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Abstractin this paper, mathematical modelling for the large deformation of a magneto-electro-
elastic rectangular bi-layered laminate with general boundary conditions is presented. Constitutive
equations involving the magneto-electro-elastic (MEE) material properties are introduced, Maxwell
equations accounts for the electric and magnetic effects are also utilized. First-order shear deformation
theory (FSDT) considering the von Karman nonlinear strain is adopted, and the plain strain/stress
assumption applicable for thin plate analysis is used. A rather compact set of governing equations
related to kinematical variables, electric/magnetic potentials and the Airy stress function is obtained as
a consequence of the preliminary condensation for the electro-magnetic state to the plate kinematics.
Semi-analytic solution for a bi-layered BaTiO3-CoFe204 laminate with specified boundary conditions
subjected to various external applied loads is performed. By employing the Bubnov-Galerkin method,
the set of nonlinear partial differential equations is transformed to a set of third-order nonlinear
algebraic equations for the static deformation due to applied load. Numerical results are carried out by
using the multivariate Newton's method with respect to various volume fractions indicating the volume
ratio between piezoelectric BaTiO3 layer and piezomagnetic CoFe204. From the result, the
nonlinearity of the von Karman strain appears to enhance system rigidity as smaller deformations will
be detected when external load is applied. Also, some other interesting results are obtained which
could be useful to future analysis and design of multiphase composite plates.

Keywords: Magneto-electro-elastic, Von Karman nonlinear strain, deformable theory, Bubnov-
Galerkin method, multivariate Newton’s method.

Introduction

Smart material made of the composition using piezoelectric and piezomagnetic components, either
fiber-reinforced or layered, are generally referred as the magneto-electro-elastic material. The MEE
material possess the multiphase mechanism, which can enable the energy conversion among
magnetism, electricity and elasticity within the structure, and is found to have a wide range of application
in various engineering fields. As one of the common seen structure type in engineering science, plate
structure has drawn a lot research attraction in either the dynamic or static behaviour while it is under a
certain type of applied load.

A rather compact governing equation for the magneto-electro-elastic rectangular plate is proposed by
Liu [1], in which the exact solutions for the deformation of fibre-reinforced BaTiO3/CoFe204 composites
subjected to various loads are analytically obtained based on the Kirchhoff thin-plate theory. Later on,
by adopting the von Karman strain for the geometry nonlinearity, large deflection of a rectangular
magneto-electro-elastic thin plate under transverse static load is investigated by Xue and colleagues [2],
in which simply-supported boundary conditions are considered and coupling effect on the deflection are
examined. Furthermore, by employing the first order shear deformation theory in accordance with von
Karman stress function, a model for the large deflection of magneto-electro-elastic tri-layered laminate
is derived by Milazzo [3]. Closed form solution for the simply-supported plate to a set of partial differential

10.11113/mjfas.v20n5.3424

1109


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

MJFAS

Liu et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 20 (2024) 1109-1123

equations involving kinematical variables and stress function is presented, numerical results are carried
out for various composition between the piezoelectric BaTiO3 and piezomagnetic CoFe204 layers with
respect to different thickness ratio. Recently, the nonlinear free vibration of a symmetrically stacked
MEE laminates with simply supported boundary conditions and close-circuit electro-magnetic conditions
is studied by Razavi and Shooshtari [4]. As expected, by using the Galerkin’s method, nonlinear
governing equations are transformed into a set of coupled nonlinear ordinary differential equations with
quadratic and cubic nonlinear terms. Perturbation method along time variable is used, and closed-form
solution for the nonlinear frequency ratio is obtained. Also, Nazargah and Cheraghi [5] have presented
a three-dimensional solution for the bending analysis of functionally graded and layered neutral
magneto-electro-elastic plates resting on two-parameter elastic foundations with considering imperfect
interfacial bonding. In this study, equations of motion, Gauss’ equations for electrostatics and
magnetostatics, boundary and interface conditions are introduced and the interfacial imperfection is
modelled as a generalized spring layer.

