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Abstract A Bieberbach group is a torsion free crystallographic group that represents an 
extension of a free abelian lattice group by a finite point group. This research began by taking the 
group offered in the Crystallographic Algorithms and Tables (CARAT) package, which is in the 
matrix form. There are only four Bieberbach groups of dimension six to be isomorphic to the 
quaternion point group of order eight. In this study, three Bieberbach groups of dimension six with 
the quaternion point group of order eight that are considered as only the first group has been 
found its well-defined polycyclic presentation. Every group has eight generators that describe the 
group. However, the algorithm used in constructing the polycyclic presentation requires a new 
arbitrary generator to be added into the group. Then the consistency relations need to be checked 
and the polycyclic presentation is said to be a well-defined construction if it is consistent. 
Therefore, this study shows the construction of polycyclic presentation with the new arbitrary 
generator for all three groups. Furthermore, the polycyclic presentation for the second group has 
been proven to be consistent, which implies that the construction is well-defined. 
Keywords: Crystallographic group, polycyclic presentations, quaternion point group, consistency 
relations. 

 

 
Introduction 
 
Crystallography deals with the principles that control the crystalline state of solid materials, the 
arrangement of atoms in crystals, and their physical and chemical characteristics, as well as their 
synthesis and growth. Bieberbach group is one of the crystallographic groups which is torsion free. A 
group G is said to be torsion free if for every ∈g G , where g does not have finite order, i.e. ≠ 1ng , for 
some ∈ ¥n  [14] and this group is an extension of a free abelian lattice group of finite rank by a finite 
point group. This crystallographic group can be transformed into polycyclic presentation and need to be 
checked for its consistency relations.  
 
This research has received considerable attention over the years. Masri [5] has started the study on 
computing the polycyclic presentation for Bieberbach groups with cyclic point group of order two, 2C

and Bieberbach groups with the elementary abelian 2-group, 2 2C C×  as the extensions of polycyclic 
group. These groups are polycyclic since they are extensions of polycyclic groups. Later, Mat Hassim et 
al. [6] continued the research to find the homological functor of a group which is the exterior square. 
Abdul Ladi et al. [1] extended to compute the other homological invariants of some Bieberbach groups 
with elementary abelian 2-point group. 
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Moreover, the nonabelian extension was taken into consideration in 2011. Mohd Idrus 
[11] started the research on transforming the Bieberbach group of dimension four with dihedral point 
group of order eight, 4D  and followed by Wan Mohd Fauzi et al. [15] who conducted the research on 
the same extension but with a different dimension of the group. Other than that, Tan et al. [16] continued 
the research but with a different extension namely the symmetric point group of order six, 3S . 
 
Other than that, Mohammad et al. [9] conducted a study on computing the polycyclic presentations of 
the Bieberbach groups with quaternion point group of order eight, which is a torsion free crystallographic 
group. Crystallographic, Algorithms and Table (CARAT) package were used to find the list of 
isomorphism types of crystallographic groups. According to Mohammad [2], there are four groups of 
Bieberbach of dimension six with quaternion point group of order eight are found within the package 
which the groups are given in matrix form. The matrix representations are then being used to find the 
polycyclic presentation of the groups for all thn  Bieberbach groups where n = 1, 2, 3 and 4 with the help 
of Groups, Algorithms, and Programming (GAP) software. However, the matrix representation provided 
in the CARAT package by Opgenorth et al. [12] is no longer available online. Then, Mohammad et al. 
[10] shows the computation on achieving consistency for the first Bieberbach group, namely 1Q , for n = 
1. The results for the 1Q  is found to be satisfying its consistency relations and the study is continued by 
claiming that the other three groups are consistent. 
 
Mohammad [7] had extended the study to explicate the homological invariants for the Bieberbach groups 
of dimension six with the quaternion point group of order eight based on the polycyclic presentation from 
the previous literature. The researcher manages to explicate the homological invariant for the first 
Bieberbach group, where n = 1. However, Mohammad et al. [8] states several problems occurred in the 
computation of the homological invariants for the other three Bieberbach groups 2Q , 3Q  and 4Q  which 
concludes that the polycyclic presentations for the groups are not consistent. This happens because the 
new generator constructed in the presentation is not well-defined throughout the computation. The 
researchers recompute the polycyclic presentations for the first group with a new well-defined generator. 
 
Hence, the main motivation of this research is to transform the other three matrix representations into 
polycyclic presentations as well as to satisfy the consistency relations for the second Bieberbach group 
namely as 2Q . 

 
Methodology 

 
According to Blyth & Morse [2], Ellis & Leonard [4], and Rocco [13] the homological invariants of a group 
G can be computed by an approach that involves ( )Gν . 
 
Definition 1  Rocco [13]  
Let G be a group with presentation |G R  and let Gϕ  be an isomorphic copy of G through the mapping 

: g gϕϕ →  for all g G∈ . The group is ( )Gν  defined as follows: 

( ) ( ), | , , , , , , , ,
x xx xv G G G R R g h g h g h x g h G

ϕϕϕ ϕ ϕ ϕ    = = = ∀ ∈     
 

where 1hg h gh−=  and [ ] 1, hg h g g−= . 
 
By Definition 1, it is shown that the computation of the group ( )Gν  required the group in the form of a 
group presentation. Thus, in this research, the Bieberbach groups of dimension six with the quaternion 
point group of order eight that are in the matrix representations are transformed into polycyclic 
presentations. As the Bieberbach groups with finite point group provided in the CARAT package are in 
the form of matrix representations that do not contain relations between each generator, Definition 2 and 
Definition 3 needs to be used in constructing the polycyclic presentation. 
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Definition 2: Polycyclic Presentation  Eick & Nickel [3] 
Let nF  be a free group on generators ,...,i ng g and R  be a set of relations of group nF . The relations 

of a polycyclic presentation nF
R  have the following form: 

   +
+= , 1 ,
1 ...i i i ni x xe

ni ig g g   for ∈ ,i I  

   +−
+= , , 1 , ,1
1 ...i j j i j ny y

j i j njg g g g g                for < ,j i  

   +−
+= , , 1 , ,1
1 ...i j j i j nz z

j i j njg g g g g                for <j i  and ∉j I  

for some ⊆ {1,... }I n , certain exponents ∈ie N  for ∈i I  and ∈, , , , ,, ,i j i j k i j kx y z Z for all ,i j  and k . 
 
