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Abstract The confidence interval is an important statistical estimator of population location and 
dispersion parameters. The purpose of this paper is to comprehend CI utilising various 
techniques. This includes classical CI, percentile bootstrap method, bootstrap-t and proposed 
bootstrap-t decile mean method. Distributions that are skewed and normal are used to generate 
data. The efficiency of the proposed method is evaluated on the basis of an extensive simulation 
study. The simulation findings show that the performance of the Student-t and three bootstrap 
approaches varies dramatically depending on sample size and skewness type. The coverage 
probability and length of the proposed confidence interval are compared with certain existing and 
widely used confidence intervals. For illustrative purposes, two real-life data sets are analysed, 
which, to some extent, support the simulation study conclusions. This paper's findings will be 
useful to a variety of researchers with practical experience in the fields of science and social 
sciences. 
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Introduction 
 
Many established statistical theories rely on the normality assumption as their foundation, such as 
Neyman's (1937) estimation theory for constructing confidence intervals (CIs). However, in practical 
situations, a significant portion of data doesn't adhere to this assumption of normality. The Student-t CI, 
as well as the classical normal CI are two of the most beneficial CIs. The normal CI necessitates a 
sample size of 30 or greater. However, practical experiments may require smaller sample sizes, leading 
researchers to opt for the Student-t CI as opposed to the normal one. These intervals offer more 
comprehensive insights into the population characteristic of interest compared to a point estimator. 
 
The Student-t is related to two issues. First, the Student-t distribution is symmetric and predicted 
according to the normalcy assumption. Thus, the (1 – α)100% CI pertaining to the population mean (μ) 
is also centred on the normality assumption. But in practice, the normalcy assumption is not met. 
Numerous writers have addressed the weakness of the Student-t technique in certain circumstances, 
including Boos & Hughes-Oliver (2000), David (1998), Desharnais et al. (2015), and Wilcox (2021). Prior 
studies have demonstrated that when considering small sample sizes and asymmetric distributions, the 
Student-t performs well because coverage probability (CP) approaches the nominal confidence 
coefficient despite its length and variability being larger than other CIs. When considering an asymmetric 
distribution and small sample sizes, Student-t performs well because its CP approaches the nominal 
confidence coefficient (Boos & Hughes-Oliver, 2000; Shi & Golam Kibria, 2007; Wang, 2001; Zhou & 
Dinh, 2005). The purpose of this paper is to comprehend CI utilising various techniques. This includes 
classical CI, percentile bootstrap method, bootstrap-t and proposed bootstrap-t decile mean method.  
 
This work's remaining sections are arranged as follows: Section 2 demonstrates the intended CI. A 
simulation analysis was performed in Section 3 to assess the CP and length performance of the 
underlying CIs using the proposed approaches. In Section 4, the real data applications are displayed. 
The conclusions round out in Section 5. 
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Methods for Estimation of the CI for the Population Mean 
 
This particular section presents the methods for estimating the CI of the population mean (𝜇𝜇) pertaining 
to a skewed distribution. Assume that X1, X2, … , Xn is a randomly selected sample from a positively 
skewed distribution with unknown μ and σ. It is dispersed in an identical and independent manner. The 
bootstrap technique and Student-t are discussed in this study. The following presents the (1 – α) 100% 
CI pertaining to the population mean (μ) using several methods.  
 
Classical CI for the Population Mean 
This interval is a more reliable method of testing hypotheses, especially when σ is unknown, or sample  
size are limited. Its foundation is the normality assumption (Student 1908). The (1–α)100% CI for μ can 
be from Eq. 1 when σ is known. 
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Eq. 2 can be used to construct the (1–α)100% CI for μ, also referred to as the Student-t, for small sample 
sizes and unknown σ. 
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in which ( / 2, 1)nt α − denotes the upper α/2 percentage point of the Student-t distribution with (n-1) degrees 
of freedom. Here, the Student-t approach method is not very resilient when there are extreme deviations 
from normality (Boos and Hughes-Oliver 2000). Furthermore, the Student-t may not be the ideal CI for 
asymmetric distributions since it depends on the normality assumption.  
 
