝑡𝑡) ≥ ∫ ∫ 𝐹𝐹(𝑢𝑢�)𝑃𝑃𝑛𝑛,𝑘𝑘(𝑥𝑥, 𝑡𝑡)𝑇𝑇

0
𝐿𝐿
0 𝑑𝑑𝑡𝑡 𝑑𝑑𝑥𝑥 = 0,                                                                 (19) 

 
where 
 

𝐹𝐹(𝑢𝑢�) = 𝐷𝐷𝜕𝜕𝑢𝑢�(𝑥𝑥, 𝑡𝑡) − ψ𝐶𝐶𝐷𝐷𝑥𝑥α𝑢𝑢�(𝑥𝑥, 𝑡𝑡) − 𝑓𝑓(𝑥𝑥, 𝑡𝑡).                                                                              (20) 
 

𝑃𝑃𝑛𝑛,𝑘𝑘(𝑥𝑥, 𝑡𝑡) denote the two variables shifted Legendre polynomials. By employing Equation (19), it is 
possible to establish a system of linear equations. Solving this system enables us to derive the 
coefficients of 𝐾𝐾𝑛𝑛𝑘𝑘, where 𝑛𝑛 = 0, … ,𝑀𝑀 and 𝑘𝑘 = 0, … ,𝑀𝑀. Subsequently, by substituting the determined 
values of 𝐾𝐾𝑛𝑛𝑘𝑘 into Equation (18), an estimated solution for the fractional diffusion equation defined in 
the Caputo sense which outlined in Equation (2) can be obtained. 
 
 



 

10.11113/mjfas.v20n4.3533 866 

Md Nasrudin et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 20 (2024) 862–870 

Error Analysis 
 
This section gives a thorough study of the error analysis with regard to the proposed method. To proceed 
in such a study, the following lemma is useful [18].  
 
Lemma 1. Let 𝑢𝑢(𝑥𝑥, 𝑡𝑡) be the solution of space-fractional diffusion equation in which 𝑢𝑢(𝑥𝑥, 𝑡𝑡) ∈
𝐶𝐶𝑚𝑚+1[0,1] × [0,1]. Moreover, let 𝑌𝑌 = 𝑠𝑠𝑝𝑝𝑎𝑎𝑛𝑛{𝑃𝑃0,𝑚𝑚(𝑥𝑥),𝑃𝑃1,𝑚𝑚(𝑥𝑥), … ,𝑃𝑃𝑚𝑚,𝑚𝑚(𝑥𝑥)} ⊂ 𝐿𝐿2[0,1] and 𝑌𝑌′ =
𝑠𝑠𝑝𝑝𝑎𝑎𝑛𝑛{𝑃𝑃0,𝑚𝑚(𝑡𝑡),𝑃𝑃1,𝑚𝑚(𝑡𝑡), … ,𝑃𝑃𝑚𝑚,𝑚𝑚(𝑡𝑡) } ⊂ 𝐿𝐿2[0,1] . By employing the two variables shifted Legendre 
polynomials, we have 𝑢𝑢𝑚𝑚(𝑥𝑥, 𝑡𝑡) = 𝑌𝑌 × 𝑌𝑌′ as the best approximation of 𝑢𝑢(𝑥𝑥, 𝑡𝑡). Here, the error bound may 
be written as [18]: 
 

∥ 𝑢𝑢(𝑥𝑥, 𝑡𝑡) − 𝑢𝑢𝑚𝑚(𝑥𝑥, 𝑡𝑡) ∥2≤
𝑀𝑀

(𝑚𝑚+1)!
√2 2𝑚𝑚+1

�(2𝑚𝑚+3)(𝑚𝑚+2)
.                                                         (21) 

 
Proof. The Taylor series is utilised to derive 
 

                            𝑢𝑢(𝑥𝑥, 𝑡𝑡) = ∑ 1
𝑗𝑗!
�(𝑥𝑥 − 𝑎𝑎) 𝜕𝜕

𝜕𝜕𝑥𝑥
+ (𝑡𝑡 − 𝑏𝑏) 𝜕𝜕

𝜕𝜕𝜕𝜕
�
𝑗𝑗∞

𝑗𝑗=0 𝑢𝑢(𝑥𝑥, 𝑡𝑡).                                                          (22) 
 
To simplify, we assume that 𝑎𝑎 = 𝑏𝑏 = 0. In practical applications, the estimation of 𝑢𝑢(𝑥𝑥, 𝑡𝑡) up to 𝑚𝑚 orders 
is expressed as follows: 
 

𝑢𝑢𝑚𝑚(𝑥𝑥, 𝑡𝑡) = ∑ 1
𝑗𝑗!
�𝑥𝑥 ∂
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+ 𝑡𝑡 ∂
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�
𝑗𝑗𝑚𝑚

𝑗𝑗=0 𝑢𝑢(𝑥𝑥, 𝑡𝑡).                                                                  (23) 
 

