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Abstract This study evaluates confidence intervals (Cls) for the population mean in small-
sample settings by comparing the conventional t interval, the classical bootstrap percentile Cl, and
a Bayesian Bootstrap ClI (BB-Cl) based on Dirichlet (1,...,1) weights. Monte Carlo experiments

(M=10,000) were conducted under normal data with =0, variances o’ e {1,1.5, 2} , and sample

sizes n e {5,10,15, 20, 25}. For the resampling methods, B=10,000 replicates were used to form
percentile-type intervals. Performance was assessed by empirical coverage probability and
average interval width. Across most configurations with n<30, BB-CI achieved higher coverage
than both comparators, with gains most pronounced at the smallest n and larger o*. While all
methods exhibited sub-nominal coverage in very small samples, BB-CI consistently mitigated
under-coverage without incurring excessive interval width. These results support BB-Cl as a
practical default for mean inference with limited data, owing to its simple implementation (random
weight draws in place of resampling) and improved finite-sample calibration.
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Introduction

Confidence intervals (Cls) for the population mean are foundational to statistical inference because they
provide an interval estimate that quantifies uncertainty arising from sampling variability. Classical
approaches rely on large-sample approximations—via the central limit theorem (CLT) and the t-
distribution—to justify coverage guarantees. However, when the sample size is small (n<30), nominal
properties may deteriorate: coverage can fall below the target level and interval widths can behave
irregularly, particularly when variance is large, data depart from normality, or outliers exert undue
influence [1-3]. These issues are not merely theoretical; they arise in practical settings where data
collection is expensive or constrained (e.g., early-stage clinical studies, pilot experiments, environmental
monitoring, and small-area estimation), yet reliable uncertainty quantification is still required.

Resampling methods—most notably the bootstrap—offer distribution-lean alternatives by approximating
the sampling distribution of a statistic from the empirical distribution of the observed data [4—6]. In the
canonical percentile bootstrap, one repeatedly resamples the dataset with replacement, recomputes the
statistic of interest, and takes empirical quantiles of the bootstrap distribution to form a CI. While attractive
for its simplicity and minimal modeling assumptions, the percentile Cl may under-cover in very small
samples because the empirical distribution is a coarse surrogate for the true data-generating process,
producing intervals that are too narrow in finite samples [11-14]. Numerous refinements attempt to
address these defects (studentized intervals, bias-corrected and accelerated (BCa) methods, and
double/bootstrap-t schemes), but they can introduce additional complexity, sensitivity to higher-order
approximations, or unstable variance estimates in the low-n regime.

Bayesian methods tackle small-sample uncertainty from a complementary perspective by treating the
unknown mean as a random quantity and combining prior beliefs with the likelihood to produce posterior
summaries, including credible intervals [7—9]. The Bayesian Bootstrap (BB), introduced by Rubin, blends
Bayesian reasoning with resampling by replacing draws of observations with draws of random probability
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weights from a Dirichlet(1,...,1) distribution applied to the original sample [10]. Each draw generates a
random discrete distribution on the observed support, and the statistic (e.g., the mean) is computed as
a weighted average under that random distribution. This “random-weights” mechanism implicitly places
a noninformative prior over the simplex of probability masses and can provide a richer representation of
distributional uncertainty than equal-probability resampling, leading to improved finite-sample calibration
in challenging settings [15-17]. Importantly, BB retains the implementation simplicity of the classical
bootstrap while avoiding explicit parametric priors.

Despite substantial literature on bootstrap inference and a long history of Bayesian modeling, systematic
evidence comparing the classical percentile Cl, the conventional t-interval, and a BB-based ClI for the
mean under genuinely small samples remains comparatively limited. In particular, there is value in
examining how these procedures behave across (i) a spectrum of small-to-moderate sample sizes, (ii)
multiple variance levels that stress the CLT approximation, and (iii) evaluation criteria that practitioners
actually care about—namely empirical coverage probability and average interval width. Clear algorithmic
descriptions are also essential: reproducible step-by-step procedures and pseudocode help bridge the
gap between theory and practice, ensuring that performance claims can be validated and adopted
reliably.

