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Abstract In this paper, we discuss the energy of the commuting graph. The vertex set of the graph is 

dihedral groups and the edges between two distinct vertices represent the commutativity of the group 
elements. The spectrum of the graph is associated with the Seidel Laplacian and Seidel signless 
Laplacian matrices. The results are similar to the well-known fact that the energies are not odd 
integers. We also highlight the relation that the Seidel signless Laplacian energy is never less than 
Seidel Laplacian energy. Ultimately, we classify the graphs according to the energy value as the 
hyperenergetic. 
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Introduction 
 
The commuting graph, represented by 𝛤𝐺 and defined on the finite group 𝐺, has 𝐺\𝑍(𝐺) as its vertex 

set. This graph requires that 𝑣𝑝 ≠ 𝑣𝑞 ∈ 𝐺\𝑍(𝐺) must be connected by an edge whenever 𝑣𝑝𝑣𝑞 = 𝑣𝑞𝑣𝑝 

[3]. An edge exists between 𝑣𝑝 and 𝑣𝑞 in 𝛤𝐺; such conditions are referred to as adjacent. The adjacency 

matrix of 𝛤𝐺 is denoted as 𝐴(𝛤𝐺) = [𝑎𝑝𝑞], with a dimension of 𝑛 × 𝑛. If 𝑣𝑝 and 𝑣𝑞 are adjacent, 𝑎𝑝𝑞 

equals 1, and if not, it equals 0. Furthermore, 𝑃𝐴(𝛤𝐺)(𝜆) = |𝜆𝐼𝑛 − 𝐴(𝛤𝐺)| is the characteristic polynomial 

formula of 𝐴(𝛤𝐺), where 𝐼𝑛 denotes the identity matrix with a dimension of 𝑛 × 𝑛 [4]. The eigenvalues of 

𝛤𝐺, denoted as 𝜆1, 𝜆2, … , 𝜆𝑛 are the roots of 𝑃𝐴(𝛤𝐺)(𝜆) = 0. The collection of all 𝜆1, 𝜆2, … , 𝜆𝑛 represented 

by 𝑆𝑝𝑒𝑐(𝛤𝐺) = {𝜆1
𝑘1 , 𝜆2

𝑘2 , … , 𝜆𝑛
𝑘𝑛} is referred to as the spectrum of 𝛤𝐺, with 𝑘1, 𝑘2, … , 𝑘𝑛 are the respective 

multiplicities of these values. The spectral radius of 𝛤𝐺 is denoted by the formula 𝜌(𝛤𝐺) = 𝑚𝑎𝑥{|𝜆|: 𝜆 ∈
𝑆𝑝𝑒𝑐(𝛤𝐺)} [7]. Several scholarly articles examine the spectral radius and spectrum of alternative graph 
types, including the non-commuting graph [17] in relation to the Sombor matrix, the coprime graph [18], 
and the cubic power graph [12].  
 
Gutman initially identified the adjacency energy of a finite graph in 1978 [6]. It is represented by 𝐸𝐴(𝛤𝐺) 
and defined as 𝐸𝐴(𝛤𝐺) = ∑ |𝜆𝑖|

𝑛
𝑖=1  for 𝛤𝐺 with 𝑛 vertices. Graphs consisting of 𝑛 vertices and possessing 

an energy greater than 𝐸𝐴(𝐾𝑛) are deemed hyperenergetic, or equivalently, when 𝐸𝐴(𝛤𝐺) exceeds 

2(𝑛 − 1) [8]. Furthermore, energy values are never odd integers ([2],[9]). 
 
A new graph matrix definition was put forward by Van Lint & Seidel (1966) [19], named the Seidel 

matrix of 𝛤𝐺, denoted by 𝑆(𝛤𝐺) = [𝑠𝑝𝑞] whose (𝑝, 𝑞) −th entry is  

𝑠𝑝𝑞 = {

−1,    if 𝑣𝑝 ≠ 𝑣𝑞 and they are adjacent          

1,    if 𝑣𝑝 ≠ 𝑣𝑞 and they are not adjacent

0,    otherwise.                                                

 

 

The diagonal degree matrix of order 𝑛 × 𝑛 associated with 𝛤𝐺 is given by 𝐷(𝛤𝐺) = 𝑑𝑖𝑎𝑔 [𝑛 − 1 −
2𝑑11, 𝑛 − 1 − 2 𝑑22, ⋯ , 𝑛 − 1 − 𝑑𝑛𝑛  ], where 𝑑𝑖𝑖 is the degree of vertex 𝑣𝑖 for 𝑖 = 1,2,… , 𝑛. The Seidel 
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Laplacian matrix [10] of order 𝑛 × 𝑛 associated with 𝛤𝐺 is  

𝑆𝐿(𝛤𝐺) = 𝐷(𝛤𝐺) − 𝑆(𝛤𝐺). 
 
The Seidel signless Laplacian matrix [11] of order 𝑛 × 𝑛 associated with 𝛤𝐺 is  

𝑆𝑆𝐿(𝛤𝐺) = 𝐷(𝛤𝐺) + 𝑆(𝛤𝐺). 
 
Our study centers on the Seidel Laplacian (𝑆𝐿) and Seidel signless Laplacian (𝑆𝑆𝐿) matrices of 𝛤𝐺 

pertaining to the non-abelian dihedral groups of order 2𝑛, 𝐷2𝑛 = 〈𝑎, 𝑏 ∶  𝑎𝑛 = 𝑏2 = 𝑒, 𝑏𝑎𝑏 = 𝑎−1〉, where 

𝑛 is more than or equal to three. Furthermore, its elements can be represented as 𝑎𝑖 and 𝑎𝑖𝑏 [1]. For 

odd 𝑛, the center of 𝐷2𝑛, denoted by 𝑍(𝐷2𝑛), is equivalent to the set {𝑒}; for even 𝑛, it is equal to {𝑒, 𝑎
𝑛
2}. 

The centralizer of 𝑎𝑖 in 𝐷2𝑛 is denoted by 𝐶𝐷2𝑛 (𝑎
𝑖) = { 𝑎𝑗: 1 ≤ 𝑗 ≤ 𝑛 }, and for 𝑎𝑖𝑏, if 𝑛 is odd, it is 

𝐶𝐷2𝑛
(𝑎𝑖𝑏) = {𝑒, 𝑎𝑖𝑏}, and if 𝑛 is even, it is 𝐶𝐷2𝑛

(𝑎𝑖𝑏) = {𝑒, 𝑎
𝑛
2 , 𝑎𝑖𝑏, 𝑎

𝑛
2+𝑖𝑏}. 

 
Some researchers have published recent findings regarding the energy of 𝛤𝐺 for 𝐷2𝑛, where 𝑛 ≥ 3. 
Degree exponent sum [13], maximum and minimum degree [14], degree subtraction [15], and neighbor 
degree sum [16] matrices were among the graph matrices they performed. As an extension of those 
investigations, the spectral radius and energy of 𝛤𝐺 for 𝐷2𝑛 corresponding with Seidel Laplacian and 
Seidel signless Laplacian matrices are discussed in this paper. The methodology involves the following 
steps: generate the Seidel Laplacian and Seidel signless Laplacian matrices of 𝛤𝐺, determine its 

eigenvalues and spectrum, examine 𝜌(𝛤𝐺), calculate the Seidel Laplacian and Seidel signless 

Laplacian energies, and subsequently observe the correlation between 𝜌(𝛤𝐺) and the obtained 

energies. Additionally, we examine the hyperenergetic characteristic of 𝛤𝐺. 

 
Preliminaries 
 
We investigate the commuting graph for the subset of dihedral groups of order 2𝑛, 𝐷2𝑛 denoted by 𝛤𝐺, 

where 𝐺 is one of the following values: 𝐺1, 𝐺2 or 𝐺1 ∪ 𝐺2. The set 𝐺1 is defined as {𝑎𝑖: 1 ≤ 𝑖 ≤ 𝑛}\

𝑍(𝐷2𝑛), and 𝐺2 is defined as {𝑎𝑖𝑏: 1 ≤ 𝑖 ≤ 𝑛}. We define the Seidel Laplacian energy of 𝛤𝐺 as  

𝐸𝑆𝐿(𝛤𝐺) = ∑ |𝜆𝑖|
𝑛
𝑖=1 , 

 
where 𝜆1, 𝜆2, … , 𝜆𝑛 are eigenvalues of 𝑆𝐿(𝛤𝐺), which need not be distinct from one another. The 𝑆𝐿-

spectral radius of 𝛤𝐺 can be calculated as  

𝜌𝑆𝐿(𝛤𝐺) = 𝑚𝑎𝑥{|𝜆|: 𝜆 ∈ 𝑆𝑝𝑒𝑐(𝛤𝐺)}. 
 

Furthermore, in the case where the 𝑆𝐿-energy fulfills the subsequent criteria, 𝛤𝐺 associated with the 𝑆𝐿 

-matrix can be categorized as a hyperenergetic graph, given that it consists of 2𝑛 − 1 (odd 𝑛) and 2𝑛 −
2 (even 𝑛) vertices, 

𝐸𝑆𝐿(𝛤𝐺) > {
4(𝑛 − 1),            for odd 𝑛  

4(𝑛 − 1) − 2,    for even 𝑛.
 

 
In order to determine the roots of 𝑃𝑆𝐿(𝛤𝐺)(𝜆) = 0, elementary row and column operations must be 

performed on 𝑃𝑆𝐿(𝛤𝐺)(𝜆). Denote 𝑅𝑖 and 𝑅𝑖
′ as the 𝑖-th and new 𝑖-th rows, respectively, that result from 

the row operation of 𝑃𝑆𝐿(𝛤𝐺)(𝜆). Furthermore, designate the 𝑖-th column as 𝐶𝑖, and denote the new 𝑖-th 

column obtained from a column operation of 𝑃𝑆𝐿(𝛤𝐺)(𝜆) as 𝐶𝑖
′. The above notations also can be applied 

to the Seidel signless Laplacian matrix. 
 