The classical CI is widely used in statistical literature and practice due to its effectiveness, particularly in 
normal models. However, Student-t CI has poor coverage when the sample population is biased. The 
bootstrap method is an alternate strategy for estimating parameters if one disregards the presumption 
of normality (Flowers-Cano et al., 2018). 
 
Percentile Bootstrap CI 
Percentile bootstrap CI is another name for the bootstrap method in general (Abu-Shawiesh et al., 2022; 
Pek et al., 2017). An algorithmic method for generating a (1−α)100% percentile bootstrap CI pertaining 
to the population mean is as follows (Pek et al., 2017): 
 
(i) For this bootstrap sample, resample the observed sample using a replacement, then determine the 
sample mean.  
(ii) Repeat Step 1 M times. 
(iii) After sorting M bootstrapped sample means, the (1−α)100%percentile bootstrap CI for the population 
mean is obtained from the (α/2)100th and (1-α/2)100th percentiles given. 
 
The development of this CI has been concerned with the resampling technique, which is a difficult 
process and has a strong performance in theoretical CP. Still, it tends to be inconsistent in real practice 
depending on the bootstrap distribution (Sinsomboonthong et al., 2020). Furthermore, this method is 
challenging to compute, making it difficult to use without statistical programming, whereas the Bootstrap-
t methods suggested in this study are simple to implement.  
 
Bootstrap-t 
Bootstrap-t CI is sometimes referred to as studentized or percentile-t bootstrap (Berrar, 2019). The 
bootstrap-t approach outperforms the Student-t method for varied sample sizes (Zhao et al., 2021). 
Moreover, the bootstrap-t CI is not always symmetrically constructed, although the conventional CI is 
typically symmetric (Berrar, 2019). The CI constructions for the expected value determined by random 
variables with a normal distribution are similar to the bootstrap-t construction. In each of the scenarios 
examined, the bootstrap-t approach uses these data to create less biased CI that is more accurate than 
earlier bootstrapping techniques (Hoyle & Cameron, 2003). 
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With this technique, the distribution of statistics  can be inferred directly from the data. Z can be 
computed in the following manner for every set of bootstrap samples.  
 

 
(3) 

 
Eq. 3 where  is the  estimate for the bth bootstrap sample, standard errors are often used to assign 
approximate CI to a parameterθ , and  denotes the estimated standard error for the bth bootstrap 
sample. Next, the  percentile of  is computed as the value . The CI is then calculated using Eq. 
4 (Barker 2005). 
 

 (4)                                                                                                                                           
 
The Proposed Bootstrap-t Decile Mean 
The robust CI bootstrap-t decile mean is a suggested modification of the Student-t CI centred on the 
decile mean as well as the decile standard deviation. The bootstrap-t decile mean is then calculated by 
using Eq. 5, where DM is the decile mean, SDDM is the decile standard deviation, as well as n is the 
sample size (Abu-Shawiesh, Sinsomboonthong, and Kibria 2022). 
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Simulation Study  
 
A simulation study has been performed to compare the CI performance because it is challenging to 
theoretically evaluate various CIs (Shi & Golam Kibria, 2007). R programming languages are used to 
conduct all of the simulation outcomes.  
 
Performance Evaluation   
In this section, the performance of the CI for the three distributions' population means (Normal, Chi-
Square, and Lognormal) was compared. The research's main objective is to evaluate the CI's 
performance in determining the population mean (μ) of three distributions. The performance of CI 
employing CP is based on the findings of simulation studies and length is based on real data applications 
(Islam & Shapla, 2018; Moslim et al., 2019; Omar & Abu, 2011; Waguespack et al., 2020). 
 
(i) For a given parameter, the CP of the CI is close to a nominal value of 0.95 under normal distribution 
(Kyselý 2010). When a distribution is not normal, the CP of the CI for a parameter can be appreciably 
below 0.95 (Niwitpong and Kirdwichai 2008; Waguespack, Krishnamoorthy, and Lee 2020). The suitable 
performing CI in each case had a CP is greater than or equal to nominal confidence level of 0.95 
(Chankham, Niwitpong, & Niwitpong 2022). 
 