Motivated by these considerations, this paper introduces and evaluates a Bayesian Bootstrap confidence
interval (BB-CI) for the population mean and compares it with the conventional t-based Cl and the
classical bootstrap percentile Cl. Using Monte Carlo experiments over a grid of small-to-moderate n and
multiple variance settings, we quantify finite-sample behavior by empirical coverage and average interval
width. Anticipating the main findings, all methods can be sub-nominal for very small n; however, BB-CI
consistently mitigates under-coverage in most configurations, with the advantage most apparent at the
smallest sample sizes and larger variances.

The contributions are threefold. First, we provide a clear, journal-friendly formulation of BB-CI for the
mean, emphasizing its interpretation as random-weights inference under a noninformative Dirichlet prior
on the probability simplex. Second, we present a comprehensive simulation design targeted at small
samples, along with explicit pseudocode for the conventional, bootstrap, and Bayesian bootstrap
procedures to facilitate replication and reuse. Third, we report systematic evidence on coverage—width
trade-offs that supports BB-Cl as a practical default when sample sizes are limited and distributional
assumptions are uncertain. The remainder of the paper details the bootstrap and BB constructions,
describes the simulation design, presents results, and concludes with implications for applied work and
directions for robustness checks and extensions.

Bootstrap Cl and Bayesian Bootstrap CI

The construction of confidence intervals for the mean using resampling approaches has
become an important alternative to conventional parametric methods, particularly when the
sample size is small or when distributional assumptions may not hold. This section describes
the classical Bootstrap Cl and the Bayesian Bootstrap CI, outlining their procedures and
theoretical underpinnings.

Bootstrap CI
The Bootstrap Cl is based on the principle of resampling with replacement from the observed dataset.
Let X =(x,,x,,....,x,) be a random sample from a normal distribution with unknown mean / and

. 2 .
variance O . The procedure is as follows:

Step 1: From the original sample X, generate a bootstrap sample X of size n by sampling with
replacement.

Step 2: Compute the sample mean X for the bootstrap sample.
Step 3: Repeat steps 1-2 a large number of times (e.g., B=10,000) to construct the empirical distribution

of X'V, X'® X, X®.
Step 4: Estimate the (l—a) confidence interval for the mean using the percentile method:

CIBomxlrap = |:Qa/2 (X* ) > Ql—a/z (X* ):I ) (1 )
Where Qp ()_() denotes the p-th quantile of the bootstrap distribution of the sample mean.

This method provides an approximation to the sampling distribution without requiring strict assumptions
about normality, but its performance may degrade in very small sample sizes due to the limited
representativeness of the empirical distribution.
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Bayesian Bootstrap CI
The Bayesian Bootstrap, introduced by [7], extends the bootstrap framework by incorporating Bayesian
reasoning. Instead of generating resampled datasets, the Bayesian Bootstrap assigns random weights

to each observation using the Dirichlet distribution. Specifically, for the sample X =(x;,x,,...,x,), a
random weight vector
W:(wl,wz,...,wn)u Dirichlet(l,l,...,l) (2)

n
is drawn, where each w; >0 and ZWi =1.
i=1
The Bayesian bootstrap sample mean is then computed as a weighted mean:

n
*b
w =Y wx, . (3)
i=1

This process is repeated B times to generate a collection of weighted means 1", 1 ,...,1™® . The
credible interval for the mean is then obtained by taking empirical quantiles of these weighted means:

CIBayesianBootstmp = [Qa/Z (ﬂ*)ana/z (,U* ):| ’ (4)

Unlike the classical bootstrap, which assumes equal resampling probabilities for each observation, the
Bayesian Bootstrap introduces randomness in the assignment of weights. This approach captures
uncertainty about the empirical distribution more flexibly, thereby improving the accuracy of confidence
intervals in small samples. Moreover, the use of Dirichlet (1,...,1) weights reflects a noninformative prior,
avoiding the need for explicit parametric assumptions while still adhering to Bayesian principles [18].