The investigation on the composite structure comprising of a ferroelectric and a magnetostrictive
material is performed by Subhani and co-workers [6], in which experimental setup for both electrical
loading and magnetic loading are deployed. In this work, theoretical model for the constitutive relations
in a thermodynamical framework has been proposed and the simulation results for magneto-electric
composites for different volume fractions are presented. Also, a study of electro-magneto-thermoelastic
interactions under Green-Naghdi theory-lll of generalized thermoelasticity in the presence of initial
stress is conducted by Biswas and Dahab [7]. In their study, fundamental equations of the two-
dimensional problem in orthotropic medium under the influence of electric and magnetic field are
obtained in the form of vector-matrix for differential equation by employing the normal mode analysis.
The solution for temperature distribution, displacements, and stress components is obtained by utilizing
the method of eigenfunction expansion, and the effect of magnetic field, electric field and phase velocity
are displayed.

Since most of the literature available are dealing with the plates or laminate with simply-supported
boundary conditions, this gives rise the desire to investigate the related behaviors of MEE plate under
the other type of boundary conditions such as clamped around or cantilever one. The purpose of the
present study is to develop a general expression for the solution to the large deformation of MEE bi-
layered laminates with general boundary conditions and subject to various mechanical loading. In this
work, multivariate Newton's method is used to solve nonlinear algebraic equations arising from the
implementation of Bubnov-Galerkin’s method on the nonlinear governing equation via collecting multiple
terms of the generalized Fourier series solution. It is well known that Galerkin’s method is a family of
methods converting continuous differential operators into discrete linear/nonlinear system by applying
finite sets of basis functions with certain constraints as the approximate solutions. When referring to
Galerkin method, which is named after the Soviet mathematician Boris Galerkin, three major categories
are brought out, they are respectively Ritz-Galerkin method (named after Walther Ritz), Bubnov-
Galerkin method (named after Ivan Bubnov) and Petrov-Galerkin method (named after Georgii I.
Petrov). Based on the nonlinearity of the proposed governing equation, Bubnov version of the Galerkin
method is adopted in the present study, meanwhile, the weighting functions are chosen to be the same
as the orthogonal basis functions as expected. A schematic procedure has been clearly specified and
the related nonlinear terms are successfully resolved by introducing new index in the summation
notation, furthermore, 3D visualization about the nonlinear effect on the static deformation of the MEE
plate has been graphically presented, which is never seen in the existing available literature.

In this paper, first-order shear deformation as well as the von Karman nonlinear strain will be adopted
as usual, plain strain/stress assumption applicable for thin plate analysis is also suggested. The
governing equations related to the kinematical variables, electric/magnetic potentials are therefore
derived, and the set of nonlinear partial differential equations will be transformed to a set of cubic
nonlinear algebraic equations by using Galerkin’'s method. The proposed mathematical formulation is
based on the first-order shear deformable theory (FSDT), which is a classical model for thin plate
analysis, and it is not suitable for the analysis of thick magneto-electro-elastic laminates. Therefore, the
current frame of work will be restricted to rather thin MEE plates or laminates with the ratio of thickness
to span less than 1/10. Numerical results will be carried out through the multivariate Newton’s method,
the effect of volume fraction between piezoelectric BaTiO3 and piezomagnetic CoFe204 continua on
the large deformation plate are further investigated.
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Formulation

Governing Equations
Consider the Cartesian coordinate (x, y, z) as indicated in Figure 1 below, and let the bi-layered

Figure 1. Physical model of the magneto-electro-elastic bi-layered laminate

BaTiO3/CoFe204 laminate be modelled as a transversely isotropic thin plate, the constitutive equations
for the bending problem of a thin MEE plate based on both the plane strain and plane stress assumptions
in accordance with the non-zero transverse fields can be expressed as Liu [1],