Provided that 𝑢𝑢𝑚𝑚(𝑥𝑥, 𝑡𝑡) refers to the best approximation 𝑢𝑢(𝑥𝑥, 𝑡𝑡) out of 𝑌𝑌 × 𝑌𝑌′, we may derive the following 
expression 
 

‖𝑢𝑢(𝑥𝑥, 𝑡𝑡) − 𝑢𝑢𝑚𝑚(𝑥𝑥, 𝑡𝑡)‖2 ≤  �
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�
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√2 2𝑚𝑚+1

�(2𝑚𝑚+3)(𝑚𝑚+2)
, 

 

in which  0 ≤ 𝜉𝜉 ≤ 𝑥𝑥  as well as  0 ≤ 𝜂𝜂 ≤ 𝑡𝑡 , and 𝑀𝑀 ≤ ∑ �𝑚𝑚𝑟𝑟 � �
𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑚𝑚+1

𝑚𝑚+1
𝑟𝑟=0 in which yields the error bound 

given above.∎ 

 
Numerical Examples 
 
The suggested approach from the previous part will be used in this section to get the numerical solutions 
for specific instances of the fractional diffusion equation given by Equation (2).  
 
Example 1 
A fractional diffusion equation is considered as [19]: 
 

𝐷𝐷𝜕𝜕u(𝑥𝑥, 𝑡𝑡) = 𝑥𝑥1.8Γ(1.2)𝐷𝐷𝑥𝑥u(𝑥𝑥, 𝑡𝑡) + 3𝑥𝑥2(2𝑥𝑥 − 1)e−𝜕𝜕,                                                             (24) 
 
with initial and boundary conditions 
 

u(𝑥𝑥, 0) = 𝑥𝑥2(1 − 𝑥𝑥), 
𝑢𝑢(0, 𝑡𝑡) = 0, 𝑢𝑢(1, 𝑡𝑡) = 0. 
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The exact solution is given by 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑥𝑥2(1 − 𝑥𝑥)e−𝜕𝜕. The satisfier function is ζ(𝑥𝑥, 𝑡𝑡) = 𝑥𝑥2(1 − 𝑥𝑥)(1 − 𝑡𝑡), 
which we found by employing the procedure explained in [18]. The numerical result is obtained using 
Maple 2023 by implementing the Ritz technique procedures described in the preceding section. We 
display our result graphically in Figure 1. 
 

 
 

Figure 1. Diagram of the approximate and exact solution with 𝑚𝑚 = 2 for Example 1 
 
 
Figure 1 illustrate the graph for the absolute error by employing 𝑚𝑚 = 2 for the Ritz approximation for 
Example 1. The green plane is the exact solution while the purple dots are our approximate numerical 
solution. Utilising the proposed method, we obtain the following approximation presented in Table 1. 
Here, we compare our method with the finite difference with Chebyshev collocation method.  
 

Table 1. Comparison of the absolute errors obtained via the proposed method with 𝑚𝑚 = 2 with the method in [19] with 𝑚𝑚 = 3 
 

 
 
According to the numerical results in Table 1, our suggested method appears to provide a more accurate 
approximation compared to the method which utilizes the finite difference method with shifted Chebyshev 
polynomials. The error for our proposed method with 𝑚𝑚 = 2 terms falls mainly at 10−7 while the error for 
the comparison method with 𝑚𝑚 = 3 terms is 10−6. 
 
This proves that our method is simpler in its implementation. Our method only needs a small number of 
two-variable shifted Legendre polynomials terms (𝑚𝑚 = 2). Using numerical simulation, the Ritz method 
approximation significantly reduces the number of polynomial terms required to solve fractional diffusion 
equations. With only a few terms of two variable shifted Legendre polynomials, we successfully obtained 
an accurate numerical solution.  

(𝒙𝒙, 𝒕𝒕) Exact solution Abs. error (proposed) Abs. error [19] 
(0.1,0.1) 0.008143536762 1.01295E-07 7.92E-07 
(0.2,0.2) 0.026199384100 5.87510E-07 1.23E-06 
(0.3,0.3) 0.046671547900 5.84220E-07 1.39E-06 
(0.4,0.4) 0.064350724420 9.95960E-07 1.32E-06 
(0.5,0.5) 0.075816332460 3.34620E-06 1.11E-06 
(0.6,0.6) 0.079028875600 3.83660E-06 8.07E-07 
(0.7,0.7) 0.072998039660 7.84620E-07 4.78E-07 
(0.8,0.8) 0.057514107400 3.29450E-06 1.90E-07 
(0.9,0.9) 0.032932142440 2.60854E-06 9.32E-09 
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Example 2 
A space-fractional diffusion equation in Caputo sense is considered as: 
 

𝐷𝐷𝜕𝜕𝑢𝑢(𝑥𝑥, 𝑡𝑡) = Γ(2.2)
6

𝑥𝑥2.8𝐷𝐷𝑥𝑥1.8𝑢𝑢(𝑥𝑥, 𝑡𝑡) − (1 + 𝑥𝑥)𝑥𝑥3𝑒𝑒−𝜕𝜕 ,                                                                 (25) 
 
with initial and boundary conditions 
 

𝑢𝑢(𝑥𝑥, 0) = 𝑥𝑥3, 
u(0, 𝑡𝑡) = 0,   u(1, 𝑡𝑡) = e−𝜕𝜕. 