Coverage probability= m
s

, in which m resembles the number of true values that are contained within the 

CI and s number of bootstrap replications. 
 
(ii) Length (i.e. difference between the lower and upper limits). Moreover, the shortest length implies a 
more precise estimation and improved performance of CI. The shortest length gives a better CI (Islam 
and Shapla 2018; Omar and Abu 2011). In addition, length decreases with increasing sample size 
(Waguespack, Krishnamoorthy, and Lee 2020). 
 
Probability Distributions for the Simulation Study   
In order to investigate the impact of skewness and assess the effectiveness of the CI estimators 
pertaining to the population mean (μ) of the distribution, this study examines two scenarios for the 
simulated observations: i) normal distribution and ii) skewed distribution. The term "skewness" describes 
the probability distribution's departure from symmetry. According to Sharma et al. (2009), a distribution 
that is positively skewed has a longer tail on the right side, whereas one that is negatively skewed has a 
longer tail on the left. Pertaining to skewed distributions, employ Eq. 6 and Eq. 8. to duplicate data from 
three probability distributions with different skewness levels. 
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Case (a): Normal distribution 
 
There is no skewness, and the distribution is symmetric. Given a normal distribution that consists mean 
μ and standard deviation σ, 2( , )N µ σ , the probability density function (𝑝𝑝𝑝𝑝𝑝𝑝) is given like below: 
 

21
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(6) 

 
The population mean μ as well as the population standard deviation σ n this study's simulation algorithm 
are set to 𝜇𝜇=0 and 𝜎𝜎=1, respectively. 
 
Case (b): Chi-square distribution 
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kµ = and 2 2kσ = represent the mean as well as the variance of the chi-square distribution, 

accordingly. The distribution's coefficient of skewness is 8 / k . The parameter 𝑘𝑘 for the chi-square 
distribution is specified as 𝑘𝑘 = 5 and 𝑘𝑘 = 50 in this study's simulation algorithm. 
 
The particular distributions as well as skewness coefficients employed in this simulation study are 
displayed in Table 1. 
 
Case (c): Lognormal distribution 
 
The lognormal distribution is a tail-heavy distribution and is used when uncertainty estimates are 
expected to be positively skewed. These two non-normal distributions may not cover most of the skewed 
distributions. The Weibull and Gamma have approximately similar properties to log-normal but are less 
tail-heavy than log-normal (Tong, Saminathan, and Chang 2016). The probability density function of the 
lognormal distribution is defined as Eq. 8. 
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where σ  is the shape parameter (and is the standard deviation of the log of the distribution), θ  is the 
location parameter and m is the scale parameter (and is also the median of the distribution). The 
coefficient of skewness of the distribution is 
 

2 2

1( 2)e eσ σ− + which is always positive. 
 

Table 1. The parameters of normal, chi-square, and lognormal distribution 
 
Probability distribution Parameters Skewness 
Normal 0, 1µ σ= =  0.0000 

Chi-square k=5 1.0690 
k=50 0.4000 

Lognormal distribution 
1, 0.5µ σ= =  1.75 

1, 1µ σ= =  6.18 
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The Simulation Technique 
The following is the algorithm for the simulation study (Abu-Shawiesh et. al. 2018): 
 
i) Decide on the number of simulation times (M), sample size (n), as well as significance level (α).  
ii) Using the R software, create a random sample of size (n), X1, X2, … , Xn, which is independently and 
identically distributed and originates from a normal, chi-square, as well as lognormal distribution with 
parameter with the selected population skewness.  
iii) Using the formulas from Section 2, construct CI at a (1-α)100% confidence level.  
iv) Determine whether each CI contains µ, and compute the expected length of the CI for those CIs that 
contain the mean. 
v) Repeat steps (i) through (iv) M times. Then, as evaluation criteria, compute the CP. 
 
According to the simulation's outcome, 10,000 random sample sizes of n=10, 20, 30, 50, 100, 200, as 
well as 400 were generated (Abu-Shawiesh, Sinsomboonthong, and Kibria 2022; Dey et al. 2019; Zhao 
et al. 2021). Select between 1000, 2000, and 5000 simulations. The most popular 95% CI (α = 0.05) is 
used for the confidence coefficient. It is commonly known that the CP will be exact or very near to (1−α) 
if the data come from a symmetric distribution or if n is large.  
 