Now we are moving to the properties for constructing the 𝑆𝐿 and 𝑆𝑆𝐿-matrices. Some previous results 

of 𝛤𝐺 are given below: 
 
Theorem 2.1. [13] Let 𝛤𝐺 be the commuting graph for 𝐷2𝑛, where 𝐺 = 𝐺1 ∪ 𝐺2. Then 

1. The degree of 𝑎𝑖 on 𝛤𝐺 is 𝑑𝑎𝑖 = {
𝑛 − 2, if 𝑛 is odd
𝑛 − 3, if 𝑛 is even,

 

2. the degree of 𝑎𝑖𝑏 on 𝛤𝐺 is 𝑑𝑎𝑖𝑏 = {
0, if 𝑛 is odd
1, if 𝑛 is even.

  

 
Theorem 2.2. [13] Let 𝛤𝐺 be the commuting graph for 𝐷2𝑛. 

1. If  𝐺 = 𝐺1, then 𝛤𝐺 ≅ 𝐾𝑚, where 𝑚 = |𝐺1|.   

2. If  𝐺 = 𝐺2, then 𝛤𝐺 ≅ {
𝐾𝑛,                               if 𝑛 is odd
1 − regular graph, if 𝑛 is even.
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By applying these two theorems, the characteristic polynomial of 𝛤𝐺 can be ascertained through the 

construction of its 𝑆𝐿 and 𝑆𝑆𝐿-matrices. The subsequent finding offers assistance in streamlining the 

procedure for deriving the characteristic polynomial of 𝛤𝐺 for 𝐷2𝑛. 
 

Theorem 2.3. [5] If a square matrix 𝑀 = [
𝐴 𝐵
𝐶 𝐷

] consists of four blocks, where |𝐴| ≠ 0, then  

|𝑀| = |
𝐴 𝐵
0 𝐷 − 𝐶𝐴−1𝐵

| = |𝐴||𝐷 − 𝐶𝐴−1𝐵|. 

 
Main Results 
 
The following theorem gives the characteristic polynomial of some matrices. 
 
Theorem 3.1. If 𝑠, 𝑡 are real numbers, then the characteristic polynomial of an 𝑚 × 𝑚 matrix 

𝑀 = [

𝑠 𝑡 ⋯ 𝑡
𝑡 𝑠 ⋯ 𝑡
⋮ ⋮ ⋱ ⋮
𝑡 𝑡 ⋯ 𝑠

] 

can be simplified in an expression as 

𝑃𝑀(𝜆) = (𝜆 − 𝑠 − (𝑚 − 1)𝑡)(𝜆 − 𝑠 + 𝑡)𝑚−1. 
 
Proof. 
The characteristic polynomial of 𝑀 is 𝑃𝑀(𝜆) = |(𝜆 − 𝑠 + 𝑡)𝐼𝑚 + 𝑡𝐽𝑚|. We replace 𝑅𝑖 by 𝑅𝑖

′ = 𝑅𝑖 − 𝑅1, for 

every 2 ≤ 𝑖 ≤ 𝑚. Then we see  

𝑃𝑀(𝜆) = |
𝜆 − 𝑠 −𝑡𝐽1×(𝑚−1)

−(𝜆 − 𝑠 + 𝑡)𝐽(𝑚−1)×1 (𝜆 − 𝑠 + 𝑡)𝐼𝑚−1
|. 

 
We replace 𝐶1 by 𝐶1

′ = 𝐶1 + 𝐶2 + ⋯+ 𝐶𝑚, then 

𝑃𝑀(𝜆) = |
𝜆 − 𝑠 − (𝑚 − 1)𝑡 −𝑡𝐽1×(𝑚−1)

0(𝑚−1)×1 (𝜆 − 𝑠 + 𝑡)𝐼𝑚−1
|. 

 
It is obvious that 𝑃𝑀(𝜆) is an upper triangular matrix. Thus, it can be simplified as the product of the 
main diagonal entries as given below: 

𝑃𝑀(𝛤𝐺)(𝜆) = (𝜆 − 𝑠 − (𝑚 − 1)𝑡)(𝜆 − 𝑠 + 𝑡)𝑚−1. 

□ 
 
Theorem 3.2. If 𝑠, 𝑡 are real numbers, and even number 𝑛, then the characteristic polynomial of an 

𝑛 × 𝑛 matrix 

𝑀 =

[
 
 
 
 
 
 
 
𝑠 𝑡 ⋯ 𝑡 −𝑡 𝑡 ⋯ 𝑡
𝑡 𝑠 ⋯ 𝑡 𝑡 −𝑡 ⋯ 𝑡
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝑡 𝑡 ⋯ 𝑠 𝑡 𝑡 ⋯ −𝑡

−𝑡 𝑡 ⋯ 𝑡 𝑠 𝑡 ⋯ 𝑡
𝑡 −𝑡 ⋯ 𝑡 𝑡 𝑠 ⋯ 𝑡
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝑡 𝑡 ⋯ −𝑡 𝑡 𝑡 ⋯ 𝑠 ]

 
 
 
 
 
 
 

 

can be simplified in an expression as 

𝑃𝑀(𝜆) = (𝜆 − 𝑠 + (3 − 𝑛)𝑡)(𝜆 − 𝑠 + 3𝑡)
𝑛
2
−1(𝜆 − 𝑠 − 𝑡)

𝑛
2 . 

 
Proof. 
Let 𝑀 be a square matrix of size 𝑛 × 𝑛 as follows: 

𝑀 = [
(𝑠 − 𝑡)𝐼𝑛

2

+ 𝑡𝐽𝑛

2

−2𝑡𝐼𝑛

2

+ 𝑡𝐽𝑛

2

−2𝑡𝐼𝑛

2

+ 𝑡𝐽𝑛

2

(𝑠 − 𝑡)𝐼𝑛

2

+ 𝑡𝐽𝑛

2

]. 

 
We derive the following determinant   

𝑃𝑀(𝛤𝐺)(𝜆) = |
(𝜆 − 𝑠 + 𝑡)𝐼𝑛

2
− 𝑡𝐽𝑛

2
2𝑡𝐼𝑛

2
− 𝑡𝐽𝑛

2

2𝑡𝐼𝑛
2

− 𝑡𝐽𝑛
2

(𝜆 − 𝑠 + 𝑡)𝐼𝑛
2

− 𝑡𝐽𝑛
2

|. 

 

To begin, we replace 𝑅𝑛

2
+𝑖 by 𝑅𝑛

2
+𝑖

′ = 𝑅𝑛

2
+𝑖 − 𝑅𝑖, for 1 ≤ 𝑖 ≤

𝑛

2
. Then, 𝑃𝑀(𝛤𝐺)(𝜆) can be expressed as 
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𝑃𝑀(𝛤𝐺)(𝜆) = |
(𝜆 − 𝑠 + 𝑡)𝐼𝑛

2

− 𝑡𝐽𝑛

2

2𝑡𝐼𝑛

2

− 𝑡𝐽𝑛

2

−(𝜆 − 𝑠 − 𝑡)𝐼𝑛

2

(𝜆 − 𝑠 − 𝑡)𝐼𝑛

2

|. 

 

Consequently, we replace 𝐶𝑖 by 𝐶𝑖
′ = 𝐶𝑖 + 𝐶𝑛

2
+𝑖, for every 1 ≤ 𝑖 ≤

𝑛

2
. Then 𝑃𝑀(𝛤𝐺)(𝜆) can be written as 

𝑃𝑀(𝛤𝐺)(𝜆) = |
(𝜆 − 𝑠 + 3𝑡)𝐼𝑛

2

− 2𝑡𝐽𝑛

2

2𝑡𝐼𝑛

2

− 𝑡𝐽𝑛

2

0𝑛

2

(𝜆 − 𝑠 − 𝑡)𝐼𝑛

2

| = |
𝐴 𝐵
𝐶 𝐷

|. 

 
By using Theorem 2.3, it is the form of  

                                                     𝑃𝑀(𝛤𝐺)(𝜆) = |𝐴||𝐷 − 𝐶𝐴−1𝐵| = |𝐴||𝐷|,                                                (1) 

 

since 𝐶 = 0. The next step for |𝐴|, following Theorem 3.1 with 𝑠 = 𝑠 − 𝑡, 𝑡 = 2𝑡, and 𝑚 =
𝑛

2
, 

consequently 

                                                   |𝐴| = (𝜆 − 𝑠 + (3 − 𝑛)𝑡)(𝜆 − 𝑠 + 3𝑡)
𝑛

2
−1

.                                              (2)  
 
Meanwhile 𝐷 = (𝜆 − 𝑠 − 𝑡)𝐼𝑛

2

 and this is a diagonal matrix. Then  

                                                                   |𝐷| = (𝜆 − 𝑠 − 𝑡)
𝑛

2 .                                                                (3) 
 
Now we substitute Equations (2) and (3) to Equation (1), therefore, 

𝑃𝑀(𝛤𝐺)(𝜆) = (𝜆 − 𝑠 + (3 − 𝑛)𝑡)(𝜆 − 𝑠 + 3𝑡)
𝑛

2
−1(𝜆 − 𝑠 − 𝑡)

𝑛

2. 

□ 
 
Theorem 3.3. If 𝑠, 𝑡 are real numbers, and odd number 𝑛 then the characteristic polynomial of an (2𝑛 −
1) × (2𝑛 − 1) matrix 

𝑀 =

[
 
 
 
 
 
 
 
𝑠 𝑡 ⋯ 𝑡 −𝑡 −𝑡 ⋯ −𝑡
𝑡 𝑠 ⋯ 𝑡 −𝑡 −𝑡 ⋯ −𝑡
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝑡 𝑡 ⋯ 𝑠 −𝑡 −𝑡 ⋯ −𝑡

−𝑡 −𝑡 ⋯ −𝑡 𝑢 −𝑡 ⋯ −𝑡
−𝑡 −𝑡 ⋯ −𝑡 −𝑡 𝑢 ⋯ −𝑡
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

−𝑡 −𝑡 ⋯ −𝑡 −𝑡 −𝑡 ⋯ 𝑢 ]
 
 
 
 
 
 
 

= [
(𝑠 − 𝑡)𝐼𝑛−1 + 𝑡𝐽𝑛−1 −𝑡𝐽(𝑛−1)×𝑛

−𝑡𝐽𝑛×(𝑛−1) (𝑢 + 𝑡)𝐼𝑛 − 𝑡𝐽𝑛
]. 

 
can be simplified in an expression as 

𝑃𝑀(𝜆) = (𝜆 − 𝑠 + 𝑡)𝑛−2((𝜆 − 𝑢 + (𝑛 − 1)𝑡)(𝜆 − 𝑠 − (𝑛 − 2)𝑡) − 𝑛(𝑛 − 1)𝑡2)(𝜆 − 𝑡 − 𝑢)𝑛−1. 