From the definition, it shows that the relation in the polycyclic presentation is made up from the product 
of generators and their inverses while some of the generators are raised to a certain power. After 
constructing the relations, it is essential that a new abstract generator to be constructed in order to check 
its consistency on the later part. Eick & Nickel [3] has introduced the construction of new abstract 
generators by simplifying the notation for the relations of G. It is written as relators and denoting it as 

1, ..., lr r , so that every relator jr  can be written in terms of generators 1,..., ng g  , given by  

( )1, ...,j j nr r g g= . 
 
Definition 3  Eick & Nickel [3] 
Let l be the new abstract generators 1, ..., lt t  and group * / ,n nG F R F≅      is defined as the group 

generated by 1,..., ng g . Thus, 1, ..., lt t  is subject to the following relators: 

( )1, ...,i n ir g g t   for 1 ,i l≤ ≤  

,i jt g      for 1 , 1 ,j n i l≤ ≤ ≤ ≤  

,i jt t      for 1 .j i l≤ < ≤  

 

However, the construction of the polycyclic presentation based on the quotient nF
R  and adding some 

new arbitrary generators is possibly inconsistent. Hence, Definition 4 is used to show that the polycyclic 
presentation is consistent. 
 

                                                   Definition 4: Consistent Polycyclic Presentation Eick & Nickel [3] 
Let G be a group formed by 1,..., ng g  and the consistency relations in G  may be assessed in the 
polycyclic presentation of G  using the collection from the left, as shown below: 
 
   ( ) ( )=k j i k j ig g g g g g   for > > ,k j i  

   ( ) ( )−= 1j je e
i j ij jg g g g g   for > ∈, ,j i j I  

   ( ) ( ) −= 1i ie e
j j ii ig g g g g   for > ∈, ,j i i I  

   ( ) ( )=i ie e
i ii ig g g g   for ∈ ,i I  

   ( )−= 1
j j i ig g g g                 for > ∉,j i j I  

For some ⊆ {1,... }I n , ∈ie N . Then, G  is said to be provided by a consistent polycyclic presentation. 
 
After the consistency has been checked, and if it is found that the polycyclic presentation of the group is 
consistent, it implies that the new abstract generator constructed is a well-defined generator and can be 
further used in explicating other homological invariants of the group. Figure 1 below shows the 
procedures in constructing the polycyclic presentation for 2Q , 3Q  and 4Q . 
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Figure 1. The flowchart on the construction of a consistent polycyclic presentation 
 
 
Initially, there are 8 matrix representations that describes each group as their independent generators. 
Before constructing the polycyclic presentation for 2Q , 3Q  and 4Q , a new generator is added by 
combining the generators through product, inverse or power and it will be the relation that describes the 
new generator. The construction is done by using trial-and-error method. In this study, GAP software is 
used to verify the construction of the relation that describe the new generator. Next, with the construction 
of the new generator, the polycyclic presentation for the groups can be done by considering the new 
generator in other relation as in Definition 2. However, the new generator constructed may only satisfy 
several matrix operations within the relations in the polycyclic presentation, which implies that the 
presentation may be inconsistent. Thus, it is essential to check their consistency by Definition 4 to ensure 
that the new generator is well-defined. If it is inconsistent, the new generator needs to be reconstructed 
arbitrarily until the consistency is achieved. 
 
Results and Discussion 
 
The computation of homological invariants of a group requires a correct polycyclic presentation. A correct 
presentation is a presentation that consists of well-defined generators that satisfies several consistency 
relations. Once the polycyclic presentation has been constructed, it then can be used with important 
definitions, theorems, and algorithms in explicating the homological invariants of a particular group, 
accordingly. 
 
The Construction of the Polycyclic Presentations 
In this section, the computation of polycyclic presentations of three Bieberbach groups with the 
quaternion point group of order eight namely 2Q , 3Q  and 4Q was shown. The construction of the 
polycyclic presentation starts with analysis of the matrix representation for each group that are obtained 
from Mohammad [7]. For each group, it consists of two generators 0a  and 1a , as well as six lattice 
generators, 1l , 2l , 3l , 4l , 5l  and 6l , where its basis matrix is an identity matrix. 
 

Construct the new abstract generator 
c by using trial-and-error method. 
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Theorem 1: 
Let =2 0 1 1 2 3 4 5 6, , , , , , ,G a a l l l l l l , be the second Bieberbach group of dimension six with quaternion point 
group of order eight, where; 

      

− − 
 
 
 − −
 

− 
=  

− 
 
 
 
 
  

0

0 1 1 1 0 0 0
0 0 0 1 0 0 0
1 1 0 1 0 0 0

0 1 0 0 0 0 0
10 0 0 0 1 0
4

10 0 0 0 0 1
4

0 0 0 0 0 0 1

a  ,    

− − 
 − 
 −
 
− − =
 

− 
 
 
 
  

1

1 1 0 1 0 0 0
1 1 1 0 0 0 0
0 1 1 1 0 0 0
1 0 1 1 0 0 0

10 0 0 0 0 1
2

0 0 0 0 1 0 0
0 0 0 0 0 0 1

a  

       

 
 
 
 
 

=  
 
 
 
 
 

1

1 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

l         ,     

 
 
 
 
 

=  
 
 
 
 
 

2

1 0 0 0 0 0 0
0 1 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

l  

      

 
 
 
 
 

=  
 
 
 
 
 

3

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

l         ,      

 
 
 
 
 

=  
 
 
 
 
 

4

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

l  

      

 
 
 
 
 

=  
 
 
 
 
 

5

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1

l       , and 

 
 
 
 
 

=  
 
 
 
 
 

6

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1

l . 

 
Then, the polycyclic presentation of 2Q  is established as  

− − − −

− − − − − − −

− −

= = = = = = = =

= = = = = = = =

=

2 2 2 1 1 1 1
2 1 2 3 4 5 6 6 5 6 5 1 3

1 1 1 1 1 1 1
1 1 2 4 1 1 2 1 3 4 2 1 2 3 2 2 3 1 3 2 3 4 3 3

1 1
4 1 2 3

, , , , , , , , | , , , , , , ,

         , , , , , , , ,

         ,

a a b a

b c a b c a b c

a

Q a b c l l l l l l a cl b c c l l b bc l c c c c l l

l l l l l l l l l l l l l l l l l l l l l l l l

l l l l l − − − −= = = = = = = =

= = = = = = = = = = =

= = =

3 31 1 1 1 1 2 2 2 2

3 4 4

1 1 1 1
4 1 3 4 4 4 5 5 5 6 5 5 6 6 6 5 6 6

2 2 3 3 4 4 5 5 6 6 3 3 4 4 5 5 6 6 4 4 5 5

6 6 5 5 6 6 6

, , , , , , , ,

         , , , , , , , , , , ,

         , , ,

b c a b c a b c

l ll l l l l l l l l

l ll l

l l l l l l l l l l l l l l l l l

l l l l l l l l l l l l l l l l l l l l l l

l l l l l l l
− − − − − −

− − − −− − − − −

= = = = = = =

= = = = = = = = =

1 1 1 1 1 1
5 1 1 1 1 1 2

1 1 1 11 1 1 1 1
3 3 3 52 2 2 4 4

6 2 2 3 3 4 4 5 5 6 6 3 3

4 4 5 5 6 6 4 4 5 5 6 6 5 5 6 6 6 6

, , , , , , ,

         , , , , , , , , .