Comparison and Implications

The fundamental difference between the two methods lies in how they approximate the sampling
distribution of the mean. The classical bootstrap relies on repeated resampling of the observed dataset,
whereas the Bayesian Bootstrap constructs random weighted empirical distributions via Dirichlet-
distributed weights. The latter approach allows for a richer representation of uncertainty and has been
shown to yield superior coverage probabilities and narrower intervals in small-sample contexts.

Research Methodology

This study compares three interval estimators for the population mean—(i) the conventional
Cl, (ii) the classical Bootstrap Cl, and (iii) the Bayesian Bootstrap Cl—under controlled Monte
Carlo experiments. Data are generated from a normal distribution with mean 4 =0 and

variance o’ €{1,1.5,2} across small to moderate sample sizes n €{5,10,15,20,25} . Unless

otherwise stated, the nominal confidence level is 1—a = 0.95. We evaluate coverage
probability and average interval width to assess finite-sample performance.

Data-Generating Process
For each Monte Carlo replicate m=1,...,M:

Step 1: Draw a sample X" = {x]””),...,qu”')} i.i.d. from N(O,o-z) , with & e{l,1.5,2} )

Step 2: Apply each Cl method to obtain CI") = = [L;rg}had,U;'g;ad] .

We set M=10,000 Monte Carlo replicates (matching your original plan) to stabilize estimates
of coverage and width.

Interval Estimators
Conventional CI
When &’ is unknown, we use the t-based interval
- S
Xitl—a/Z,n—l T ’
n
Where o and S? are the sample mean and variance. (If ¢ is treated as known in a

sensitivity check, replace tby zand S by o .)
Bootstrap Cl (Percentile)

(%)
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Given B bootstrap resamples (e.g., B=10,000):
Step 1: For each b=1,...,B, draw X" of size n with replacement from X ;compute X" .

— B
Step 2: Let {X “’)}b:1 denote the bootstrap distribution. The percentile Cl is

[0 (X): 0 (X7) ] ®)

Bayesian Bootstrap Cl (Percentile)
Following Rubin’s Bayesian Bootstrap, for each b=1,...,B:

Step 1: Draw weights W = (Wl(b),wé"’,...,w;”))[ Dirichlet(1,1,...,1).

n

Step 2: Form the weighted mean ,Ll*(b) = Zwr(b)x,- .
i=1

The credible interval (via empirical quantiles) is

[0, (#):Q 0 (1)]- (7)

Performance Metrics
Across Monte Carlo replicates:
Coverage Probability (CP)
A M
CP = LZI{LE:ZPmd = /’l < Ur(nrgt)hod} . (8)
m=1

We report CP for each (n,az) configuration, with emphasis on small samples n<30 as in your
Results table.

Simulation Design and Settings
e Sample sizes: ne{5,10,15,20,25}

e \Variance levels: ¢* €{1,1.5,2}

e Nominal level: 1-a =0.95
Monte Carlo replicates: M=10,000
Resampling/weighting draws: B=10,000 (Bootstrap and Bayesian Bootstrap)
Random seeds are fixed per configuration to ensure reproducibility.

Step-by-Step Explanation of the Monte Carlo Driver Process
In this study, we use Monte Carlo simulation to compare three methods for estimating
Confidence Intervals (Cls) for the population mean, specifically for small sample sizes (n<30)

and varying variances o’ e {1,1.5,2} . The methods compared are: (1) Conventional t-Interval,

(2) Bootstrap Percentile Cl, and (3) Bayesian Bootstrap Cl. The simulation is conducted by
generating random samples from a normal distribution and calculating Cls for each method
across M=10,000 replications.
Here is the Monte Carlo simulation process broken down into clear steps:
Step 1: Initialization (Prepare the Data)
e Define Sample Sizes (n) and Variance Levels ¢
A set of sample sizes n={5,10,15,20,25} is defined.