Ox = C11€x‘|‘012€y'|'931‘;_(:‘|‘qs1‘;_1iJ (1)
0y = C12&x T C11€y T €31 Z_f + C131‘?,_1iJ (2)
Txy = Co6Vxy (3)
D, = e31&x + €316, — K33 % —ds; % (4)
B, = q31&x + 4316y — d33 % — U3z % ()

where gy, g, and 1, are the normal and shear stresses, ¢,, ¢, and y,,, are the corresponding normal
and shear strains, D, and B, denote the electric and magnetic displacements along transverse direction,
¢ and y are the electric and magnetic potentials. The other parameters are all material constants,
among which c;1, ¢12, cg¢ are the elastic constants, es; is the piezo-elastic constant, g3, is the piezo-
magnetic constant, k33 is the dielectric constant, d;; is the magneto-electric constant and p33 is the
magnetic constant, respectively.

By adopting the von Karman nonlinear strain for large deflection of plates, the following strain-
displacement relations are introduced by Reddy [8]

ou 1 [ow\2

=gt 5(5)2 ©)
v 1 (ow

&=5+5(%) 7
dv  du A ow Jw

Yo =5t e o 8)

where u, v and w are the elastic displacement components in the x-, y- and z- directions, respectively.

Based on the assumption valid for thin plate structures [1, 9], one can ignore the in-plane electric and
magnetic fields and only focus on the transverse electric field E, and magnetic field H,, which relates
the electric potential ¢ and magnetic potential ¢ by the following Maxwell equations:

=0y __
E, = z Hy = oz’
Furthermore, according to the equilibrium equations of electric charge and current, the electric and
magnetic potentials can be solved analytically in terms of the material parameters and transverse
deflection of the deformed plate by [1, 2]
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2= —2Vw + ¢y (x,9) ©)
2= — 2207w + 1y (x,y) (10)

where ¢, (x,y) and ¥, (x,y) represent the variations of electric field and magnetic field in the thickness
direction while the plate is deformed, and the related parameter are defined as

K d e d K33 €31
A= det[ 33 33] A= de t[ 31 33], A,= det )
dss  psz 1= q31  H33 2 ds3 CI31]

It should be noted that for closed-circuit condition are under consideration, it implies that [1]

¢1(x,y) =¢P1(x,y) = 0.

Recalling that the resultant forces and moments are defined as follows

h/2 h/2 h/2
N, = f_}{/z oxdz, Ny = f—ri/z 0y dz, Ny, = f—;{/zfxy dz;
h/2 h/2 h/2
M, = f—r{/z oxzdz, My = f_}{/z oyzdz, My, = f}{/z TyyZ dz,

and equation of static equilibrium for bending plate can be given by

02M, aMxy+BMy+N6W+N *w

dx? axdy X 9x? Y ay? +2N.

xyaa +4q(x,y) =0, (11

where Aq(x,y) = qupper(*,¥) — qiower (¥, y) denotes the difference of applied load between top surface
and bottom surface of the plate.

Substituting Eq. (6)-(10) into Eq. (1)-(3) and integrate them along the thickness direction lead to the
following

h3 2w (x,y) 2w (x,y) A A
M, =— [ : c : e31 —~ V2w —ZVZW]
x 21611 5z T 12 37 + 31 + 4315 )
h3 2w (x,y) 2w (x,y) A A
M, = : : e31 —~ V2w —ZVZW]
y = 5|12 5,2 1 +es1 +qz1 )
h3 2w (x,y)
M.. = 2. gwlxy)
xy 12 66" 9xay ’

o P o
_ dug(x,y) ow v (X y)
Ny = h{clz [ Z’ix t3 (Bx) ] +on [ F

_ g (x,y) | dug(x,y) B_wa_W]
Ny = h{c“[ ox T ay +ox ay }

1
E
1
2

2
3y ] +e3101(x,¥) + q3191 (%, y)}’
|

2
] + e3101(x,¥) + q3191(x, YD,

Therefore, the governing equation for bending deformation of a MEE plate can be derived as follows