Simulation Results 
According to the data gathered and presented in Table 2, the CI for CP Student-t CI is similar for 
bootstrap 1000, bootstrap 2000, and bootstrap 5000. The likelihood of coverage rose as the sample size 
grew. The bootstrap-t DM, on the other hand, appears to understate the likelihood of coverage for every 
sample size in data with a normal distribution. The traditional technique performs well in terms of 
coverage for normal data. Bootstrap-t DM constantly provides lower CP relative to the goal value, which 
leads to the least effective performance strategy. It is true that as sample sizes increase, so do CIs. 

 
Table 2. CP of the 95% CIs for the N(0,1) distribution's population mean with skewness 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Nonnormality is classified into three categories: values less than 1.0 for skewness and kurtosis, values 
for moderate nonnormality range from 1.0 to approximately 2.3, while those for severe nonnormality 
exceed 2.3 (Lei & Lomax, 2005). In a similar vein, Bulmer (1979) noted that distribution skewness is 
fairly symmetrical between 0 and 0.5, moderately skewed between 0.5 and 1, as well as highly skewed 

Bootstrap Sample 
size 

Student-t Percentile Bootstrap-t Bootstrap-t DM 

1000 10 0.9485 0.8985  0.95 0.507 
 20 0.9502 0.9247 0.956 0.116 
 30 0.9525 0.9317 0.954 0.022 
 50 0.9492 0.942 0.95 0 
 100 0.9505 0.9403 0.951 0 
 200 0.9532 0.9456 0.955 0 
 400 0.9537 0.9476 0.958 0 

2000 10 0.9485 0.9002 0.951 0 
 20 0.9502 0.9262 0.954 0 
 30 0.9525 0.9393 0.9505 0 
 50 0.9492 0.9392 0.951 0 
 100 0.9505 0.948 0.9485 0 
 200 0.9532 0.9435 0.954 0 
 400 0.9537 0.9499 0.958 0 

5000 10 0.9485 0.9065 0.9526 0.0002 
 20 0.9502 0.9251 0.95 0 
 30 0.9525 0.9326 0.9516 0 
 50 0.9492 0.9417 0.9518 0 
 100 0.9505 0.9456 0.9514 0 
 200 0.9532 0.9476 0.9516 0 
 400 0.9537 0.9503 0.9506 0 
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beyond 1. To examine how well the CI performs under skewed distributions, generate random samples 
from several skewed distributions with skewness ranging from 0.4 to 6.18 (Banik & Kibria, 2010). Table 
3 shows the low skewness, Table 4 and 5 show the moderate skewness, while Table 6 shows the high 
skewness.  
 
According to the data shown in Table 3, the CI for CP Student-t is similar to Bootstrap 1000, 2000, and 
5000. In every interval, the CP drops as the sample size increases. 50% of Student-t and 50% of 
bootstrap-t perform well in terms of coverage. However, bootstrap-t DM constantly provides a CP that is 
less than the ideal value, leading to the least effective approach. This class of distributions has almost 
the same length for Student-t, percentile, and bootstrap-t. When increasing the sample size, CP will 
decrease. It shows that bootstrap-t DM is good for a small sample size. The result is similar for bootstrap-
t DM (Abu-Shawiesh, Sinsomboonthong, & Kibria 2022).  

 
Table 3. CP of the 95% CIs for the population mean of chi-square with degrees of freedom 50 chi-square 
distribution and skewness 0.4000 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
It is evident from the data collected and shown in Table 4 that the CI for CP Student-t is similar to 
bootstrap 1000, 2000 and 5000. As sample sizes increase, the CP decreases in bootstrap-t DM. It shows 
that bootstrap-t DM is good for a small sample size. The result is similar for bootstrap-t DM (Abu-
Shawiesh, Sinsomboonthong, & Kibria 2022). The majority of bootstrap-t gives good results compared 
to other methods. Bootstrap-t DM provides a CP consistently below the target value, resulting in the least 
effective method. 
 