 
The exact solution is given by 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑥𝑥3e−𝜕𝜕, and the satisfier function is ζ(𝑥𝑥, 𝑡𝑡) = 𝑥𝑥3(1 − 𝑡𝑡) + 𝑥𝑥(𝑡𝑡 − 1) +
𝑥𝑥e−𝜕𝜕. The approximate solution for 𝑚𝑚 = 2 is illustrated in the Figure 2 below. 

 

 
 

Figure 2. Diagram of the approximate and exact solution for Example 2 with 𝑚𝑚 = 2 
 
 

As we can see from Figure 2, our approximate solution is much closer to the exact solution. The data is 
as shown in the third column of Table 2. We extend this example by showing the approximate solution 
for different values of 𝑚𝑚 in Table 2 below.  
 

Table 2. Comparison of the absolute errors derived from the exact solution and the suggested method using 𝑚𝑚 = 2 and 𝑚𝑚 = 3 
 

(𝒙𝒙, 𝒕𝒕) Exact solution Absolute. error 
(M=2) 

Absolute. 
error (M=3) 

(0.1,0.1) 0.000904837418 8.89986E-07 4.25320E-08 
(0.2,0.2) 0.006549846025 3.28210E-06 5.81750E-08 
(0.3,0.3) 0.020002091960 2.98388E-06 1.30860E-07 
(0.4,0.4) 0.042900482940 2.38925E-06 3.38640E-07 
(0.5,0.5) 0.075816332460 9.53698E-06 2.37460E-07 
(0.6,0.6) 0.118543313400 1.17619E-05 1.74300E-07 
(0.7,0.7) 0.170328759200 5.41030E-06 4.44600E-07 
(0.8,0.8) 0.230056429600 4.34210E-06 1.79000E-07 
(0.9,0.9) 0.296389281900 5.68710E-06 1.84300E-07 

 
 
In Table 2, we can see that with the increase in scale level from 𝑚𝑚 = 2 to 𝑚𝑚 = 3, the amount of absolute 
error decreased to a good extent. The value of 𝑚𝑚 indicated the term values in the two-variables shifted 
Legendre polynomials. 𝑚𝑚 = 2 means the two variables of shifted Legendre polynomials are limited up to 
quadratic power. As 𝑚𝑚  increases to 𝑚𝑚 = 3, the accuracy of the approximate solution improves, as shown 
in Table 2. Numerical simulation demonstrates that the Ritz method effectively decreases the polynomial 
terms needed to solve the space-fractional diffusion equations. The method is stable, since the errors 
decrease with an increase in 𝑚𝑚. 



 

10.11113/mjfas.v20n4.3533 869 

Md Nasrudin et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 20 (2024) 862–870 

Discussion 
 
We solved space-fractional diffusion equations by employing the Ritz approximation approach using 
shifted two-variable Legendre polynomials. We achieved an accurate numerical solution by utilising only 
a few of terms from shifted Legendre polynomials in two variables. The Ritz method was selected due 
to its high degree of flexibility, which allows for easy establishment of initial and boundary conditions. 
 
The Ritz method’s idea is that it converts the FDE into a system of algebraic equations, making it simpler 
to solve. Which implies that we will receive the answers for each point simultaneously. This method has 
advantage over other numerical methods that need iteration, linearization, or discretization. 
 
In Table 3, we list the computational order for the numerical results. 𝑂𝑂𝑟𝑟𝑑𝑑𝑒𝑒𝑟𝑟 = 𝑙𝑙𝑙𝑙𝑔𝑔2

𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚
𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚+1

 having 𝑚𝑚 
elements of basis polynomials. 
 

Table 3. Maximum absolute error (MAE) and computational order obtained for all examples 
 

Example 
no. 𝑚𝑚 MAE Order 

1 2 5.52794E-06 - 
 3 2.1165E-07 4.706989563 
 4 1.0267E-07 1.043665798 

2 2 1.168307E-05 - 
 3 3.899E-07 4.905171461 
 4 4.829E-08 3.013307786 

 
 

We may infer from all the numerical results presented in the tables that our numerical solutions agree 
well with the exact solutions, and that the accuracy of the approximate solutions can be increased by 
using more shifted Legendre polynomials terms in the basis function. 
 
Conclusions 
 
The Ritz method resembles the solution with respect to fractional diffusion equations as a linear 
combination with regard to basis functions. This allows for great flexibility in choosing the basis functions 
to best match the problem at hand. As far as we know, utilizing the Ritz method for the space-fractional 
diffusion equation is novel. Analysis and implementation led us to the conclusion that the suggested 
approach for approximating the solution with regard to the space-fractional diffusion equations yields 
promising results. In addition, this method offers a reduction in computational workload compared to 
classical methods while maintaining a high level of accuracy in the numerical results. Mathematicians 
and scientists working in the field of fractional calculus will greatly benefit from it. 
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