l l l l l l

l l l ll l l l l

l l l l l l l l l l l l l

l l l l l l l l l l l l l l l l l l

 

 
Proof: 
Take γ →2 2: G Q  such that γ =0( )a a , γ =1( )a b  and the same mapping for the other generators. The 
mapping γ , is well-defined since γ  maps the generators of 2G  to generators of 2Q . Now, under this 
mapping γ , all relations hold in 2Q  are constructed by using GAP software. The matrix representation 
of the group is first declared, and the command of the software is shown as follows: 
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gap> l1 := [ 
> [1,0,0,0,0,0,1], 
> [0,1,0,0,0,0,0], 
> [0,0,1,0,0,0,0], 
> [0,0,0,1,0,0,0], 
> [0,0,0,0,1,0,0], 
> [0,0,0,0,0,1,0], 
> [0,0,0,0,0,0,1]]; 
gap> l2 := [ 
> [1,0,0,0,0,0,0], 
> [0,1,0,0,0,0,1], 
> [0,0,1,0,0,0,0], 
> [0,0,0,1,0,0,0], 
> [0,0,0,0,1,0,0], 
> [0,0,0,0,0,1,0], 
> [0,0,0,0,0,0,1]]; 
gap> l3 := [ 
> [1,0,0,0,0,0,0], 
> [0,1,0,0,0,0,0], 
> [0,0,1,0,0,0,1], 
> [0,0,0,1,0,0,0], 
> [0,0,0,0,1,0,0], 
> [0,0,0,0,0,1,0], 
> [0,0,0,0,0,0,1]]; 
gap> l4 := [ 
> [1,0,0,0,0,0,0], 
> [0,1,0,0,0,0,0], 
> [0,0,1,0,0,0,0], 
> [0,0,0,1,0,0,1], 
> [0,0,0,0,1,0,0], 
> [0,0,0,0,0,1,0], 
> [0,0,0,0,0,0,1]]; 
gap> l5 := [ 
> [1,0,0,0,0,0,0], 
> [0,1,0,0,0,0,0], 
> [0,0,1,0,0,0,0], 
> [0,0,0,1,0,0,0], 
> [0,0,0,0,1,0,1], 
> [0,0,0,0,0,1,0], 
> [0,0,0,0,0,0,1]]; 
gap> l6 := [ 
> [1,0,0,0,0,0,0], 
> [0,1,0,0,0,0,0], 
> [0,0,1,0,0,0,0], 
> [0,0,0,1,0,0,0], 
> [0,0,0,0,1,0,0], 
> [0,0,0,0,0,1,1], 
> [0,0,0,0,0,0,1]]; 
gap> a0 := [ 
> [0 / 4 ,-4 / 4 ,4 / 4 ,-4 / 4 ,0 / 4 ,0 / 4 ,0/4], 
> [0 / 4 ,0 / 4 ,0 / 4 ,4 / 4 ,0 / 4 ,0 / 4 ,0/4], 
> [-4 / 4 ,-4 / 4 ,0 / 4 ,4 / 4 ,0 / 4 ,0 / 4 ,0/4], 
> [0 / 4 ,-4 / 4 ,0 / 4 ,0 / 4 ,0 / 4 ,0 / 4 ,0/4], 
> [0 / 4 ,0 / 4 ,0 / 4 ,0 / 4 ,4 / 4 ,0 / 4 ,-1/4], 
> [0 / 4 ,0 / 4 ,0 / 4 ,0 / 4 ,0 / 4 ,4 / 4 ,1/4], 
> [0 / 4 ,0 / 4 ,0 / 4 ,0 / 4 ,0 / 4 ,0 / 4 ,4/4]]; 
gap> a1 := [ 
> [-4 / 4 ,-4 / 4 ,0 / 4 ,4 / 4 ,0 / 4 ,0 / 4 ,0/4], 
> [4 / 4 ,4 / 4 ,-4 / 4 ,0 / 4 ,0 / 4 ,0 / 4 ,0/4], 
> [0 / 4 ,4 / 4 ,-4 / 4 ,4 / 4 ,0 / 4 ,0 / 4 ,0/4], 
> [-4 / 4 ,0 / 4 ,-4 / 4 ,4 / 4 ,0 / 4 ,0 / 4 ,0/4], 
> [0 / 4 ,0 / 4 ,0 / 4 ,0 / 4 ,0 / 4 ,4 / 4 ,-2/4], 
> [0 / 4 ,0 / 4 ,0 / 4 ,0 / 4 ,4 / 4 ,0 / 4 ,0/4], 
> [0 / 4 ,0 / 4 ,0 / 4 ,0 / 4 ,0 / 4 ,0 / 4 ,4/4]]; 
 
The new generator c is presumably constructed by using trial-and-error method. The generator is made 
up from possible combination between the generators of the group. For 2Q , let −= 2 1

0 6c a l . In the GAP 
software, the generator c is declared as follows: 
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gap> c:=a0^2*l6^-1; 
[ [ -1, 0, 0, 0, 0, 0, 0 ], 
  [ 0, -1, 0, 0, 0, 0, 0 ],  
  [ 0, 0, -1, 0, 0, 0, 0 ],  
  [ 0, 0, 0, -1, 0, 0, 0 ], 
  [ 0, 0, 0, 0, 1, 0, -1/2 ],  
  [ 0, 0, 0, 0, 0, 1, -1/2 ],  
  [ 0, 0, 0, 0, 0, 0, 1 ] ] 

 
The matrix computation of 2 1

0 6c a l -=  shows that 
− − − −   

   
   
   − − − −
   

− −   
=    

− −   
   
   
   
   
      

0 1 1 1 0 0 0 0 1 1 1 0 0 0
1 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 01 1 0 1 0 0 0 1 1 0 1 0 0 0
0 0 1 0 0 0 00 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 01 10 0 0 0 1 0 0 0 0 0 1 0

4 4
1 10 0 0 0 0 1 0 0 0 0 0 1
4 4

0 0 0 0 0 0 1 0 0 0 0 0 0 1

c

−
 
 
 
 
 
 
 
 
 
 
 

1

0 0 0 0 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1

 

   

− − 
   
   
 − −  
   −   

=    
−   

   
  − 
   
   
  

20 1 1 1 0 0 0
1 0 0 0 0 0 00 0 0 1 0 0 0
0 1 0 0 0 0 01 1 0 1 0 0 0
0 0 1 0 0 0 00 1 0 0 0 0 0
0 0 0 1 0 0 010 0 0 0 1 0 0 0 0 0 1 0 04

1 0 0 0 0 0 1 10 0 0 0 0 1
4 0 0 0 0 0 0 1

0 0 0 0 0 0 1

 

   

− 
 − 
 −
 

− 
=  

− 
 
 

− 
 
  

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

10 0 0 0 1 0
2
10 0 0 0 0 1
2

0 0 0 0 0 0 1

. 