 

Bootstrap Sample  
size 

Student-t Percentile Bootstrap-t Bootstrap-t DM 

1000 10 0.9444 0.8954 0.953 0.861 

 20 0.9447 0.9306 0.949 0.752 

 30 0.9504 0.9312 0.951 0.657 

 50 0.9496 0.9367 0.94 0.431 

 100 0.9485 0.9459 0.948 0.093 

 200 0.948 0.9474 0.957 0.001 

 400 0.9491 0.946 0.955 0 

2000 10 0.9444 0.9011 0.949 0.853 

 20 0.9447 0.9208 0.9495 0.7355 

 30 0.9504 0.9338 0.948 0.6235 

 50 0.9496 0.9399 0.9475 0.403 

 100 0.9499 0.9401 0.9505 0.0815 

 200 0.948 0.9479 0.955 0.001 

 400 0.9491 0.9461 0.9495 0 

5000 10 0.9444 0.9014 0.9478 0.8462 

 20 0.9447 0.9292 0.9516 0.7248 

 30 0.9504 0.9345 0.952 0.6068 

 50 0.9496 0.945 0.949 0.3732 

 100 0.9485 0.9475 0.9518 0.072 

 200 0.948 0.9472 0.9516 0.0006 

 400 0.9491 0.9474 0.95 0 
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Table 4. CP of the 95% CIs for the population mean of chi-square with degrees of freedom 5 chi-
square distribution and skewness 1.0690 
 

 
 
The simulated results in Table 5 show the performance of lognormal distribution with skewness 1.75 
(moderately skewed). The simulation results indicate that the CP of bootstrap-t DM were higher than 
or close to the nominal level in majority scenarios (Chankham, Niwitpong, & Niwitpong 2022). The 
result is similar for bootstrap-t DM (Abu-Shawiesh, Sinsomboonthong, & Kibria 2022).  
 
Table 5. CP of the 95% CIs for the population mean of lognormal distribution with mean 1 and 
standard deviation with 0.5 with skewness 1.75 
 

 
 
 

Bootstrap Sample 
size 

Student-t Percentile Bootstrap-t Bootstrap-t 
DM 

1000 10 0.9299 0.8824  0.959 0.912 
 20 0.9394 0.9155 0.945 0.859 
 30 0.9422 0.924 0.952 0.807 
 50 0.9457 0.9355 0.947 0.695 
 100 0.9469 0.9422 0.948 0.398 
 200 0.9461 0.9456 0.9456 0.099 
 400 0.9489 0.9486 0.943 0.001 

2000 10 0.9299 0.8851 0.9565 0.911 
 20 0.9394 0.913 0.9475 0.863 
 30 0.9422 0.9292 0.9505 0.8025 
 50 0.9457 0.931 0.948 0.702 
 100 0.9469 0.9473 0.947 0.4205 
 200 0.9461 0.9495 0.945 0.0895 
 400 0.9489 0.9495 0.949 0.0005 

5000 10 0.9299 0.8867 0.9526 0.9058 
 20 0.9394 0.917 0.9504 0.8634 
 30 0.9422 0.9294 0.9518 0.81 
 50 0.9457 0.9421 0.9512 0.7122 
 100 0.9469 0.9425 0.9476 0.4472 
 200 0.9461 0.9461 0.9484 0.101 
 400 0.9489 0.9534 0.9482 0.0016 

Bootstrap Sample 
size 

Student-t Percentile Bootstrap-t Bootstrap-t 
DM 

1000 10 0.9239 0.8727 0.955 0.96 
  20 0.9318 0.9114 0.969 0.963 
  30 0.9396 0.9216 0.962 0.96 
  50 0.9414 0.9359 0.953 0.966 
  100 0.9484 0.936 0.953 0.952 
  200 0.9518 0.9454 0.959 0.903 
  400 0.9534 0.9444 0.951 0.812 