 
Proof. 
The determinant below is the characteristic polynomial for 𝑀,  

𝑃𝑀(𝜆) = |
(𝜆 − 𝑠 + 𝑡)𝐼𝑛−1 − 𝑡𝐽𝑛−1 𝑡𝐽(𝑛−1)×𝑛

𝑡 𝐽𝑛×(𝑛−1) (𝜆 − 𝑢 + 𝑡)𝐼𝑛 + 𝑡𝐽𝑛
|. 

 
To begin, we replace 𝑅1+𝑖 by 𝑅1+𝑖

′ = 𝑅𝑖+1 − 𝑅1 for 1 ≤ 𝑖 ≤ 𝑛 − 2 and replace 𝑅𝑛+𝑖 by 𝑅𝑛+𝑖
′ = 𝑅𝑛+𝑖 − 𝑅𝑛, 

for 1 ≤ 𝑖 ≤ 𝑛 − 1. Then, 𝑃𝑀(𝜆) can be expressed as 
 

𝑃𝑀(𝜆) = |
|

𝜆 − 𝑠 −𝑡𝐽1×(𝑛−2) 𝑡 𝑡𝐽1×(𝑛−1)

−(𝜆 − 𝑡 − 𝑠)𝐽(𝑛−2)×1 (𝜆 − 𝑠 − 𝑡)𝐼𝑛−2 0(𝑛−2)×1 0(𝑛−2)×(𝑛−1)

𝑡 𝑡𝐽1×(𝑛−2) 𝜆 − 𝑢 𝑡𝐽1×(𝑛−1)

0(𝑛−1)×1 0𝑛−1 −(𝜆 − 𝑡 − 𝑢)𝐽(𝑛−1)×1 (𝜆 − 𝑡 − 𝑢)𝐼𝑛−1

|
|. 

 
Consequently, we replace 𝐶1 by 𝐶1

′ = 𝐶1 + 𝐶2 + ⋯+ 𝐶𝑛−1 and replace 𝐶𝑛 by 𝐶𝑛
′ = 𝐶𝑛+1 + 𝐶𝑛+2 + ⋯+

𝐶2𝑛−1. Then 𝑃𝑀(𝜆) can be written as 

𝑃𝑀(𝜆) = |
|

𝜆 − 𝑠 − (𝑛 − 2)𝑡 −𝑡𝐽1×(𝑛−2) 𝑛𝑡 𝑡𝐽1×(𝑛−1)

0(𝑛−2)×1 (𝜆 − 𝑠 + 𝑡)𝐼𝑛−2 0(𝑛−2)×1 0(𝑛−2)×(𝑛−1)

(𝑛 − 1)𝑡 𝑡𝐽1×(𝑛−2) 𝜆 − 𝑢 + (𝑛 − 1)𝑡 𝑡𝐽1×(𝑛−1)

0(𝑛−1)×1 0𝑛−1 0(𝑛−1)×1 (𝜆 − 𝑡 − 𝑢)𝐼𝑛−1

|
|. 

 

We replace 𝑅𝑛 by 𝑅𝑛
′ = 𝑅𝑛 + (

(1−𝑛)𝑡

𝜆−𝑠−(𝑛−2)𝑡
)𝑅1 and following by 𝑅𝑛

′ = 𝑅𝑛 + (
(1−𝑛)𝑡

(𝜆−𝑠+𝑡)(𝜆−𝑠−(𝑛−2)𝑡)
)𝑅2 +
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(
(1−𝑛)𝑡

(𝜆−𝑠+𝑡)(𝜆−𝑠−(𝑛−2)𝑡)
)𝑅3 + ⋯+ (

(1−𝑛)𝑡

(𝜆−𝑠+𝑡)(𝜆−𝑠−(𝑛−2)𝑡)
)𝑅𝑛−1, consequently, 𝑃𝑀(𝜆) can be expressed as 

 

𝑃𝑀(𝜆) =
|

|

𝜆 − 𝑠 − (𝑛 − 2)𝑡 −𝑡𝐽1×(𝑛−2) 𝑛𝑡 𝑡𝐽1×(𝑛−1)

0(𝑛−2)×1 (𝜆 − 𝑠 + 𝑡)𝐼𝑛−2 0(𝑛−2)×1 0(𝑛−2)×(𝑛−1)

0 01×(𝑛−2)
(𝜆−𝑢+(𝑛−1)𝑡)(𝜆−𝑠−(𝑛−2)𝑡)+𝑛(1−𝑛)𝑡2

𝜆−𝑠−(𝑛−2)𝑡

(1−𝑛)𝑡

(𝜆−𝑠+𝑡)(𝜆−𝑠−(𝑛−2)𝑡)
𝐽1×(𝑛−1)

0(𝑛−1)×1 0𝑛−1 0(𝑛−1)×1 (𝜆 − 𝑡 − 𝑢)𝐼𝑛−1

|

|
. 

 

It is obvious that 𝑃𝑀(𝜆) is a diagonal matrix as follows: 

𝑃𝑀(𝜆) = (𝜆 − 𝑠 + 𝑡)𝑛−2((𝜆 − 𝑢 + (𝑛 − 1)𝑡)(𝜆 − 𝑠 − (𝑛 − 2)𝑡) − 𝑛(𝑛 − 1)𝑡2)(𝜆 − 𝑡 − 𝑢)𝑛−1. 

□ 
 
Theorem 3.4. If 𝑟, 𝑠, 𝑡 are real numbers, and even number 𝑛, then the characteristic polynomial of an 

(2𝑛 − 2) × (2𝑛 − 2) matrix 

𝑀 =

[
 
 
 
 
 
 
 
 
𝑟 ⋯ 𝑡 −𝑡 ⋯ −𝑡 −𝑡 ⋯ −𝑡
⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝑡 ⋯ 𝑟 −𝑡 ⋯ −𝑡 −𝑡 ⋯ −𝑡

−𝑡 ⋯ −𝑡 𝑠 ⋯ −𝑡 𝑡 ⋯ −𝑡
⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

−𝑡 ⋯ −𝑡 −𝑡 ⋯ 𝑠 −𝑡 ⋯ 𝑡
−𝑡 ⋯ −𝑡 𝑡 ⋯ −𝑡 𝑠 ⋯ −𝑡
⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

−𝑡 ⋯ −𝑡 −𝑡 ⋯ 𝑡 −𝑡 ⋯ 𝑠 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
(𝑟 − 𝑡)𝐼𝑛−2 + 𝑡𝐽𝑛−2 −𝑡𝐽(𝑛−2)×

𝑛

2

−𝑡𝐽(𝑛−2)×
𝑛

2

−𝑡𝐽𝑛

2
×(𝑛−2) (𝑠 + 𝑡)𝐼𝑛

2

− 𝑡𝐽𝑛

2

2𝑡𝐼𝑛

2

− 𝑡𝐽𝑛

2

−𝑡𝐽𝑛

2
×(𝑛−2) 2𝑡𝐼𝑛

2

− 𝑡𝐽𝑛

2

(𝑠 + 𝑡)𝐼𝑛

2

− 𝑡𝐽𝑛

2]
 
 
 

. 

 
can be simplified in an expression as 

𝑃𝑀(𝜆) = (𝜆 + 𝑡 − 𝑟)𝑛−3(𝜆 + 𝑡 − 𝑠)
𝑛
2(𝜆 − 3𝑡 − 𝑠)

𝑛
2
−1(𝜆2 − (𝑠 + 𝑟)𝜆 + 𝑟𝑠 − (𝑛 − 3)(𝑟 − 𝑠)𝑡 − (2𝑛2 − 8𝑛 + 9)𝑡2). 

 
Proof. 

The determinant below is the characteristic polynomial for 𝑀,  

𝑃𝑀(𝜆) = ||

(𝜆 − 𝑟 + 𝑡)𝐼𝑛−2 − 𝑡𝐽𝑛−2 𝑡𝐽(𝑛−2)×
𝑛

2

𝑡𝐽(𝑛−2)×
𝑛

2

𝑡𝐽𝑛

2
×(𝑛−2) (𝜆 − 𝑠 − 𝑡)𝐼𝑛

2

+ 𝑡𝐽𝑛

2

−2𝑡𝐼𝑛

2

+ 𝑡𝐽𝑛

2

𝑡𝐽𝑛

2
×(𝑛−2) −2𝑡𝐼𝑛

2

+ 𝑡𝐽𝑛

2

(𝜆 − 𝑠 − 𝑡)𝐼𝑛

2

+ 𝑡𝐽𝑛

2

||. 

 

To begin, we replace 𝑅𝑛−2+
𝑛

2
+𝑖 by 𝑅

𝑛−2+
𝑛

2
+𝑖

′ = 𝑅𝑛−2+
𝑛

2
+𝑖 − 𝑅𝑛−2+𝑖, for every 1 ≤ 𝑖 ≤

𝑛

2
, following by 

replacing 𝐶𝑛−2+𝑖 with 𝐶𝑛−2+𝑖
′ = 𝐶𝑛−2+𝑖 + 𝐶𝑛−2+

𝑛

2
+𝑖, replacing 𝑅𝑛−1+𝑖 with 𝑅𝑛−1+𝑖

′ = 𝑅𝑛−1+𝑖 − 𝑅𝑛−1, for 

every 1 ≤ 𝑖 ≤
𝑛

2
− 1, and replacing 𝐶𝑛−1 with 𝐶𝑛−1

′ = 𝐶𝑛−1 + 𝐶𝑛 + 𝐶𝑛+1 + ⋯+ 𝐶𝑛−2+
𝑛

2

. Then, 𝑃𝑀(𝜆) can 

be expressed as 
 

𝑃𝑀(𝜆) =

|

|

|

𝜆 − 𝑟 −𝑡𝐽1×(𝑛−3) 𝑛𝑡 2𝑡𝐽
1×(

𝑛

2
−1)

𝑡 𝑡𝐽
1×(

𝑛

2
−1)

−𝑡𝐽(𝑛−3)×1 (𝜆 − 𝑟 + 𝑡)𝐼𝑛−3 − 𝑡𝐽𝑛−3 𝑛𝑡𝐽(𝑛−3)×1 2𝑡𝐽
(𝑛−3)×(

𝑛

2
−1)

𝑡𝐽(𝑛−3)×1 𝑡𝐽
(𝑛−3)×(

𝑛

2
−1)

𝑡 𝑡𝐽1×(𝑛−3) 𝜆 − 𝑠 + (𝑛 − 3)𝑡 2𝑡𝐽
1×(

𝑛

2
−1)

−𝑡 𝑡𝐽
1×(

𝑛

2
−1)

0
(
𝑛

2
−1)×1

0𝑛

2
−1 0

(
𝑛

2
−1)×1

(𝜆 − 3𝑡 − 𝑠)𝐼𝑛

2
−1 2𝑡𝐽

(
𝑛

2
−1)×1

−2𝑡𝐼𝑛

2
−1

0 01×(𝑛−3) 0 0
1×(

𝑛

2
−1)

𝜆 + 𝑡 − 𝑠 0
1×(

𝑛

2
−1)

0
(
𝑛

2
−1)×1

0𝑛

2
−1 0

(
𝑛

2
−1)×1

0𝑛

2
−1 0

(
𝑛

2
−1)×1

(𝜆 + 𝑡 − 𝑠)𝐼𝑛

2
−1

|

|

|

. 