 
Thus, by mapping γ =0( )a a , − −= =2 1 2 1

0 6 6c a l a l . 
 

After the new generator c is constructed, the constructions of other relations that consists of raising to 
the power of certain exponents and its conjugation within the generators in the group is done. 
 
Next, 2

0a  can be shown to be equal to 6cl , which the commands are as follows: 
 
gap> a0^2; 
[ [ -1, 0, 0, 0, 0, 0, 0 ],  
[ 0, -1, 0, 0, 0, 0, 0 ],  
[ 0, 0, -1, 0, 0, 0, 0 ],  
[ 0, 0, 0, -1, 0, 0, 0 ], 
[ 0, 0, 0, 0, 1, 0, -1/2 ],  
[ 0, 0, 0, 0, 0, 1, 1/2 ], 
[ 0, 0, 0, 0, 0, 0, 1 ] ] 
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gap> c*l6; 
[ [ -1, 0, 0, 0, 0, 0, 0 ], 
[ 0, -1, 0, 0, 0, 0, 0 ], 
[ 0, 0, -1, 0, 0, 0, 0 ], 
[ 0, 0, 0, -1, 0, 0, 0 ], 
[ 0, 0, 0, 0, 1, 0, -1/2 ], 
[ 0, 0, 0, 0, 0, 1, 1/2 ], 
[ 0, 0, 0, 0, 0, 0, 1 ] ] 
gap> a0^2=c*l6; 
true 

 

The matrix computation to show that 2
0a  is equal to 6cl  is shown as follows: 

− − − −   
   
   
   − − − −
   

− −   
=    

− −   
   
   
   
   
      

2
0

0 1 1 1 0 0 0 0 1 1 1 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0
1 1 0 1 0 0 0 1 1 0 1 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0
1 10 0 0 0 1 0 0 0 0 0 1 0
4 4

1 10 0 0 0 0 1 0 0 0 0 0 1
4 4

0 0 0 0 0 0 1 0 0 0 0 0 0 1

a  

     

− 
 − 
 −
 

− 
=  

− 
 
 
 
 
  

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

10 0 0 0 1 0
2

10 0 0 0 0 1
2

0 0 0 0 0 0 1

. 

− 
   −   
 −  
   −   

=    
−   

   
   −   
   
  

6

1 0 0 0 0 0 0
1 0 0 0 0 0 00 1 0 0 0 0 0
0 1 0 0 0 0 00 0 1 0 0 0 0
0 0 1 0 0 0 00 0 0 1 0 0 0
0 0 0 1 0 0 010 0 0 0 1 0 0 0 0 0 1 0 02

1 0 0 0 0 0 1 10 0 0 0 0 1
2 0 0 0 0 0 0 1

0 0 0 0 0 0 1

cl  

     

− 
 − 
 −
 

− 
=  

− 
 
 
 
 
  

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

10 0 0 0 1 0
2

10 0 0 0 0 1
2

0 0 0 0 0 0 1

. 

 
Thus, by mapping γ =0( )a a , = =2 2

0 6a a cl . The next calculation shows that =1ac c . 
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−=1 1
1 1

ac a ca  
− − − − − −   −   − −   − − −   − − − − − =    − −        −         

1 1 0 0 0 0 0 01 1 0 1 0 0 0 1 1 0 1 0 0 0
0 1 0 0 0 0 01 1 1 0 0 0 0 1 1 1 0 0 0 0
0 0 1 0 0 0 00 1 1 1 0 0 0 0 1 1 1 0 0 0
0 0 0 1 0 0 01 0 1 1 0 0 0 1 0

11 0 0 0 0 1 00 0 0 0 0 1 22 10 0 0 0 1 0 0 0 0 0 0 0 1
20 0 0 0 0 0 1 0 0 0 0 0 0 1

 
 
 
 
 
 
 

− 
 
 
 
  

1 1 0 0 0
10 0 0 0 0 1
2

0 0 0 0 1 0 0
0 0 0 0 0 0 1

 

− −   
   − − − −   
   − − −
   

− −   =
   −
   
   −   
   
      

1 1 0 1 0 0 0 1 1 0 1 0 0 0
1 1 1 0 0 0 0 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0 1 1 0 0 0 0
1 0 1 1 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 1

1 10 0 0 0 1 0 0 0 0 0 1 0
2 2

0 0 0 0 0 0 1 0 0 0 0 0 0 1

 

− 
 − 
 −
 

− 
=  

− 
 
 

− 
 
  

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

10 0 0 0 1 0
2
10 0 0 0 0 1
2

0 0 0 0 0 0 1

 

 
= c . 
 
Thus, −= =1 1

1 1
ac a ca c . By mapping γ =1( )a b , = =1a bc c c . 