2000 10 0.9239 0.8802 0.959 0.9585 
  20 0.9318 0.9167 0.965 0.958 
  30 0.9396 0.9276 0.9555 0.9605 
  50 0.9414 0.9317 0.953 0.964 
  100 0.9484 0.9419 0.954 0.9525 
  200 0.9518 0.9443 0.9555 0.9055 
  400 0.9534 0.9477 0.956 0.828 

5000 10 0.9239 0.8727 0.9538 0.9584 
  20 0.9318 0.9114 0.956 0.958 
  30 0.9396 0.9216 0.9505 0.9616 
  50 0.9414 0.9359 0.9502 0.9628 
  100 0.9484 0.936 0.9498 0.9514 
  200 0.9518 0.9454 0.951 0.9082 
  400 0.9534 0.9444 0.9518 0.8178 
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The simulated results in Table 6 show the performance of lognormal distribution with skewness 6.18 
(highly skewed). Bootstrap-t showed that the CP was higher than or close to 0.95 (Chankham, 
Niwitpong, and Niwitpong 2022). In addition, the efficiency of the proposed method is similar to 
Bootstrap-t. Bootstrap-t DM closes the Bootstrap-t for small sample sizes. It is found that bootstrap-
t and bootstrap-t DM are robust because the CP is higher than Student-t and Percentile for a small 
sample size (Abu-shawiesh, Saghir; 2019). In conclusion, the simulation study shows that for small 
sample sizes and moderate to highly skewed distributions, bootstrap-t DM performs a suitable 
method in the sense CP was higher than or close to 0.95. 

 
Table 6: CP of the 95% CIs for the population mean of lognormal distribution with mean 1 and 
standard deviation with 1 with skewness 6.18 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Real Data Applications 
 
The various approaches to building a CI around the normally distributed and non-normally distributed 
data are demonstrated in this section using two real-world examples. This paper will show that there can 
be significant differences in the outcomes of the methods discussed here. 
 
Example 1 
Liquidity is the easier the asset or security can be converted into cash (Ahmad et al. 2019). The data 
describe standard liquidity for housing construction in Malaysia from 2000 to 2018:  
 
0, 0.00136868, 0.00283931, 0.00443463, 0.00613946, 0.00794009, 0.00982426, 0.0117811, 
0.0138008, 0.015875, 0.0179959, 0.020157, 0.0223523, 0.0245765, 0.0268252, 0.0290941, 
0.0313798, 0.0336789, 0.0359888. 
 
The histogram and box plot are displayed in Figure 1. The Shapiro-Wilk test is taken into consideration 
when examining the sample data's normal distribution. It was discovered that the Shapiro-Wilk test 
statistic possesses a p-value > 0.05 (W= 0.95194, p-value = 0.426). Thus, at significance level α = 5%, 
it can be inferred that standard liquidity is normally distributed. 
 

Bootstrap Sample size Student-t Percentile Bootstrap-t Bootstrap-t 
DM 

1000  10 0.8428 0.7998 0.95 0.947 
  20 0.8665 0.8583 0.956 0.932 
  30 0.8884 0.8749 0.954 0.914 
  50 0.899 0.9072 0.95 0.889 
  100 0.9185 0.914 0.951 0.805 
  200 0.931 0.9321 0.955 0.649 
  400 0.9421 0.9355 0.958 0.337 

2000 10 0.8428 0.8138 0.951 0.949 
  20 0.8665 0.8647 0.954 0.932 
  30 0.8884 0.885 0.9505 0.919 
  50 0.899 0.9005 0.951 0.8865 
  100 0.9185 0.9151 0.9485 0.8195 
  200 0.931 0.9327 0.9535 0.667 
  400 0.9421 0.9393 0.958 0.3185 

5000 10 0.8428 0.8131 0.9574 0.9534 
  20 0.8665 0.8584 0.952 0.9362 
  30 0.8884 0.8759 0.955 0.9276 
  50 0.899 0.8972 0.95 0.8936 
  100 0.9185 0.918 0.9514 0.827 
  200 0.931 0.9359 0.9516 0.6716 
  400 0.9421 0.9367 0.9506 0.3146 
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Figure 1. Boxplot and histogram of standard liquidity for housing construction data 
 
 