 
Consequently, we replace 𝐶𝑖 by 𝐶𝑖

′ = 𝐶𝑖 − 𝐶𝑛−2 for every 1 ≤ 𝑖 ≤ 𝑛 − 3, and replace 𝑅𝑛−2 by 𝑅𝑛−2
′ =

𝑅𝑛−2 + 𝑅1 + 𝑅2 + ⋯+ 𝑅𝑛−3. Then 𝑃𝑀(𝜆) can be written as 
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𝑃𝑀(𝜆) =

|

|

|

(𝜆 − 𝑟 + 𝑡)𝐼𝑛−3 −𝑡𝐽(𝑛−3)×1 𝑛𝑡𝐽(𝑛−3)×1 2𝑡𝐽
(𝑛−3)×(

𝑛

2
−1)

𝑡𝐽(𝑛−3)×1 𝑡𝐽
(𝑛−3)×(

𝑛

2
−1)

01×(𝑛−3) 𝜆 − 𝑟 − (𝑛 − 3)𝑡 𝑛(𝑛 − 2)𝑡 2(𝑛 − 2)𝑡𝐽
1×(

𝑛

2
−1)

(𝑛 − 2)𝑡 (𝑛 − 2)𝑡𝐽
1×(

𝑛

2
−1)

01×(𝑛−3) 𝑡 𝜆 − 𝑠 + (𝑛 − 3)𝑡 2𝑡𝐽
1×(

𝑛

2
−1)

−𝑡 𝑡𝐽
1×(

𝑛

2
−1)

0
(
𝑛

2
−1)×(𝑛−3)

0
(
𝑛

2
−1)×1

0
(
𝑛

2
−1)×1

(𝜆 − 3𝑡 − 𝑠)𝐼𝑛

2
−1 2𝑡𝐽

(
𝑛

2
−1)×1

−2𝑡𝐼𝑛

2
−1

01×(𝑛−3) 0 0 0
1×(

𝑛

2
−1)

𝜆 + 𝑡 − 𝑠 0
1×(

𝑛

2
−1)

0
(
𝑛

2
−1)×(𝑛−3)

0
(
𝑛

2
−1)×1

0
(
𝑛

2
−1)×1

0𝑛

2
−1 0

(
𝑛

2
−1)×1

(𝜆 + 𝑡 − 𝑠)𝐼𝑛

2
−1

|

|

|

. 

 
Based on Theorem 2.3, it implies that 𝑃𝑀(𝜆) can be expressed as 

 𝑃𝑀(𝜆) = (𝜆 + 𝑡 − 𝑟)𝑛−3(𝜆 + 𝑡 − 𝑠)
𝑛
2(𝜆 − 3𝑡 − 𝑠)

𝑛
2
−1((𝜆 − 𝑟 − (𝑛 − 3)𝑡)(𝜆 − 𝑠 + (𝑛 − 3)𝑡) − 𝑛(𝑛 − 2)𝑡2) 

= (𝜆 + 𝑡 − 𝑟)𝑛−3(𝜆 + 𝑡 − 𝑠)
𝑛
2(𝜆 − 3𝑡 − 𝑠)

𝑛
2
−1(𝜆2 − (𝑠 + 𝑟)𝜆 + 𝑟𝑠 − (𝑛 − 3)(𝑟 − 𝑠)𝑡 − (2𝑛2 − 8𝑛 + 9)𝑡2). 

□ 
 
The following theorem is the result of Seidel Laplacian energy of the commuting graph 𝛤𝐺, where 𝐺 =
𝐺1 or 𝐺 = 𝐺2. 
 
Theorem 3.5. Let 𝛤𝐺 be the commuting graph for 𝐷2𝑛, and 𝐸𝑆𝐿(𝛤𝐺) be the Seidel Laplacian energy of 

𝛤𝐺. If 𝐺 = 𝐺1 or 𝐺 = 𝐺2, then 

1. If 𝐺 = 𝐺1, then  𝐸𝑆𝐿(𝛤𝐺) = {
(𝑛 − 2)(𝑛 − 1),    if 𝑛 is odd
(𝑛 − 3)(𝑛 − 2),    if 𝑛 is even.

 

2. If 𝐺 = 𝐺2, then 𝐸𝑆𝐿(𝛤𝐺) = {
𝑛(𝑛 − 1),    if 𝑛 is odd
𝑛(𝑛 − 3),    if 𝑛 is even.

 

 
Proof. 
1.  For 𝐺 = 𝐺1 and 𝑛 is odd, from Theorem 2.2 (1), we know that 𝛤𝐺 ≅ 𝐾𝑚, where 𝑚 = |𝐺1| = 𝑛 − 1, and 

from Theorem 2.1 (1) clearly that every vertex of 𝛤𝐺 has degree 𝑛 − 2. Then 𝐷(𝛤𝐺) is an (𝑛 − 1) × (𝑛 −
1) diagonal matrix whose diagonal entries are 𝑛 − 1 − 1 − 2(𝑛 − 2) = 2 − 𝑛 as 𝑑𝑖𝑎𝑔(2 − 𝑛, 2 − 𝑛,⋯ , 2 −
𝑛). The Seidel Laplacian matrix of 𝛤𝐺 is  

𝑆𝐿(𝛤𝐺) = 𝐷(𝛤𝐺) − 𝑆(𝛤𝐺) = [

2 − 𝑛 0 ⋯ 0
0 2 − 𝑛 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 2 − 𝑛

] − [

0 −1 ⋯ −1
−1 0 ⋯ −1
⋮ ⋮ ⋱ ⋮

−1 −1 ⋯ 0

] = [

2 − 𝑛 1 ⋯ 1
1 2 − 𝑛 ⋯ 1
⋮ ⋮ ⋱ ⋮
1 1 ⋯ 2 − 𝑛

]. 

 
Following Theorem 3.1 with 𝑠 = 2 − 𝑛, 𝑡 = 1, and 𝑚 = 𝑛 − 1, then the characteristic polynomial of 

𝑆𝐿(𝛤𝐺) 
𝑃𝑆𝐿(𝛤𝐺)(𝜆) = 𝜆(𝜆 + 𝑛 − 1)𝑛−2. 

 
Hence, the roots of 𝑃𝑆𝐿(𝛤𝐺)(𝜆) = 0 are a single 𝜆1 = 0 and 𝜆2 = 1 − 𝑛 with multiplicity 𝑛 − 2. 

Consequently, the spectrum of 𝛤𝐺 is  

𝑆𝑝𝑒𝑐(𝛤𝐺) = {(0)1, (1 − 𝑛)𝑛−2}. 
 

The Seidel Laplacian energy of 𝛤𝐺 will be 

𝐸𝑆𝐿(𝛤𝐺) = (1)|0| + (𝑛 − 2)|1 − 𝑛| = (𝑛 − 2)(𝑛 − 1). 
 
Same idea for 𝐺 = 𝐺1 and 𝑛 is even, from Theorem 2.2 (1), we know that 𝛤𝐺 ≅ 𝐾𝑚, where 𝑚 = |𝐺1| =
𝑛 − 2, and from Theorem 2.1 (1) clearly that every vertex of 𝛤𝐺 has degree 𝑛 − 3. Then 𝐷(𝛤𝐺) is an 
(𝑛 − 2) × (𝑛 − 2) diagonal matrix whose diagonal entries are 𝑛 − 2 − 1 − 2(𝑛 − 3) = 3 − 𝑛 as as 

𝑑𝑖𝑎𝑔(3 − 𝑛, 3 − 𝑛,⋯ , 3 − 𝑛). The Seidel Laplacian matrix of 𝛤𝐺 is  

𝑆𝐿(𝛤𝐺) = 𝐷(𝛤𝐺) − 𝑆(𝛤𝐺) = [

3 − 𝑛 1 ⋯ 1
1 3 − 𝑛 ⋯ 1
⋮ ⋮ ⋱ ⋮
1 1 ⋯ 3 − 𝑛

] = [(2 − 𝑛)𝐼𝑛−2 + 𝐽𝑛−2]. 

 
Following Theorem 3.1 with 𝑠 = 3 − 𝑛, 𝑡 = 1, and 𝑚 = 𝑛 − 2, we get the characteristic polynomial of 

𝑆𝐿(𝛤𝐺) 
𝑃𝑆𝐿(𝛤𝐺)(𝜆) = 𝜆(𝜆 + 𝑛 − 2)𝑛−3. 

 
The roots of 𝑃𝑆𝐿(𝛤𝐺)(𝜆) = 0 are a single 𝜆1 = 0 and 𝜆2 = 2 − 𝑛 with multiplicity 𝑛 − 3. Thus, the 

spectrum of 𝛤𝐺 is  
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𝑆𝑝𝑒𝑐(𝛤𝐺) = {(1)1, (2 − 𝑛)𝑛−3}. 
 

Therefore, the Seidel Laplacian energy of 𝛤𝐺 will be 

𝐸𝑆𝐿(𝛤𝐺) = (1)|0| + (𝑛 − 3)|2 − 𝑛| = (𝑛 − 3)(𝑛 − 2). 
 