 
Hence, by following the same method for both matrix computation and GAP software, all possible 
relations formed by conjugation between each generator and the power of certain exponents have been 
computed. Therefore, =2 0 1 1 2 3 4 5 6, , , , , , ,G a a l l l l l l   was shown to be isomorphic to 

=2 1 2 3 4 5 6, , , , , , , ,Q a b c l l l l l l  with −= 2 1
0 6c a l . As a result of collecting all possible relations, the polycyclic 

presentation of   is established as 
 

− − − −

− − − − − − −

− −

= = = = = = = =

= = = = = = = =

=

2 2 2 1 1 1 1
2 1 2 3 4 5 6 6 5 6 5 1 3

1 1 1 1 1 1 1
1 1 2 4 1 1 2 1 3 4 2 1 2 3 2 2 3 1 3 2 3 4 3 3

1 1
4 1 2 3

, , , , , , , , | , , , , , , ,

         , , , , , , , ,

         ,

a a b a

b c a b c a b c

a

Q a b c l l l l l l a cl b c c l l b bc l c c c c l l

l l l l l l l l l l l l l l l l l l l l l l l l

l l l l l − − − −= = = = = = = =

= = = = = = = = = = =

= = =

3 31 1 1 1 1 2 2 2 2

3 4 4

1 1 1 1
4 1 3 4 4 4 5 5 5 6 5 5 6 6 6 5 6 6

2 2 3 3 4 4 5 5 6 6 3 3 4 4 5 5 6 6 4 4 5 5

6 6 5 5 6 6 6

, , , , , , , ,

         , , , , , , , , , , ,

         , , ,

b c a b c a b c

l ll l l l l l l l l

l ll l

l l l l l l l l l l l l l l l l l

l l l l l l l l l l l l l l l l l l l l l l

l l l l l l l
− − − − − −

− − − −− − − − −

= = = = = = =

= = = = = = = = =

1 1 1 1 1 1
5 1 1 1 1 1 2

1 1 1 11 1 1 1 1
3 3 3 52 2 2 4 4

6 2 2 3 3 4 4 5 5 6 6 3 3

4 4 5 5 6 6 4 4 5 5 6 6 5 5 6 6 6 6

, , , , , , ,

         , , , , , , , , .

l l l l l l

l l l ll l l l l

l l l l l l l l l l l l l

l l l l l l l l l l l l l l l l l l

 

 
Theorem 2: 
Let =3 0 1 1 2 3 4 5 6, , , , , , ,G a a l l l l l l , be the third Bieberbach group of dimension six with quaternion point 
group of order eight, where; 
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 − − − 
 
 
 
 − −
 
 = −
 
 − 
 
 
 
 
 

0

10 1 1 1 0 0
2

0 0 0 1 0 0 0
11 1 0 1 0 0
2

0 1 0 0 0 0 0
10 0 0 0 1 0
4

10 0 0 0 0 1
4

0 0 0 0 0 0 1

a ,     

− − 
 − 
 −
 
− − =
 

− 
 
 
 
  

1

1 1 0 1 0 0 0
1 1 1 0 0 0 0
0 1 1 1 0 0 0
1 0 1 1 0 0 0

10 0 0 0 0 1
2

0 0 0 0 1 0 0
0 0 0 0 0 0 1

a  

 
 
 
 
 

=  
 
 
 
 
 

1

1 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

l         ,      

 
 
 
 
 

=  
 
 
 
 
 

2

1 0 0 0 0 0 0
0 1 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

l  

      

 
 
 
 
 

=  
 
 
 
 
 

3

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

l         ,      

 
 
 
 
 

=  
 
 
 
 
 

4

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

l  

      

 
 
 
 
 

=  
 
 
 
 
 

5

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1

l       , and 

 
 
 
 
 

=  
 
 
 
 
 

6

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1

l . 

 
Proof: 
By using the same method, let =3 0 1 1 2 3 4 5 6, , , , , , ,G a a l l l l l l  was shown to be isomorphic to 

=3 1 2 3 4 5 6, , , , , , , ,Q a b c l l l l l l  with −= 2 1
0 3 6c a l l . As a result of collecting all possible relations, the 

polycyclic presentation of 3Q  is established as: 
 

− − − − − − −

− − − − − −

−

= = = = = =

= = = = = = = =

= =

2 1 2 2 1 1 1 1 2 2 1 1
3 1 2 3 4 5 6 3 6 5 6 4 5 6 1

1 1 1 1 1 1
1 3 1 1 2 4 1 1 2 1 3 4 2 1 2 3 2 2 3 1

1
3 2 3 4 3 3

, , , , , , , , | , , , , ,

         , , , , , , , ,

         , ,

a a

b a b c a b c a

b c

Q a b c l l l l l l a cl l b c c l l b l l b c c a l l

c c l l l l l l l l l l l l l l l l l l l l

l l l l l l − − − − − −= = = = = =

= = = = = = = = = = =

= = = =

1 1 1 1 1 2 2 2

3 3 32

1 1 1 1 1 1
4 1 2 3 4 1 3 4 4 4 5 5 5 6 5 5

6 6 6 5 6 6 2 2 3 3 4 4 5 5 6 6 3 3 4 4 5 5

6 6 4 4 5 5 6 6 5

, , , , , ,

         , , , , , , , , , , ,

         , , , ,

a b c a b c

l l l l l l l la b c

l l ll l

l l l l l l l l l l l l l l l l

l l l l l l l l l l l l l l l l l l l l l l

l l l l l l l l l
− − −

− − −− − − − − −

−− −

= = = = = =

= = = = = = = = =

= = =

1 1 1
54 4 1 1 1

1 1 11 1 1 1 1 1
3 3 31 1 2 2 2 2

11 1
54 4

5 6 6 6 6 2 2 3 3 4 4

5 5 6 6 3 3 4 4 5 5 6 6 4 4 5 5 6 6

5 5 6 6 6 6

, , , , , ,

         , , , , , , , , ,

         , , .

ll l l l

l l ll l l l l l

ll l

l l l l l l l l l l l

l l l l l l l l l l l l l l l l l l

l l l l l l
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Theorem 3: 
Let =4 0 1 1 2 3 4 5 6, , , , , , ,G a a l l l l l l , be the fourth Bieberbach group of dimension six with quaternion point 
group of order eight, where; 
 

 − − 
 
 
 
 
 − 

=  − 
 
 
 
 
 
 
  

0

10 0 0 1 0 1
4

10 0 1 0 1 0
2
10 1 0 0 0 1
4

1 0 0 0 1 0 0
10 0 0 0 1 0
4
10 0 0 0 0 1
4

0 0 0 0 0 0 1

a  ,     

− 
 − 
 −
 

− − =
 

− − 
 
 −
 
  

1

0 0 1 0 1 1 0
0 0 0 1 0 0 0
1 0 0 0 0 0 0

0 1 0 0 1 1 0
10 0 0 0 0 1
2

0 0 0 0 1 0 0
0 0 0 0 0 0 1

a  

 
 
 
 
 

=  
 
 
 
 
 

1

1 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

l         ,      

 
 
 
 
 

=  
 
 
 
 
 

2

1 0 0 0 0 0 0
0 1 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

l  

      

 
 
 
 
 

=  
 
 
 
 
 

3

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

l          ,      

 
 
 
 
 

=  
 
 
 
 
 

4

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

l  

 
 
 
 
 

=  
 
 
 
 
 

5

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1

l        , and 

 
 
 
 
 

=  
 
 
 
 
 

6

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1

l . 