’112 (Cn + 331 2 >+ 31 A) Viw = Aq(x,y) + h{ [011 (2_:)2 + 12 (2_‘:)2]%4‘%[012 (Z_‘;/)Z +

a 2w aw dw 92 82
€11 (%) ]a_yz + 2¢46 a‘:: a‘; ax;; les1 1 (x,¥) + q3191 (x, }’)] + [es191(x,¥) + qz1¥1 (x, ¥)] a_;zl} (12)

And it could be further simplified if additional material parameter is defined

(Dg + Dp, + me)V4W Aq(x,y) + h{ 12 VPW - V2w + cgp [(aw) Pw | pdwdw otw (aw)z azw]

ax) ax? dx 9y 0xdy E ay?
fes1 b1 (5, ) + satha (o )] - P (13)
where
_ c1h3 _h A n® A
Dg = 1112 » Ppz = 931: me 12‘131A2

represent the plate elastic rigidity, piezoelectric rigidity and piezomagnetic rigidity, respectively. It should
be noted that the relation c;; = ¢;, + 2c¢ has been used in the above derivation.
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Solution Method

In seeking for the solution of nonlinear governing equation mentioned above, we can assume the
following expression as the transverse deflection of the MEE plate
w(x,y) = Xm=1 Zn=1 Amn Xm () Y, (v) (14)
where X,,,(x) and Y, (y) are homogeneous solution of Eq. (13) and be determined according to the

specified boundary conditions. Some commonly seen mode shapes and the corresponding eigenvalues
with respect to various boundary conditions are tabulated in Table 1 as below. It should be noted that

Table 1. Mode shapes and the corresponding eigenvalues for specified boundary conditions

Boundary Mode shape X,,(¢) Eigenvalues a,,
Conditions
Pinned-Pinned mr mm
= sin| — a, = ,m=123,..
Xm(g) s1n( 7 )5 " T,
Fixed-Pined X,,(&)=cosha,,& —cos@,,& — 7,, (sinh @, & —sin ,,&) o = 3926602
where ! L
71 =1.000777 _ 7.068583
7, =1.000001 2 L
73 =1.000000 oy =10:210176
L
Fixed-Free X, (&)=cosha, & —cosa, & —y, (sinhe, & —sina, &)
where a; _ 1875104
71 =0.734096 L
7, =1.018466 a, :@
73 =0.999225 7.854757
oy =——
L
Fixed-Fixed X (&f)z cosha,, & —cosa,, & — 7, (sinh @, & —sin amé) 4.730041
oy =200
where ! L,
71 =0.982502 ~ 7.853205
¥, =1.000777 2 T
73 =0.999966 10.995607
o3 =——
LX
Free-Free X, (£)=cosha,,& +cosa,,& — 7, (sinha,, & +sin@,, &)
where 4730041
71 =0.982502 Ly
72 =1.000777 o, = 1853205
73 =0.999966 L,
10.995607
oy =———
L

X

the mode shapes X,,(x) and Y,(y) are chosen in the way satisfying the corresponding boundary
conditions and also the function orthogonality.

After X,,(x) and Y,,(y) are determined, we can further expand the applied load on the top or bottom
surface of the plate into the generalized double Fourier series as

Aq(x,y) = Xm=1 Xn=1 QmnXm (%) Y, (). (15)
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By substituting Eq. (14) and Eq. (15) into Eq.(13), we can have the following equation:

Ym=1Zn=1 Amn{(D + E + M)(am + 205,87 + B7) — hles1¢1(x,¥) + g1 (x, »)1(a, +
BRIV () Ya ) = ity Ees QX GOV + e [ (E2ms s A Xon (010 3))” +

( ‘;.;JL=1 ZZJ:l Amn.Bn Xm(x)yn(y))z] (2?;;,:1 2;0:1 Amn(a‘;n + ﬁ%)Xm(X)Yn(y))} —
s [ (Eer s A Xn(O%0)) (Eics Eiis Amn Gion (D1 0)) +