2. When 𝒏 is odd. Based on Theorem 2.2 (2), 𝛤𝐺 ≅ 𝐾𝑛, for 𝐺 = 𝐺2 which clearly shows that all of the 

vertices have degree zero. Then 𝐷(𝛤𝐺) is an 𝑛 × 𝑛 diagonal matrix whose diagonal entries are 𝑛 − 1 −
2(0) = 𝑛 − 1 as as 𝑑𝑖𝑎𝑔(𝑛 − 1, 𝑛 − 1,⋯ , 𝑛 − 1). Then an 𝑛 × 𝑛 Seidel Laplacian matrix of 𝛤𝐺 is 

𝑆𝐿(𝛤𝐺) = 𝐷(𝛤𝐺) − 𝑆(𝛤𝐺) = [

𝑛 − 1 0 ⋯ 0
0 𝑛 − 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑛 − 1

] − [

0 1 ⋯ 1
1 0 ⋯ 1
⋮ ⋮ ⋱ ⋮
1 1 ⋯ 0

] = [

𝑛 − 1 −1 ⋯ −1
−1 𝑛 − 1 ⋯ −1
⋮ ⋮ ⋱ ⋮

−1 −1 ⋯ 𝑛 − 1

]. 

 
Following Theorem 3.1 with 𝑠 = 𝑛 − 1, 𝑡 = −1, and 𝑚 = 𝑛, then the characteristic polynomial of 𝑆𝐿(𝛤𝐺) 

𝑃𝑆𝐿(𝛤𝐺)(𝜆) = 𝜆(𝜆 − 𝑛)𝑛−1. 

 

Then the roots of 𝑃𝑆𝐿(𝛤𝐺)(𝜆) = 0 are a single 𝜆1 = 0 and 𝜆2 = 𝑛 with multiplicity 𝑛 − 1. Thus, the 

spectrum of 𝛤𝐺 is 

𝑆𝑝𝑒𝑐(𝛤𝐺) = {(𝑛)𝑛−1, (0)1}. 
 
The Seidel Laplacian energy of 𝛤𝐺 is 

𝐸𝑆𝐿(𝛤𝐺) = (1)|0| + (𝑛 − 1)|𝑛| = 𝑛(𝑛 − 1). 
 
When 𝒏 is even. According to theorem 2.2 (2), for 𝐺 = 𝐺2, 𝛤𝐺 is a regular graph with degree one, or in 

other words, the edges only connect between 𝑎𝑖𝑏 and  𝑎
𝑛
2+𝑖𝑏. Then 𝐷(𝛤𝐺) is an 𝑛 × 𝑛 diagonal matrix 

whose diagonal entries are 𝑛 − 1 − 2(1) = 𝑛 − 3 as 𝑑𝑖𝑎𝑔(𝑛 − 3, 𝑛 − 3,⋯ , 𝑛 − 3). Then an 𝑛 × 𝑛 Seidel 

Laplacian matrix of 𝛤𝐺 is 

𝑆𝐿(𝛤𝐺) =

[
 
 
 
 
 
 
 
𝑛 − 3 −1 ⋯ −1 1 −1 ⋯ −1
−1 𝑛 − 3 ⋯ −1 −1 1 ⋯ −1
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

−1 −1 ⋯ 𝑛 − 3 −1 −1 ⋯ 1
1 −1 ⋯ −1 𝑛 − 3 −1 ⋯ −1

−1 1 ⋯ −1 −1 𝑛 − 3 ⋯ −1
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

−1 −1 ⋯ 1 −1 −1 ⋯ 𝑛 − 3]
 
 
 
 
 
 
 

= [
(𝑛 − 2)𝐼𝑛

2

− 𝐽𝑛

2

2𝐼𝑛

2

− 𝐽𝑛

2

2𝐼𝑛

2

− 𝐽𝑛

2

(𝑛 − 2)𝐼𝑛

2

− 𝐽𝑛

2

]. 

 
Following Theorem 3.2 with 𝑠 = 𝑛 − 3 and 𝑡 = −1, therefore,  

𝑃𝑆𝐿(𝛤𝐺)(𝜆) = 𝜆(𝜆 − 𝑛)
𝑛

2
−1(𝜆 + 4 − 𝑛)

𝑛

2. 

 

Then the roots of 𝑃𝑆𝐿(𝛤𝐺)(𝜆) = 0 are a single 𝜆1 = 0, 𝜆2 = 𝑛 with multiplicity 
𝑛

2
− 1, and 𝜆3 = 𝑛 − 4 with 

multiplicity 
𝑛

2
. Thus, the spectrum of 𝛤𝐺 is 

𝑆𝑝𝑒𝑐(𝛤𝐺) = {(𝑛)
𝑛

2
−1, (𝑛 − 4)

𝑛

2 , (0)1}. 

 
and the Seidel Laplacian energy of 𝛤𝐺 is 

𝐸𝑆𝐿(𝛤𝐺) = (1)|0| + ( 
𝑛

2
− 1) |𝑛| + (

𝑛

2
) |𝑛 − 4| = 𝑛(𝑛 − 3). 

□ 
 
We now formulate 𝑃𝑆𝐿(𝛤𝐺)(𝜆) and calculate the Seidel Laplacian energy of 𝛤𝐺 for 𝐺 = 𝐺1 ∪ 𝐺2. The 

following Theorem gives the spectrum, 𝑆𝐿-spectral radius, and 𝑆𝐿-energy of 𝛤𝐺 for 𝐺 = 𝐺1 ∪ 𝐺2. Then, 
the relation between them is obtained at the end of this paper. 
 
Theorem 3.6. Let 𝛤𝐺 be the commuting graph for 𝐷2𝑛, where 𝐺 = 𝐺1 ∪ 𝐺2 ⊂ 𝐷2𝑛, then the 𝑆𝐿-energy for 

𝛤𝐺 is 

1. for odd 𝑛, 𝐸𝑆𝐿(𝛤𝐺) = 2(𝑛 + 1)(𝑛 − 1), 
2. for even 𝑛, 𝐸𝑆𝐿(𝛤𝐺) = 2(𝑛2 − 𝑛 − 3). 
 
Proof. 
1. For the case of odd 𝑛, we know that 𝑍(𝐷2𝑛) = {𝑒} which implies that there are 2𝑛 − 1 vertices for 

𝛤𝐺. From Theorem 2.2, the degree of 𝑎𝑖 ∈ 𝐺, 𝑑𝑎𝑖 = 𝑛 − 2 and the degree of 𝑎𝑖𝑏 ∈ 𝐺, 𝑑𝑎𝑖𝑏 = 0, for all 1 ≤
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𝑖 ≤ 𝑛. Then 𝐷(𝛤𝐺) is a (2𝑛 − 1) × (2𝑛 − 1) diagonal matrix whose diagonal entries are 2𝑛 − 1 − 1 −
2(𝑛 − 2) = 2  for element 𝑎𝑖, and are 2𝑛 − 1 − 1 − 2(0) = 2(𝑛 − 1) , for element 𝑎𝑖𝑏 as 

𝑑𝑖𝑎𝑔(2, 2,⋯ ,2, 2(𝑛 − 1), 2(𝑛 − 1),⋯ , 2(𝑛 − 1)). 
 

From the fact that the centralizer of 𝑎𝑖 in 𝐷2𝑛 is {𝑒, 𝑎, 𝑎2, ⋯ , 𝑎𝑛−1}, then the vertex 𝑎𝑖, for 1 ≤ 𝑖 ≤ 𝑛 − 1, 

is adjacent to all vertices of 𝐺1, however, it is not adjacent to all vertices of 𝐺2. While the centralizer of 

𝑎𝑖𝑏 in 𝐷2𝑛 is {𝑒, 𝑎𝑖𝑏} implies that for 1 ≤ 𝑖 ≤ 𝑛, vertex 𝑎𝑖𝑏 is not connected with all other elements of 

𝐺1 ∪ 𝐺2. Then a (2𝑛 − 1) × (2𝑛 − 1) Seidel Laplacian matrix of 𝛤𝐺 is 

𝑆𝐿(𝛤𝐺) = 𝐷(𝛤𝐺) − 𝑆(𝛤𝐺)=

⬚
𝑎
𝑎⬚

2

⋮
𝑎⬚

𝑛−1

𝑏
𝑎𝑏
⋮

𝑎⬚
𝑛−1𝑏

𝑎   𝑎2 ⋯ 𝑎𝑛−1    𝑏              𝑎𝑏     ⋯    𝑎𝑛−1𝑏  

[
 
 
 
 
 
 
 

2 1 ⋯ 1 −1  −1 ⋯ −1   
1 2 ⋯ 1 −1 −1 ⋯ −1   
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮    
1 1 ⋯ 2 −1 −1 ⋯ −1   

−1 −1 ⋯ −1 2(𝑛 − 1) −1 ⋯ −1   
−1 −1 ⋯ −1 −1 2(𝑛 − 1) ⋯ −1   
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮    

−1 −1 ⋯ −1 −1 −1 ⋯ 2(𝑛 − 1)  ]
 
 
 
 
 
 
 

. 

 
Then by using Theorem 3.3, with 𝑠 = 2, 𝑢 = 2(𝑛 − 1), 𝑡 = 1, 𝑛1 = 𝑛 − 1 and 𝑛2 = 𝑛, we obtain 

𝑃𝑆𝐿(𝛤𝐺)(𝜆) = 𝜆(𝜆 − 1)𝑛−2(𝜆 − 2𝑛 + 1)𝑛. 

 
This result is the four eigenvalues obtained from 𝑃𝑆𝐿(𝛤𝐺)(𝜆). They are as single 𝜆1 = 0, 𝜆2 = 1 of 

multiplicity 𝑛 − 2 and 𝜆3 = 2𝑛 − 1 of multiplicity 𝑛. Hence, the 𝑆𝐿 −spectrum for 𝛤𝐺 is as follows 

𝑆𝑝𝑒𝑐(𝛤𝐺) = {(2𝑛 − 1)𝑛, (1)𝑛−2, (0)1}. 
 
Now for 𝑖 = 1,2,3, the maximum of absolute eigenvalues |𝜆𝑖| is the 𝑆𝐿-spectral radius of 𝛤𝐺, 

𝜌𝑆𝐿(𝛤𝐺) = 2𝑛 − 1. 
 