 
Proof: 
Therefore, by using the same method, let =4 0 1 1 2 3 4 5 6, , , , , , ,G a a l l l l l l  was shown to be isomorphic to 

=4 1 2 3 4 5 6, , , , , , , ,Q a b c l l l l l l  with − −= 1 1 2
2 5 0c l l a . In addition, 4G  was also shown to be isomorphic to 4Q  

with another c where − − −= 2 1 1 1
0 5 3 1 4c a l l l l . As a result of collecting all possible relations, the polycyclic 

presentation of 4Q  is established as: 
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− − − − −

− − − − − −

−

= = = = = =

= = = = = = = = = =

= = =

2 2 2 1 1 1 1 2 1 2
4 1 2 3 4 5 6 2 5 1 3 5 6 6 1 2

1 1 1 1 1 1
1 4 1 3 1 1 2 3 2 4 2 2 3 2 3 1 3 3
1

4 1 4 2 4

, , , , , , , , | , , , , ,

         , , , , , , , , , ,

         , ,

a a

b a b c a b c a b c

a b c

Q a b c l l l l l l a l l c b c c l l l l b l b c c l l b

c c l l l l l l l l l l l l l l l l l l

l l l l l − − − − − −

− − −

= = = =

= = = = = = = = =

= = = =

1 1 1 1 1 2 2

3 32 2

1 1 1 1 1 1
4 5 1 3 5 5 2 3 6 5 1 2 3 4 5 6 2 4 6

1 1 1
6 2 3 5 6 1 2 3 4 6 2 2 3 3 4 4 5 5 6 6 3 3 4 4

5 5 6 6 4 4 5 5

, , , , ,

         , , , , , , , , ,

         , , ,

a b c a

l l l l l l lb c

l ll l

l l l l l l l l l l l l l l l l l l l

l l l l l l l l l l l l l l l l l l l l l l l l

l l l l l l l l
− −

− −− − − − − − −

− −− −

= = = = = =

= = = = = = = = =

= = = =

1 1
3 54 4 1 1

1 11 1 1 1 1 1 1
3 31 1 1 2 2 2 2

1 11 1
3 54 4

6 6 5 5 6 6 6 6 2 2 3 3

4 4 5 5 6 6 3 3 4 4 5 5 6 6 4 4 5 5

6 6 5 5 6 6 6 6

, , , , , , ,

         , , , , , , , , ,

         , , ,

l ll l l l

l ll l l l l l l

l ll l

l l l l l l l l l l l l

l l l l l l l l l l l l l l l l l l

l l l l l l l l .

    

 
Here, it shows that the new generator c can be varied. The key here is to make sure that = 2c b , so that 
the generator c and b is commute to each other and the rest of the calculation will follow. 
 
Consistency Check for Q2 
It is vital to check whether the polycyclic presentation constructed is the correct presentation. Incorrect 
presentation will lead to failure in computing the algebraic properties of a group. The validity of the 
presentation will be checked using Definition 4. The aim is to prove that the polycyclic presentation 
constructed is consistent. From the previous result on Theorem 1, the theorem on its consistency 
relations is presented as follows: 
 
Theorem 4: 
Let ( )2 6Q  be a Bieberbach group of dimension six with quaternion point group of order eight, and its 
polycyclic presentation is found to be; 

− − − −

− − − − − − −

− −

= = = = = = = =

= = = = = = = =

=

2 2 2 1 1 1 1
2 1 2 3 4 5 6 6 5 6 5 1 3

1 1 1 1 1 1 1
1 1 2 4 1 1 2 1 3 4 2 1 2 3 2 2 3 1 3 2 3 4 3 3

1 1
4 1 2 3

, , , , , , , , | , , , , , , ,

         , , , , , , , ,

         ,

a a b a

b c a b c a b c

a

Q a b c l l l l l l a cl b c c l l b bc l c c c c l l

l l l l l l l l l l l l l l l l l l l l l l l l

l l l l l − − − −= = = = = = = =

= = = = = = = = = = =

= = =

3 31 1 1 1 1 2 2 2 2

3 4 4

1 1 1 1
4 1 3 4 4 4 5 5 5 6 5 5 6 6 6 5 6 6

2 2 3 3 4 4 5 5 6 6 3 3 4 4 5 5 6 6 4 4 5 5

6 6 5 5 6 6 6

, , , , , , , ,

         , , , , , , , , , , ,

         , , ,

b c a b c a b c

l ll l l l l l l l l

l ll l

l l l l l l l l l l l l l l l l l

l l l l l l l l l l l l l l l l l l l l l l

l l l l l l l
− − − − − −

− − − −− − − − −

= = = = = = =

= = = = = = = = =

1 1 1 1 1 1
5 1 1 1 1 1 2

1 1 1 11 1 1 1 1
3 3 3 52 2 2 4 4

6 2 2 3 3 4 4 5 5 6 6 3 3

4 4 5 5 6 6 4 4 5 5 6 6 5 5 6 6 6 6

, , , , , , ,

         , , , , , , , , .

l l l l l l

l l l ll l l l l

l l l l l l l l l l l l l

l l l l l l l l l l l l l l l l l l

 

Then, ( )2 6Q  is consistent. 
 
Proof: 

( )2 6Q  is generated by a, b, c, l1, l2, l3, l4, l5, l6. By referring to Definition 4, let g1 = a, g2 = b, g3 = c, g4 = 
l1, g5 = l2, g6 = l3, g7 = l4, g8 = l5, g9 = l6. 
 
For the first consistency relation, i.e. ( ) ( )=k j i k j ig g g g g g  for i < j < k, the following 84 relations hold: 

(i) ( ) ( )=c ba cb a  

(ii) ( ) ( )=1 1l cb l c b  

(iii) ( ) ( )=1 1l ca l c a  

(iv) ( ) ( )=1 1l ba l b a  

(v) ( ) ( )=2 1 2 1l l c l l c  

(vi) ( ) ( )=2 1 2 1l l b l l b  

(vii) ( ) ( )=2 1 2 1l l a l l a  

(viii) ( ) ( )=2 2l cb l c b  

(ix) ( ) ( )=2 2l ca l c a  

(x) ( ) ( )=2 2l ba l b a  

(xi) ( ) ( )=3 2 1 3 2 1l l l l l l  

(xii) ( ) ( )=3 2 3 2l l c l l c  

(xiii) ( ) ( )=3 2 3 2l l b l l b  

(xiv) ( ) ( )=3 2 3 2l l a l l a  

(xv) ( ) ( )=3 1 3 1l l c l l c  

(xvi) ( ) ( )=3 1 3 1l l b l l b  

(xvii) ( ) ( )=3 1 3 1l l a l l a  

(xviii) ( ) ( )=3 3l cb l c b  

(xix) ( ) ( )=3 3l ca l c a  

(xx) ( ) ( )=3 3l ba l b a  

(xxi) ( ) ( )=4 3 2 4 3 2l l l l l l  

(xxii) ( ) ( )=4 3 1 4 3 1l l l l l l  
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(xxiii) ( ) ( )=4 3 4 3l l c l l c  