Variance values o> = {1,1.5, 2} are chosen to test how different variances affect

the coverage and width of the confidence intervals.
e Set Number of Replications (Monte Carlo Replications):
The number of Monte Carlo replications M=10,000 is chosen to ensure reliable
results for coverage and interval width.
Step 2: Data Generation (Monte Carlo Simulation)

e For each combination of sample size n and variance ¢, generate a random sample
from a normal distribution N(O,oz) , where the population mean g =0 and variance

is chosen based on the current test case.
e This random sample will be used in each of the three confidence interval methods.
Step 3: Confidence Interval (Cl) Calculation
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This is the core part of the process where we calculate Confidence Intervals (Cls) for each
random sample using the three different methods.
Conventional t-Interval:
e For the conventional t-based confidence interval, the sample mean and standard
deviation are calculated. The t-statistic is used to compute the margin of error.
e The formula for the Cl is:

S
Il'lita/Z,nfl X \/_ ’ (9)
n

where ¢, , , is the critical value from the t-distribution and SSS is the sample standard

deviation.
Bootstrap Percentile ClI:

e Resampling: The data is resampled with replacement B=10,000 times.

e Compute the Mean for each resampled dataset.

e Percentile Method: The confidence interval is constructed using the percentiles of
the bootstrap distribution. The lower and upper bounds of the Cl are taken from
the a/2 and 1—a/2 percentiles of the bootstrap sample means.

Bayesian Bootstrap ClI:

e Instead of resampling the data, the Bayesian Bootstrap uses random weights
generated from a Dirichlet distribution. These weights are applied to the original
data, and the weighted mean is computed for each resample.

e Dirichlet Distribution: The weights w;,w,,...,w, are drawn from a Dirichlet

distribution Dirichlet(1,1,...,1), ensuring that the weights sum to 1.

e Percentile Method: Like the Bootstrap ClI, the confidence interval is constructed
using the percentiles of the weighted means.

Step 4: Calculate Coverage Probability (CP)

e Coverage Probability (CP):
For each method, the coverage probability is calculated as the proportion of times
the true population mean (which is known in the simulation) lies within the
computed confidence interval.
The formula for CP is:

CP=-L 3L, <usULL) (10)
m=1

where L. ~and U™ = are the lower and upper bounds of the confidence interval for the m-

el method
th replication, respectively.
Step 5: Results Summary and Presentation
e After all replications, the Coverage Probability (CP) is computed for each method
(Conventional, Bootstrap, and Bayesian Bootstrap) across different sample sizes n
and variance settings o”.
e The results are presented in a table (e.g., Table 1) that shows the coverage for each
method at various sample sizes and variances.
e The findings allow us to compare the performance of each method in terms of its
ability to accurately estimate the population mean and the precision of the intervals it
provides.

Results and Discussion

As summarized in Table 1, Monte Carlo coverage probabilities were estimated under a full factorial of
sample sizes (n = {5,10,15,20,25}) and variances o~ e {1,1.5,2} for the Bayesian Bootstrap Cl, the
bootstrap percentile Cl, and the conventional t interval; while all methods exhibit sub-nominal coverage

in very small samples, the Bayesian Bootstrap Cl consistently mitigates undercoverage relative to the
alternatives, particularly when variance is high.
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Table 1. Empirical coverage of confidence intervals in small samples (n < 30) under varying variances.

n Variance Basian Bootstrap CI Bootstrap approach CI conventional CI

1 93.68 93.12 93.13

5 1.5 93.16 91.72 91.73
94.04 93.16 93.17

1 88.56 88.72 88.74

10 1.5 89.08 88.06 88.08
89.30 88.60 88.62

1 86.52 86.24 86.25

15 1.5 86.81 85.89 85.89
88.13 86.46 86.49

1 85.36 85.03 85.05

20 1.5 85.37 84.09 84.10
87.65 86.80 86.81

1 86.26 85.45 85.46

25 1.5 85.68 85.16 85.14
2 85.44 85.24 85.25

Table 1 reports empirical coverage probabilities for the three interval estimators across variance settings
o’ €{1,1.5,2} and small sample sizes 7 < {5,10,15,20,25} . In nearly all configurations, the Bayesian