By computing the eigenvalues from 𝑆𝑝𝑒𝑐(𝛤𝐺), then the 𝑆𝐿-energy for 𝛤𝐺 is  

𝐸𝑆𝐿(𝛤𝐺) = (𝑛)|2𝑛 − 1| + (𝑛 − 2)|1| + (1)|0| = 2(𝑛 + 1)(𝑛 − 1). 
 

2. Suppose now 𝑛 is even. Since 𝑍(𝐷2𝑛) = {𝑒, 𝑎
𝑛
2}, 𝛤𝐺, where 𝐺 = 𝐺1 ∪ 𝐺2 has 2𝑛 − 2 vertices with 𝑛 −

2 vertices from 𝑎𝑖, for 1 ≤ 𝑖 <
𝑛

2
, 

𝑛

2
< 𝑖 < 𝑛, and 𝑛 vertices from 𝑎𝑖𝑏, for 1 ≤ 𝑖 ≤ 𝑛. Using Theorem 2.2, 

we know that 𝑑𝑎𝑖 = 𝑛 − 3 and 𝑑𝑎𝑖𝑏 = 1, for all 1 ≤ 𝑖 ≤ 𝑛, then 𝐷(𝛤𝐺) is a (2𝑛 − 2) × (2𝑛 − 2) diagonal 

matrix whose diagonal entries are 2𝑛 − 2 − 1 − 2(𝑛 − 3) = 3  for element 𝑎𝑖, and are 2𝑛 − 2 − 1 −
2(1) = 2𝑛 − 5 , for element 𝑎𝑖𝑏 as 

𝑑𝑖𝑎𝑔[3, 3,⋯ , 3, 2𝑛 − 5, 2𝑛 − 5,⋯ , 2𝑛 − 5]. 
 

Again, considering the centralizer of 𝑎𝑖 in 𝐷2𝑛, then all the members of 𝐺1 are only connected with the 

elements of 𝐺1. Since the centralizer of 𝑎𝑖𝑏 is {𝑒, 𝑎
𝑛
2 , 𝑎𝑖𝑏, 𝑎

𝑛
2+𝑖𝑏 }, then two vertices 𝑎𝑖𝑏 and 𝑎

𝑛
2+𝑖𝑏 are 

always connected in 𝛤𝐺, which implies a (2𝑛 − 2) × (2𝑛 − 2) Seidel Laplacian matrix of 𝛤𝐺 is 𝑆𝐿(𝛤𝐺) =
𝐷(𝛤𝐺) − 𝑆(𝛤𝐺) as follows: 

𝑆𝐿(𝛤𝐺) =

⬚
𝑎
𝑎2

⋮
𝑎𝑛

𝑏
𝑎𝑏
⋮

𝑎
𝑛

2
−1𝑏

𝑎
𝑛
2𝑏

𝑎
𝑛
2+1𝑏
⋮

𝑎𝑛−1𝑏

   𝑎   𝑎2 ⋯ 𝑎𝑛      𝑏         𝑎𝑏    ⋯     𝑎
𝑛
2−1𝑏    𝑎

𝑛
2𝑏          𝑎

𝑛
2+1𝑏    ⋯   𝑎𝑛−1𝑏        

[
 
 
 
 
 
 
 
 
 
 
 

3 1 ⋯ 1 −1 −1 ⋯    −1      −1       −1     ⋯  −1
1 3 ⋯ 1 −1 −1 ⋯  −1  −1     −1     ⋯  −1
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱  ⋮  ⋮     ⋮     ⋱   ⋮
1 1 ⋯ 3 −1 −1 ⋯  −1  −1     −1     ⋯  −1

−1 −1 ⋯ −1 2𝑛 − 5 −1 ⋯  −1  1     −1     ⋯  −1
−1 −1 ⋯ −1 −1 2𝑛 − 5 ⋯  −1  −1     1    ⋯  −1
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱  ⋮  ⋮     ⋮     ⋱  ⋮

−1 −1 ⋯ −1 −1 −1 ⋯  2𝑛 − 5  −1     −1     ⋯  1
−1 −1 ⋯ −1 1 −1 ⋯  −1  2𝑛 − 5     −1     ⋯  −1
−1 −1 ⋯ −1 −1 1 ⋯  −1  −1     2𝑛 − 5     ⋯  −1
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱  ⋮  ⋮     ⋮     ⋱  ⋮

−1 −1 ⋯ −1 −1 −1 ⋯  1  −1    −1     ⋯  2𝑛 − 5

     

]
 
 
 
 
 
 
 
 
 
 
 

. 

 
By using the block matrix, the Seidel Laplacian matrix of 𝛤𝐺 can be derived as  
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𝑆𝐿(𝛤𝐺) =

[
 
 
 
2𝐼𝑛−2 + 𝐽𝑛−2 −𝐽(𝑛−2)×

𝑛

2

−𝐽(𝑛−2)×
𝑛

2

−𝐽𝑛

2
×(𝑛−2) (2𝑛 − 4)𝐼𝑛

2

− 𝐽𝑛

2

(2𝐼 − 𝐽)𝑛

2

−𝐽𝑛

2
×(𝑛−2) (2𝐼 − 𝐽)𝑛

2

(2𝑛 − 4)𝐼𝑛

2

− 𝐽𝑛

2]
 
 
 

, 

 

According to Theorem 3.4 with 𝑟 = 3, 𝑠 = 2𝑛 − 5, and 𝑡 = 1, we get  

 𝑃𝑆𝐿(𝛤𝐺)(𝜆) = 𝜆(𝜆 − 2)𝑛−3(𝜆 − 2𝑛 + 2)
𝑛

2(𝜆 − 2𝑛 + 6)
𝑛

2. 

 

It is obvious that 𝜆1 = 2 of multiplicity 𝑛 − 3, a single 𝜆2 = 0, 𝜆3 = 2𝑛 − 2 of multiplicity 
𝑛

2
, 𝜆4 = 2𝑛 − 6 of 

multiplicity 
𝑛

2
. So that the spectrum of 𝛤𝐺 is 

𝑆𝑝𝑒𝑐(𝛤𝐺) = {(2𝑛 − 2) 
𝑛

2 , (2𝑛 − 6)
𝑛

2 , (2) 𝑛−3, (0)1}. 

 
Taking the maximum absolute eigenvalues, then we derive the 𝑆𝐿-spectral radius of 𝛤𝐺, 

𝜌𝑆𝐿(𝛤𝐺) = 2(𝑛 − 1). 
 
Using 𝑆𝑝𝑒𝑐(𝛤𝐺) we obtain the 𝑆𝐿-energy for 𝛤𝐺 as given below 

 𝐸𝑆𝐿(𝛤𝐺) = (
𝑛

2
) |2𝑛 − 2| + (

𝑛

2
) |2𝑛 − 6| + (𝑛 − 3)|2| + (1)|0| = 2(𝑛2 − 𝑛 − 3). 

     □ 
 

Theorem 3.7. Let 𝛤𝐺 be the commuting graph for 𝐷2𝑛, and 𝐸𝑆𝑆𝐿(𝛤𝐺) be the Seidel signless Laplacian 

energy of 𝛤𝐺. If 𝐺 = 𝐺1 or 𝐺 = 𝐺2, then 

1. If 𝐺 = 𝐺1, then  𝐸𝑆𝑆𝐿(𝛤𝐺) = {
(𝑛 − 2)(𝑛 − 1),    if 𝑛 is odd
(𝑛 − 3)(𝑛 − 2),    if 𝑛 is even.

 

2. If 𝐺 = 𝐺2, then 𝐸𝑆𝑆𝐿(𝛤𝐺) = {
𝑛(𝑛 − 1),    if 𝑛 is odd  
8,                   if 𝑛 = 4      
𝑛(𝑛 − 3),     if 𝑛 is even

  

 
Proof. 

1.  By the same argument of Theorem 3.5 (1), the Seidel signless Laplacian matrix of 𝛤𝐺 is an (𝑛 − 1) ×
(𝑛 − 1) matrix as follows: 

𝑆𝑆𝐿(𝛤𝐺) = 𝐷(𝛤𝐺) + 𝑆(𝛤𝐺) = [

2 − 𝑛 −1 ⋯ −1
−1 2 − 𝑛 ⋯ −1
⋮ ⋮ ⋱ ⋮

−1 −1 ⋯ 2 − 𝑛

] = [(1 − 𝑛)𝐼𝑛−1 − 𝐽𝑛−1]. 

 
Following Theorem 3.1 with 𝑠 = 2 − 𝑛, 𝑡 = −1, and 𝑚 = 𝑛 − 1, then the characteristic polynomial of 

𝑆𝑆𝐿(𝛤𝐺) 
𝑃𝑆𝑆𝐿(𝛤𝐺)(𝜆) = (𝜆 + 2(𝑛 − 2))(𝜆 + 𝑛 − 3)𝑛−2. 

 
Then the roots of 𝑃𝑆𝑆𝐿(𝛤𝐺)(𝜆) = 0 are a single 𝜆1 = −2(𝑛 − 2) and 𝜆2 = 3 − 𝑛 with multiplicity 𝑛 − 2. 

Then the spectrum of 𝛤𝐺 is  

𝜎(𝛤𝐺) = (3 − 𝑛 −2(𝑛 − 2)
𝑛 − 2 1

). 

 
The Seidel signless Laplacian energy of 𝛤𝐺 will be 

𝐸𝑆𝑆𝐿(𝛤𝐺) = (𝑛 − 2)|3 − 𝑛| + (1)|−2(𝑛 − 2)| = (𝑛 − 2)(𝑛 − 1). 
 
Same idea for 𝐺 = 𝐺1 and 𝑛 is even, from Theorem 3.5 (1), the Seidel signless Laplacian matrix of 𝛤𝐺 is 

is an (𝑛 − 2) × (𝑛 − 2) matrix as follows: 

𝑆𝑆𝐿(𝛤𝐺) = 𝐷(𝛤𝐺) + 𝑆(𝛤𝐺) = [

3 − 𝑛 −1 ⋯ −1
−1 3 − 𝑛 ⋯ −1
⋮ ⋮ ⋱ ⋮

−1 −1 ⋯ 3 − 𝑛

] = [(2 − 𝑛)𝐼𝑛−2 − 𝐽𝑛−2]. 