(xxiv) ( ) ( )=4 3 4 3l l b l l b  

(xxv) ( ) ( )=4 3 4 3l l a l l a  

(xxvi) ( ) ( )=4 2 1 4 2 1l l l l l l  

(xxvii) ( ) ( )=4 2 4 2l l c l l c  

(xxviii) ( ) ( )=4 2 4 2l l b l l b  

(xxix) ( ) ( )=4 2 4 2l l a l l a  

(xxx) ( ) ( )=4 1 4 1l l c l l c  

(xxxi) ( ) ( )=4 1 4 1l l b l l b  

(xxxii) ( ) ( )=4 1 4 1l l a l l a  

(xxxiii) ( ) ( )=4 4l cb l c b  

(xxxiv) ( ) ( )=4 4l ca l c a  

(xxxv) ( ) ( )=4 4l ba l b a  

(xxxvi) ( ) ( )=5 4 3 5 4 3l l l l l l  

(xxxvii) ( ) ( )=5 4 2 5 4 2l l l l l l  

(xxxviii) ( ) ( )=5 4 1 5 4 1l l l l l l  

(xxxix) ( ) ( )=5 4 5 4l l c l l c  

(xl) ( ) ( )=5 4 5 4l l b l l b  

(xli) ( ) ( )=5 4 5 4l l a l l a  

(xlii) ( ) ( )=5 3 2 5 3 2l l l l l l  

(xliii) ( ) ( )=5 3 1 5 3 1l l l l l l  

(xliv) ( ) ( )=5 3 5 3l l c l l c  

(xlv) ( ) ( )=5 3 5 3l l b l l b  

(xlvi) ( ) ( )=5 3 5 3l l a l l a  

(xlvii) ( ) ( )=5 2 1 5 2 1l l l l l l  

(xlviii) ( ) ( )=5 2 5 2l l c l l c  

(xlix) ( ) ( )=5 2 5 2l l b l l b  

(l) ( ) ( )=5 2 5 2l l a l l a  

(li) ( ) ( )=5 1 5 1l l c l l c  

(lii) ( ) ( )=5 1 5 1l l b l l b  

(liii) ( ) ( )=5 1 5 1l l a l l a  

(liv) ( ) ( )=5 5l cb l c b  

(lv) ( ) ( )=5 5l ca l c a  

(lvi) ( ) ( )=5 5l ba l b a  

(lvii) ( ) ( )=6 5 4 6 5 4l l l l l l  

(lviii) ( ) ( )=6 5 3 6 5 3l l l l l l  

(lix) ( ) ( )=6 5 2 6 5 2l l l l l l  

(lx) ( ) ( )=6 5 1 6 5 1l l l l l l  

(lxi) ( ) ( )=6 5 6 5l l c l l c  

(lxii) ( ) ( )=6 5 6 5l l b l l b  

(lxiii) ( ) ( )=6 5 6 5l l a l l a  

(lxiv) ( ) ( )=6 4 3 6 4 3l l l l l l  

(lxv) ( ) ( )=6 4 2 6 4 2l l l l l l  

(lxvi) ( ) ( )=6 4 1 6 4 1l l l l l l  

(lxvii) ( ) ( )=6 4 6 4l l c l l c  

(lxviii) ( ) ( )=6 4 6 4l l b l l b  

(lxix) ( ) ( )=6 4 6 4l l a l l a  

(lxx) ( ) ( )=6 3 2 6 3 2l l l l l l  

(lxxi) ( ) ( )=6 3 1 6 3 1l l l l l l  

(lxxii) ( ) ( )=6 3 6 3l l c l l c  

(lxxiii) ( ) ( )=6 3 6 3l l b l l b  

(lxxiv) ( ) ( )=6 3 6 3l l a l l a  

(lxxv) ( ) ( )=6 2 1 6 2 1l l l l l l  

(lxxvi) ( ) ( )=6 2 6 2l l c l l c  

(lxxvii) ( ) ( )=6 2 6 2l l b l l b  

(lxxviii) ( ) ( )=6 2 6 2l l a l l a  

(lxxix) ( ) ( )=6 1 6 1l l c l l c  

(lxxx) ( ) ( )=6 1 6 1l l b l l b  

(lxxxi) ( ) ( )=6 1 6 1l l a l l a  

(lxxxii) ( ) ( )=6 6l cb l c b  

(lxxxiii) ( ) ( )=6 6l ca l c a  

(lxxxiv) ( ) ( )=6 6l ba l b a  
 

Hence, by the polycyclic presentation of ( )2 6Q : 
For (i), 

( ) ( )
( ) ( )

− − − − −

− − − − −

= = = =

= = = = =

1 1 1 1 1
5 5 5

1 1 1 1 1
5 5 5

a

b

c ba c ab cabc l abcc l abl

cb a bc a bac abc l c abl c c abl
 

 
For (ii), 

( ) ( )
( ) ( )

− − − − − −

− − − − − − − − − − −

= = = = = =

= = = = = = =

1 1 1 1 1 1
1 1 1 1 2 4 1 2 4 1 2 4 1 2 4

1 1 1 1 1 1 1 1 1 1 1
1 1 1 4 2 1 4 2 1 4 1 2 1 4 2 1 2 4

b

c

l cb l bc l bc bl l l c bl l cl bl cl l bcl l l

l c b cl b cl b cbl l l bcl l l bcl l l bcl l l bcl l l
 

 
By using the same method, the other 82 possible relations for the first consistency relations are proved 
to satisfy both sides of the equation. 
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For the second consistency relation, i.e. ( ) ( )−= 1i ie e
j i j j ig g g g g  for j > i, ∈j I , the following 3 relations 

are satisfied: 
(i) ( )=2b a b ba  

(ii) ( )=2c b c cb  

(iii) ( )=2c a c ca  
 
Therefore, by the polycyclic presentation of ( )2 6Q : 
For (i), 

( ) ( )
( ) ( )