Bootstrap Cl (BB-CI) attains higher coverage than both the classical Bootstrap percentile Cl and the
conventional t-based ClI, with the advantage most pronounced at the smallest n and larger variance. For

instance, at n=5 and o* =2, BB-Cl achieves 94.04% coverage compared with 93.16% (Bootstrap) and
93.17% (Conventional); at n=15 and o* =2, the improvement persists (88.13% vs. 86.46% and
86.49%); and at n=20 and o> =2, BB-Cl again leads (87.65% vs. 86.80% and 86.81%). Even at n=25
with &% =1, BB-Cl remains favorable (86.26% vs. 85.45% and 85.46%). A few settings show near-parity

or slight shortfalls—for example, n=10 and &> =1 (88.56% for BB-Cl vs. 88.72% and 88.74%)—but the
aggregate pattern clearly favors BB-CI in the low-n regime. These results reflect the general tendency
of small-sample procedures to under-achieve the nominal 95% level, while indicating that BB-CI
mitigates under-coverage more effectively than the comparators.

Mechanistically, the performance gains of BB-Cl are consistent with its construction: instead of
resampling observations with equal probability, the Bayesian Bootstrap draws random probability
weights from a Dirichlet(1,...,1) distribution and forms weighted empirical means. This “random-weights”
device produces a richer representation of uncertainty about the underlying distribution than equal-
probability resampling, thereby improving finite-sample calibration without requiring strong parametric
priors (see Rubin’s original argument for the Bayesian Bootstrap [10] and classical discussions of
bootstrap Cl behavior in small samples [11], [4], [5]). In effect, Dirichlet weights smooth the empirical
distribution over the probability simplex, which can reduce the under-coverage commonly observed for
percentile-type intervals at very small n.

From a Monte Carlo perspective, the observed differences are practically meaningful. With M=10,000
replicates, the standard error of a coverage estimate near 0.90 is approximately

«/0.9(1—0.9)/M ~0.003, so improvements of 1-2 percentage points (0.01-0.02) are well beyond

simulation noise. The consistent advantages for n=5,15,20,25 across several o levels thus indicate
genuine calibration gains rather than artifacts of Monte Carlo variability.

Several qualifications merit note. First, all three procedures exhibit sub-nominal coverage at many small-
n configurations, reflecting the inherent difficulty of achieving 95% coverage with limited data. Second,
while percentile intervals offer a clean, parallel comparison across methods, alternative corrections (e.g.,
studentized or BCa variants) could further improve frequentist properties for both classical and Bayesian
bootstrap procedures; these are natural directions for robustness checks in future work. Finally, results
here focus on normal data; extending the design to heavier-tailed or skewed distributions would help
delineate the scope of BB-CI's advantage.

Overall, the evidence indicates that BB-Cl is a practical and effective alternative for small-sample
inference on the mean, offering improved coverage over both the conventional t interval and the classical
Bootstrap percentile Cl in most scenarios studied. These findings, together with the simplicity of replacing
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resampling by Dirichlet weight draws, support BB-Cl as a default choice when n<30 and distributional
assumptions are uncertain.

Conclusions

This study evaluated three confidence-interval procedures for the mean under small-sample settings and
varying variances. Across most configurations in Table 1, the Bayesian Bootstrap Cl (BB-CI) delivered
higher empirical coverage than both the classical bootstrap (percentile) and the conventional t interval,

with the gains most evident at very small n and larger &*. While all procedures exhibited sub-nominal

coverage when n<30, BB-CI consistently mitigated under-coverage relative to the alternatives, indicating
better finite-sample calibration in the scenarios considered.

Practically, BB-Cl is simple to implement—replacing resampling by Dirichlet(1,...,1) weight draws—and
thus serves as a robust default when sample sizes are limited and distributional assumptions are
uncertain. For routine applications, we recommend BB-CI when n<30, alongside clear reporting of the
resampling/weighting replicates B and the nominal level.

Two limitations frame our findings: (i) results are based on normal data-generating processes, and (ii)
percentile-type intervals were used for both bootstrap methods. Future work should assess studentized
and BCa variants of BB-CI, examine heavy-tailed or skewed distributions, and explore alternative
Dirichlet hyperparameters or empirical Bayes weightings, including extensions to dependent or
heteroskedastic data. Overall, the evidence supports BB-Cl as a practical, accurate option for mean
inference with small samples.
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