 
Following Theorem 3.1 with 𝑠 = 3 − 𝑛, 𝑡 = −1, and 𝑚 = 𝑛 − 2, then the characteristic polynomial of 

𝑆𝑆𝐿(𝛤𝐺) 
𝑃𝑆𝑆𝐿(𝛤𝐺)(𝜆) = (𝜆 + 2(𝑛 − 3))(𝜆 + 𝑛 − 4)𝑛−3. 

 
Then the roots of 𝑃𝑆𝑆𝐿(𝛤𝐺)(𝜆) = 0 are a single 𝜆1 = −2(𝑛 − 3) and 𝜆2 = 4 − 𝑛 with multiplicity 𝑛 − 3. 
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Then the spectrum of 𝛤𝐺 is  

𝜎(𝛤𝐺) = (
4 − 𝑛 −2(𝑛 − 3)
𝑛 − 3 1

). 

 
The Seidel signless Laplacian energy of 𝛤𝐺 will be 

𝐸𝑆𝑆𝐿(𝛤𝐺) = (𝑛 − 3)|4 − 𝑛| + (1)|−2(𝑛 − 3)| = (𝑛 − 3)(𝑛 − 2). 
 
2. When 𝒏 is odd. By the same argument of proofing part of Theorem 3.5 (2), then an 𝑛 × 𝑛 Seidel 

signless Laplacian matrix of 𝛤𝐺 is 

𝑆𝑆𝐿(𝛤𝐺) = 𝐷(𝛤𝐺) + 𝑆(𝛤𝐺) = [

𝑛 − 1 1 ⋯ 1
1 𝑛 − 1 ⋯ 1
⋮ ⋮ ⋱ ⋮
1 1 ⋯ 𝑛 − 1

]. 

 

Following Theorem 3.1 with 𝑠 = 𝑛 − 1, 𝑡 = 1, and 𝑚 = 𝑛, then the characteristic polynomial of 𝑆𝑆𝐿(𝛤𝐺) 
𝑃𝑆𝑆𝐿(𝛤𝐺)(𝜆) = (𝜆 − 2(𝑛 − 1))(𝜆 − 𝑛 + 2)𝑛−1. 

 
Then the roots of 𝑃𝑆𝑆𝐿(𝛤𝐺)(𝜆) = 0 are a single 𝜆1 = 2(𝑛 − 1) and 𝜆2 = 𝑛 − 2 with multiplicity 𝑛 − 1. Thus, 

the spectrum of 𝛤𝐺 is 

𝑆𝑝𝑒𝑐(𝛤𝐺) = {(2(𝑛 − 1))1, (𝑛 − 2)𝑛−1}. 
 

The Seidel signless Laplacian energy of 𝛤𝐺 will be 

𝐸𝑆𝑆𝐿(𝛤𝐺) = (1)|2(𝑛 − 1)| + (𝑛 − 1)|𝑛 − 2| = 𝑛(𝑛 − 1). 
 
When 𝒏 is even. According to Theorem 3.5 (2), for 𝐺 = 𝐺2, then an 𝑛 × 𝑛 Seidel signless Laplacian 

matrix of 𝛤𝐺 is 

𝑆𝑆𝐿(𝛤𝐺) = 𝐷(𝛤𝐺) + 𝑆(𝛤𝐺) =

[
 
 
 
 
 
 
 
𝑛 − 3 1 ⋯ 1 −1 1 ⋯ 1

1 𝑛 − 3 ⋯ 1 1 −1 ⋯ 1
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
1 1 ⋯ 𝑛 − 3 1 1 ⋯ −1

−1 1 ⋯ 1 𝑛 − 3 1 ⋯ 1
1 −1 ⋯ 1 1 𝑛 − 3 ⋯ 1
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
1 1 ⋯ −1 1 1 ⋯ 𝑛 − 3]

 
 
 
 
 
 
 

 

= [
(𝑛 − 4)𝐼𝑛

2

+ 𝐽𝑛

2

−2𝐼𝑛

2

+ 𝐽𝑛

2

−2𝐼𝑛

2

+ 𝐽𝑛

2

(𝑛 − 4)𝐼𝑛

2

+ 𝐽𝑛

2

]. 

 
Following Theorem 3.2 with 𝑠 = 𝑛 − 3, 𝑡 = 1, then  

𝑃𝑆𝑆𝐿(𝛤𝐺)(𝜆) = (𝜆 − 2(𝑛 − 3))(𝜆 − 𝑛 + 6)
𝑛

2
−1(𝜆 + 2 − 𝑛)

𝑛

2. 

 

Then the roots of 𝑃𝑆𝑆𝐿(𝛤𝐺)(𝜆) = 0 are a single 𝜆1 = 2(𝑛 − 3), 𝜆2 = 𝑛 − 6 with multiplicity 
𝑛

2
− 1, and 𝜆3 =

𝑛 − 2 with multiplicity 
𝑛

2
. Thus, the spectrum of 𝛤𝐺 is 

𝑆𝑝𝑒𝑐(𝛤𝐺) = {(2(𝑛 − 3))1, (𝑛 − 2)
𝑛

2 , (𝑛 − 6)
𝑛

2
−1}, 

 
and the Seidel signless Laplacian energy of 𝛤𝐺 is 

𝐸𝑆𝑆𝐿(𝛤𝐺) = (1)|2(𝑛 − 3)| + ( 
𝑛

2
) |𝑛 − 2| + (

𝑛

2
− 1) |𝑛 − 6| = {

8,                   if 𝑛 = 4
𝑛(𝑛 − 3),     if 𝑛 > 4.

 

□ 
 
Theorem 3.8. Let 𝛤𝐺 be the commuting graph for 𝐷2𝑛, where 𝐺 = 𝐺1 ∪ 𝐺2 ⊂ 𝐷2𝑛, then the 𝑆𝑆𝐿-energy 

for 𝛤𝐺 is 

1. for odd 𝑛, 𝐸𝑆𝑆𝐿(𝛤𝐺) = 2𝑛2 − 2𝑛 − 3 + √(2𝑛 + 1)2 + 16(𝑛 − 1)(𝑛 − 3), 

2. for even 𝑛,  𝐸𝑆𝑆𝐿(𝛤𝐺) = 2(𝑛2 − 2𝑛 − 2 + √5𝑛2 − 30𝑛 + 49). 
 
Proof. 

1. For 𝐺1 ∪ 𝐺2 and odd 𝑛, from Theorem 3.6, the (2𝑛 − 1) × (2𝑛 − 1) Seidel signless Laplacian matrix 
of 𝛤𝐺 is 
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𝑆𝑆𝐿(𝛤𝐺) = 𝐷(𝛤𝐺) + 𝑆(𝛤𝐺)=

⬚
𝑎
𝑎⬚

2

⋮
𝑎⬚

𝑛−1

𝑏
𝑎𝑏
⋮

𝑎⬚
𝑛−1𝑏

𝑎   𝑎2 ⋯ 𝑎𝑛−1    𝑏              𝑎𝑏     ⋯    𝑎𝑛−1𝑏  

[
 
 
 
 
 
 
 

2 −1 ⋯ −1 1 1 ⋯ 1   
−1 2 ⋯ −1 1 1 ⋯ 1   
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮    

−1 −1 ⋯ 2 1 1 ⋯ 1   
1 1 ⋯ 1 2(𝑛 − 1) 1 ⋯ 1   
1 1 ⋯ 1 1 2(𝑛 − 1) ⋯ 1   
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮    
1 1 ⋯ 1 1 1 ⋯ 2(𝑛 − 1)  ]

 
 
 
 
 
 
 

. 

 

By Theorem 3.3 with 𝑠 = 2, 𝑢 = 2(𝑛 − 1), dan 𝑡 = −1, then 

𝑃𝑆𝑆𝐿(𝛤𝐺)(𝜆) = (𝜆 − 3)𝑛−2(𝜆2 − (2𝑛 + 1)𝜆 − 4(𝑛 − 1)(𝑛 − 3))(𝜆 − 2𝑛 + 3)𝑛−1. 

 
Here we have four eigenvalues obtained from 𝑃𝑆𝑆𝐿(𝛤𝐺)(𝜆). They are 𝜆1 = 3 with multiplicity 𝑛 − 2, 𝜆2 =

2𝑛 − 3 of multiplicity 𝑛 − 1 and 𝜆3,4 =
2𝑛+1

2
±

√(2𝑛+1)2+16(𝑛−1)(𝑛−3)

2
 of each multiplicity 1. Hence, the 

𝑆𝑆𝐿 −spectrum for 𝛤𝐺 is as follows 

𝑆𝑝𝑒𝑐(𝛤𝐺) = {(
2𝑛+1

2
+

√(2𝑛+1)2+16(𝑛−1)(𝑛−3)

2
)
1

, (2𝑛 − 3)𝑛−1, (3)𝑛−2, (
2𝑛+1

2
−

√(2𝑛+1)2+16(𝑛−1)(𝑛−3)

2
)
1

}. 

 
Now for 𝑖 = 1,2,3,4, the maximum of absolute eigenvalues |𝜆𝑖| is the 𝑆𝑆𝐿-spectral radius of 𝛤𝐺, 

𝜌𝑆𝑆𝐿(𝛤𝐺) =
2𝑛+1

2
+

√(2𝑛+1)2+16(𝑛−1)(𝑛−3)

2
. 

 

By computing the eigenvalues from 𝑆𝑝𝑒𝑐(𝛤𝐺), then the 𝑆𝑆𝐿-energy for 𝛤𝐺 is  

𝐸𝑆𝑆𝐿(𝛤𝐺) = (𝑛 − 1)|2𝑛 − 3| + (𝑛 − 2)|3| + |
2𝑛 + 1

2
±

√(2𝑛 + 1)2 + 16(𝑛 − 1)(𝑛 − 3)

2
| 

  = 2𝑛2 − 2𝑛 − 3 + √(2𝑛 + 1)2 + 16(𝑛 − 1)(𝑛 − 3). 
 