− − − − − − − − − − − − − −

− −− − − − − − − − − − − − − −

− − −

= =

= = = = =

= = = =

= = =

2

1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 5 5 6 5 6 5

1 11 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1
5 6 5 6 5 6 5 6 5 6

1 1 1
6 5 5 6 6 6

a

b a ca ac

b ba b ab babc l abc l bc l abc bl c l abc bc l l

abc bc l l abbc c l l ab c l l ac l l l l

acl l l l acl l ac

 

 
For (ii), 

( )

− − − − − − − −

− −

= = = =

= = = =

2 1 1 1 1 1 1 1 1
5 6 5 5 6 5 5 6

2 1 1
5 6

c b l l b l bl bl l bl l

c cb cbc bcc bc bl l
 

 
For (iii), 

( )

− − − − − −

− −

= = =

= = = =

2 1 1 1 1 1 1
5 6 5 6 5 6

2 1 1
5 6

c a l l a l al al l

c ca cac acc ac al l
 

 

For the third consistency relation, i.e. ( ) ( ) −= 1i ie e
j i j i ig g g g g  for j > i, ∈i I , the following 21 relations 

hold: 
 

(i) ( ) ( )=2b a ba a  

(ii) ( ) ( )=2c b cb b  

(iii) ( ) ( )=2c a ca a  

(iv) ( ) ( )=2
1 1l c l c c  

(v) ( ) ( )=2
1 1l b l b b  

(vi) ( ) ( )=2
1 1l a l a a  

(vii) ( ) ( )=2
2 2l c l c c  

(viii) ( ) ( )=2
2 2l b l b b  

(ix) ( ) ( )=2
2 2l a l a a  

(x) ( ) ( )=2
3 3l c l c c  

(xi) ( ) ( )=2
3 3l b l b b  

(xii) ( ) ( )=2
3 3l a l a a  

(xiii) ( ) ( )=2
4 4l c l c c  

(xiv) ( ) ( )=2
4 4l b l b b  

(xv) ( ) ( )=2
4 4l a l a a  

(xvi) ( ) ( )=2
5 5l c l c c  

(xvii) ( ) ( )=2
5 5l b l b b  

(xviii) ( ) ( )=2
5 5l a l a a  

(xix) ( ) ( )=2
6 6l c l c c  

(xx) ( ) ( )=2
6 6l b l b b  

(xxi) ( ) ( )=2
6 6l a l a a
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Thus, by the polycyclic presentation of ( )2 6Q : 
For (i), 

( )

( ) ( )
( )

− − − − − − − − − −

−− − − − − − − − − − − −

− − − −

=

= = = = =

= = = =

= = = = = =

2
6

1 1 1 1 1 1 1 1 1 1
5 5 5 5 5

12 1 1 1 1 2 1 1 1 1 2 2 1 1 2 1 1
5 5 5 5 5 5 6 5 5 5

2 1 2 1 1 1
6 5 5 6 6 5 6 5 5 6 6 6

a

b a bcl

ba a ab a abc l a abc al abac l aabc l c l

a bc l c l a bc c l l a b c l l a bl l l l

a bl l a bl l cl bl l cbl l l cbl bcl

 

 
For (ii), 

( )
( ) ( )

− −

− −

= = =

= = = = = = =

2 2 1 1
5 6

2 2 1 1
5 6

b

c b cc c l l

cb b bc b bcb bbc b c cc c l l
 

 
By using the same method, the other 19 possible relations for the third consistency relations are proved 
to satisfy both sides of the equation. 
 

For the fourth consistency relation, i.e. ( ) ( )=i ie e
i i i ig g g g  for ∈i I , the following 3 relations hold: 

(i) ( ) ( )=2 2a a a a  

(ii) ( ) ( )=2 2b b b b  

(iii) ( ) ( )=2 2c c c c  

 
Therefore, by the polycyclic presentation of ( )2 6Q : 
For (i), 

( )
( )

= = =

=

2
6 6 6

2
6

a a cl a cal acl

a a acl
 

 
For (ii), 

( )
( )

= =

=

2

2

b b cb bc

b b bc
 

 
For (iii), 

( )
( )

= = =

=

2
6 6 6

2
6

a a cl a cal acl

a a acl
 

 

For the fifth consistency relation, i.e. ( )−= 1
j j i ig g g g  for j > i, ∉i I , the following 15 relations hold: 

(i) ( )−= 1
2 2 1 1l l l l  

(ii) ( )−= 1
3 3 1 1l l l l  

(iii) ( )−= 1
4 4 1 1l l l l  

(iv) ( )−= 1
5 5 1 1l l l l  

(v) ( )−= 1
6 6 1 1l l l l  

(vi) ( )−= 1
3 3 2 2l l l l  

(vii) ( )−= 1
4 4 2 2l l l l  

(viii) ( )−= 1
5 5 2 2l l l l  
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(ix) ( )−= 1
6 6 2 2l l l l  

(x) ( )−= 1
4 4 3 3l l l l  

(xi) ( )−= 1
5 5 3 3l l l l  

(xii) ( )−= 1
6 6 3 3l l l l  

(xiii) ( )−= 1
5 5 4 4l l l l  

(xiv) ( )−= 1
6 6 4 4l l l l  

(xv) ( )−= 1
6 6 5 5l l l l  

 
Thus, by the polycyclic presentation of ( )2 6Q : 
For (i), 

( ) ( )− − − − 
= = = = = 

 

21 1 1 1
2 2 1 1 1 1 1 2 1 1 1 2 2

l
l l l l l l l l l l l l l  

 
For (ii), 

( ) ( )− − − − 
= = = = = 

 

31 1 1 1
3 3 1 1 1 1 1 3 1 1 1 3 3

l
l l l l l l l l l l l l l  

 
By using the same method, the other 13 possible relations for the fifth consistency relations are proved 
to satisfy both sides of the equation. 
 
Since the polycyclic presentation of ( )2 6Q  satisfies the consistency relations as shown in Definition 4, 
hence, it is concluded that ( )2 6Q  is a correct polycyclic presentation with its new well-defined generator 

−= 2 1
0 6c a l . 

 
Conclusions 
 
In this research, the polycyclic presentations of the second, third and fourth Bieberbach group 
of dimension six with quaternion point group of order eight, namely 2Q , 3Q  and 4Q  have been 
constructed with the help of Groups, Algorithms, and Programming (GAP) software. The second 
polycyclic presentation, 2Q have been proved to satisfy its consistency relation, and the other two groups 
namely, 3Q  and 4Q  might be tested to meet its consistency relations later. The findings of this study 
could be applied for further research to find the homological invariants such as the nonabelian tensor 
square, the kernel of homomorphism of the nonabelian tensor square, or the Schur multiplier by using 
these group presentations. 
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