Table 7. The 95% CIs pertaining to the average standard liquidity for housing construction in Malaysia 
 

Methods Estimated CI limit Length 
Lower limit Upper Limit 

Student-t 0.01110977 0.02215885 0.01104908 
Percentile 0.000615906 0.034949345 0.034333439 
Bootstrap-t 0.01110977 0.02215885 0.01104908 
Bootstrap-t DM 0.01121523 0.02161599 0.01040076 

 
 
The corresponding lengths and CIs for these are provided in Table 7. Out of all the intervals, Table 7 
demonstrates that the bootstrap-t DM CI possesses the smallest width. Classical Student-t and 
bootstrap-t have the same value. Note that the data are extremely skewed, and the sample size is small. 
As a result, bootstrap-t DM CI outperforms the other CI in terms of shorter length. The outcomes of this 
example validated the findings of the simulation study.  
 
Example 2   
The number of psychotropic drug users was determined from a random sample of n=20 from various 
drug categories in order to examine the average use of psychotropic drugs among users of non-
antipsychotic drugs. According to Johnson and McFarland (1993), the number of users is represented 
by the following data:  
 
43.4, 24, 1.8, 0, 0.1, 170.1, 0.4, 150, 31.5, 5.2, 35.7, 27.3, 5, 64.3, 70, 94, 61.9, 9.1, 38.8 and 14.8.  
 
Upon verification, the data exhibit a positive skewness of 1.57, a mean of 42.37, as well as a standard 
deviation of 48.43. Figure 2 displays a boxplot and histogram of the data values indicating a positive 
skew. Table 8 provides the suggested CI and corresponding lengths. 
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Figure 2. Boxplot and histogram of psychotropic drug exposure data 
 
 

Table 8. The 95% CIs for the average use of psychotropic drugs methods 
 

Methods Estimated CI limit Length 
Lower limit Upper Limit 

Student-t 19.70406 65.03594 45.33188 
Percentile 0.0475 160.5525 160.505 
Bootstrap-t 19.70349 65.03651 45.33302 
Bootstrap-t DM 19.34062 50.28383 30.9432 

 
 

The corresponding lengths and CIs for these are provided in Table 8. The bootstrap-t DM CI possesses 
the smallest width, as shown in Table 8. It is then followed by classical Student-t, bootstrap-t, as well as 
percentile CIs. The widest CI is the classical Student-t. It is noteworthy that the sample size is small as 
well as data are moderate. As a result, bootstrap-t DM CI outperforms the other CI in terms of shorter 
length. The outcomes of this example validated the findings of the simulation study.  
 
Conclusions 
 
This research examines several parameter settings for CI estimation. To compare the CI performance, 
a simulation study was conducted as a theoretical comparison is not practical. Data gets generated using 
several distributions, including normal and skewed distributions. CP and length are regarded as good 
indicator criteria. The most commonly used approach for estimating the mean is Student-t (Akyüz & Abu-
Shawiesh, 2020). The robust CI bootstrap-t DM is presented as a modification to the Student-t CI 
depending on the decile mean as well as the decile standard deviation (Abu-Shawiesh et al., 2022). The 
simulation findings show that the performance of the Student-t and three bootstrap approaches 
(percentile, bootstrap-t, and bootstrap-t DM) varies dramatically depending on sample size and 
skewness type. When the distribution is normal and low skewed, the simulation study reveals that 
Student-t outperforms other techniques. According to the simulation study's findings, the optimal 
CI determined by CP for situations with moderate to high skewness is bootstrap-t. However, bootstrap-t 
DM is preferable for small sample sizes and moderately to significantly skewed data. Consequently, 
researchers must determine whether CP or length is more significant when selecting a study CI because 
it is difficult to identify a CI with a close CP to 0.95 and a short length (Abu-Shawiesh et al., 2018; Abu-
Shawiesh & Saghir, 2019). The study's discoveries are demonstrated by analyzing two actual datasets, 
validating the simulation outcomes. In conclusion, the proposed CI techniques outperformed the 
traditional Student-t CI in terms of population mean estimation. This paper's findings will be useful to a 
variety of researchers with practical experience in the fields of science and social sciences. 
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