Suppose now 𝑛 is even. Then a (2𝑛 − 1) × (2𝑛 − 1) Seidel signless Laplacian matrix of 𝛤𝐺 is  

 
𝑆𝑆𝐿(𝛤𝐺) = 𝐷(𝛤𝐺) + 𝑆(𝛤𝐺) 

=

⬚
𝑎
𝑎2

⋮
𝑎𝑛

𝑏
𝑎𝑏
⋮

𝑎
𝑛

2
−1𝑏

𝑎
𝑛
2𝑏

𝑎
𝑛
2+1𝑏
⋮

𝑎𝑛−1𝑏

   𝑎   𝑎2 ⋯ 𝑎𝑛      𝑏        𝑎𝑏     ⋯  𝑎
𝑛
2
−1𝑏    𝑎

𝑛
2𝑏    𝑎

𝑛
2
+1𝑏  ⋯ 𝑎𝑛−1𝑏       

[
 
 
 
 
 
 
 
 
 
 
 

3 −1 ⋯ −1 1 1 ⋯ 1 1 1 ⋯ 1
−1 3 ⋯ −1 1 1 ⋯ 1  1 1 ⋯ 1
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

−1 −1 ⋯ 3 1 1 ⋯ 1 1 1 ⋯ 1
1 1 ⋯ 1 2𝑛 − 5 1 ⋯ 1 −1 1 ⋯ 1
1 1 ⋯ 1 1 2𝑛 − 5 ⋯ 1 1 −1 ⋯ 1
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
1 1 ⋯ 1 1 1 ⋯ 2𝑛 − 5 1 1 ⋯ −1
1 1 ⋯ 1 −1 1 ⋯ 1 2𝑛 − 5 1 ⋯ 1
1 1 ⋯ 1 1 −1 ⋯ 1 1 2𝑛 − 5 ⋯ 1
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
1 1 ⋯ 1 1 1 ⋯ −1 1 1 ⋯ 2𝑛 − 5

     

]
 
 
 
 
 
 
 
 
 
 
 

. 

 

By using the block matrix, the Seidel signless Laplacian matrix of 𝛤𝐺 can be derived as  

𝑆𝑆𝐿(𝛤𝐺) =

[
 
 
 
4𝐼𝑛−2 − 𝐽𝑛−2 𝐽(𝑛−2)×

𝑛

2

𝐽(𝑛−2)×
𝑛

2

𝐽𝑛

2
×(𝑛−2) (2𝑛 − 6)𝐼𝑛

2

+ 𝐽𝑛

2

(𝐽 − 2𝐼)𝑛

2

𝐽𝑛

2
×(𝑛−2) (𝐽 − 2𝐼)𝑛

2

(2𝑛 − 6)𝐼𝑛

2

+ 𝐽𝑛

2]
 
 
 

. 

By Theorem 3.4 with 𝑟 = 3, 𝑠 = 2𝑛 − 5, and 𝑡 = −1, we derive 

 𝑃𝑆𝑆𝐿(𝛤𝐺)(𝜆) = (𝜆 − 4)𝑛−3(𝜆 − 2𝑛 + 8)
𝑛

2
−1(𝜆 − 2𝑛 + 4)

𝑛

2(𝜆2 − 2(𝑛 − 1)𝜆 − 4(𝑛2 − 7𝑛 + 12). 

 

It is obvious that 𝜆1 = 4 of multiplicity 𝑛 − 3, 𝜆2 = 2𝑛 − 8 of multiplicity 
𝑛

2
− 1, 𝜆3 = 2𝑛 − 4 of multiplicity 

𝑛

2
 

and the other two eigenvalues are 𝜆4,5 = 𝑛 − 1 ± √5𝑛2 − 30𝑛 + 49. So that the spectrum of 𝛤𝐺 is 

𝑆𝑝𝑒𝑐(𝛤𝐺) = {(𝑛 − 1 + √5𝑛2 − 30𝑛 + 49)
1
, (2𝑛 − 4)

𝑛

2 , (2𝑛 − 8) 
𝑛

2
−1, (4) 𝑛−3, (𝑛 − 1 − √5𝑛2 − 30𝑛 + 49)

1
}. 
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Taking the maximum absolute eigenvalues, then we derive the 𝑆𝑆𝐿-spectral radius of 𝛤𝐺, 

𝜌𝑆𝑆𝐿(𝛤𝐺) = 𝑛 − 1 + √5𝑛2 − 30𝑛 + 49. 
 
Using 𝑆𝑝𝑒𝑐(𝛤𝐺) we obtain the 𝑆𝑆𝐿-energy for 𝛤𝐺 as given below 

 𝐸𝑆𝑆𝐿(𝛤𝐺) = (
𝑛

2
− 1) |2𝑛 − 8| + (

𝑛

2
) |2𝑛 − 4| + (𝑛 − 3)|4| + |𝑛 − 1 ± √5𝑛2 − 30𝑛 + 49| 

= 2(𝑛2 − 2𝑛 − 2 + √5𝑛2 − 30𝑛 + 49). 
     □ 

 

Discussion 
 
As a result of Theorem 3.6 and 3.8, we obtain the classification of the Seidel Laplacian and Seidel 
signless Laplacian energies of 𝛤𝐺 for 𝐷2𝑛. 
 

Corollary 4.1. Let 𝐺 = 𝐺1 ∪ 𝐺2 ⊂ 𝐷2𝑛, 𝛤𝐺 is hyperenergetic corresponding to Seidel Laplacian and 
Seidel signless Laplacian matrices. 
 
Corollary 4.2. Let 𝛤𝐺 be the commuting graph for 𝐷2𝑛, where 𝐺 = 𝐺1 ∪ 𝐺2 ⊂ 𝐷2𝑛, then the Seidel 

Laplacian energy for 𝛤𝐺 is always an even integer. 
 
Corollary 4.3. Let 𝛤𝐺 be the commuting graph for 𝐷2𝑛, where 𝐺 = 𝐺1 ∪ 𝐺2 ⊂ 𝐷2𝑛, then the Seidel 

signless Laplacian energy for 𝛤𝐺 is never an odd integer. 
 
These facts comply with the well-known results from Bapat & Pati (2004) and Pirzada & Gutman (2008). 

Furthermore, the relationship between 𝑆𝐿 and 𝑆𝑆𝐿-energies are presented in the next two corollaries. 
 

Corollary 4.4. Let 𝛤𝐺 be the commuting graph for 𝐷2𝑛, where 𝐺 = 𝐺1 or 𝐺 = 𝐺2, then 

𝐸𝑆𝐿(𝛤𝐺) {
< 𝐸𝑆𝑆𝐿(𝛤𝐺),     if 𝑛 =  4          

= 𝐸𝑆𝑆𝐿(𝛤𝐺),     otherwise.     
 

 
Corollary 4.5. Let 𝛤𝐺 be the commuting graph for 𝐷2𝑛, where 𝐺 = 𝐺1 ∪ 𝐺2 ⊂ 𝐷2𝑛, then 

𝐸𝑆𝐿(𝛤𝐺) {
= 𝐸𝑆𝑆𝐿(𝛤𝐺),     if 𝑛 = 3 or 4  

≤ 𝐸𝑆𝑆𝐿(𝛤𝐺),     otherwise.     
 

 
The following example is an illustration of Theorem 3.6 and 3.8 for 𝑛 = 8. 
 

Example 1. The Seidel Laplacian matrix of 𝛤𝐺 is as in Figure 1, where 𝐺 = 𝐺1 ∪ 𝐺2 ⊂ 𝐷8,  𝐺1 = {𝑎,  𝑎3} 
and 𝐺2 = { 𝑏, 𝑎𝑏,  𝑎2𝑏,  𝑎3𝑏}. 

 
      

                                                                                                      𝑆𝐿(𝛤𝐺) =

[
 
 
 
 
 

3 1 −1 −1 −1 −1
1 3 −1 −1 −1 −1

−1 −1 3 −1 1 −1
−1 −1 −1 3 −1 1
−1 −1 1 −1 3 −1
−1 −1 −1 1 −1 3 ]

 
 
 
 
 

 

                                                                               𝑆𝑆𝐿(𝛤𝐺) =

[
 
 
 
 
 

3 −1 1 1 1 1
−1 3 1 1 1 1
1 1 3 1 −1 1
1 1 1 3 1 −1
1 1 −1 1 3 1
1 1 1 −1 1 3 ]

 
 
 
 
 

 

 
Figure 1. [Commuting graph for 𝐺 = 𝐺1 ∪ 𝐺2 ⊂ 𝐷8] 

 
 

In this case,  𝑃𝑆𝐿(𝛤𝐺)(𝜆) = 𝜆(𝜆 − 2)3(𝜆 − 6)2 implies the eigenvalues of 𝑆𝐿(𝛤𝐺) are 𝜆 = 2 with multiplicity 

(3), 𝜆 = 6 with multiplicity (2), and a single 𝜆 = 0. Hence, 𝐸𝑆𝐿(𝛤𝐺) = (3)|2| + (2)|6| + (1)|0| = 18, 

conforming Theorem 3.6 for even 𝑛. Meanwhile,  𝑃𝑆𝑆𝐿(𝛤𝐺)(𝜆) = 𝜆(𝜆 − 4)3(𝜆2 − 6𝜆) implies the 

eigenvalues of 𝑆𝑆𝐿(𝛤𝐺) are 𝜆 = 4 with multiplicity (3), 𝜆 = 0 with multiplicity (2), a single 𝜆 = 6, Hence, 

𝐸𝑆𝑆𝐿(𝛤𝐺) = (3)|4| + (2)|0| + (1)|6| = 18, conforming Theorem 3.8 for even 𝑛. We conclude in this 

example that 𝐸𝑆𝐿(𝛤𝐺) = 𝐸𝑆𝑆𝐿(𝛤𝐺). 
 

𝑎 𝑎3 

𝑏 

𝑎2𝑏 𝑎3𝑏 

𝑎𝑏 
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Conclusion 
 
We presented the spectrum and spectral radius of 𝛤𝐺 for dihedral groups, 𝐷2𝑛, where 𝑛 ≥ 3, which are 
linked to the Seidel Laplacian and Seidel signless Laplacian matrices. Then, the Seidel Laplacian and 

Seidel signless Laplacian energies of 𝛤𝐺 is presented for each of the following cases: 𝐺1, 𝐺2 or 𝐺1 ∪ 𝐺2. 

Our research has demonstrated that the Seidel Laplacian and Seidel signless Laplacian energies of 𝛤𝐺, 
in line with previous publications, never takes the form of an odd integer. Those energies are equal 
whenever 𝑛 = 3 or 4 and otherwise, the Seidel signless Laplacian energy is never less than the Seidel 

Laplacian energy of 𝛤𝐺. Moreover, we emphasize that 𝛤𝐺 possesses hyperenergy.  
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