2
(E2ms St A X COYa ) (Bt Eifs Amnbi X GOV ) |} +
2h066(2$72:1 Zf=1Amname (x) Yn(y))(Z;.Z:l 220:1 Amn.Bn Xm(x)yn ()0)(2?3:1 2;.:):1 Amnamﬁn Xm (x) Yn ()’))
where a,, and B, refer to the eigenvalues for the corresponding boundary conditions. By introducing

new index for the summation in nonlinear terms to avoid duplication, the right hand side of the above
equation will be further expressed as

E%’izl =1 QunXm ()Y, (y) +

S€11(Z21 ZjZ1 Ay Xi()Y;(0))(Zie1 X221 A Xie QY. () (Zm=1 Ziie1 Amn (@ + B2) X (0¥, (0) —
hCes(Z?; Z?ﬁ Ajja; X; (x)Yj(y))(Z,}”:l 221 Aag Xy (x)Yz(y))(ZZi:l Y=t A B3 X‘m(x)yn(y)) +

2 (B21 252 Ay Xi00Y(0)) (T80 221 Ay XieCOV)) (Biaey Ty Amn ( +

B2 X ()Y () —

heoo(B21 2521 Ay Xi()G0)) (T 20 Auby X COND)) (Tiney Tiy Apn @ Xon ()Y () +

2hees (Tm=1 Zri=1 Amn@mXm () Yo (1)) (Zim=1 Zim1 AmnBn Xm (Yo (1)) (Zin=1 Zrv=1 Amn@m B Xm () Yo ().
Implementing Galerkin’s method on the governing equation by integrating it with the weighting function

which is chosen to be the same as the shape function, the following equation set can be obtained for
p,q =123

Ap{(D + E + M)(ap + 2038 + By) — hles1d1(x, ) + qziths (x, (g + B2)}| X, O | [[Ye 0| =
qu”Xp(x)””Yq(y)” +§C11 2?0:12311 Yie1 221 Lm=1 Z;.lozlAijAklAmnai (49 (arzn +

B | Xitemp O Yiing O] —

hegs Xiz1 X521 e Die1 Tyt Loe1 AtjAkiAmn @i @y BE || Xitemp GO [ Yiing O] +

%Cu T N D1 2021 Yome1 2o AijAriAmn B B (@ + BE) || Xikemp O | Ying O —

hege 2521 X521 Dieer Lio1 Zomet Lonet AijAiiAmnBj Bi @ || Xikmp (O ||| Yiing || +

2hces 2y D51 Dies Tioa Lomet Love1 Atj A Amn @i By @mPr || Xisenp OO [|Ying O ||

where [|X,(0)|| = [;* X,(x)2 dx and ||Y, ()| = [;* X,(x)? dx are the conventional 2-norm for functions
and it is worth of noting that an additional nonlinear norm are defined in the following fashion

[ Xiemp COI| = f X1 (0 X () X () Xy (),

Ly
e fo YY) Y () dy.

Even though it looks very complicated, however, the whole system is merely a set of nonlinear equations
in terms of the Fourier Series coefficient 4;; as stated as follows

A;:) =F;i(4;), fori=12,--M; j=12,---,N
( U) l]( l]) ]
or alternatively

Apxn = Fyxn(Apxn)

which is only a set of nonlinear algebraic equations and can be solved numerically by using the multi-
variate Newton’s method in this study.
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Multivariate Newton's Method
For the specified integers p and q, wherep =1,2,---,M, and q = 1,2,---, N, the governing equation can
be converted into the following form after adopting Galerkin’s method

Ap{(D + E + M)(ap + 2038 + By) — hles1do(x,¥) + qartbo(x, 1 (af + B3) | X, ||| Y, 0] =
qu”Xp(x)””Yq(y)” + %Cn Y2 2}11 Yie1 221 Lm=1 Z?lozlAijAklAmnai (49 (arzn +

B | Xitemp O Ying O] —

hegs Xie1 X521 e Die1 Tyt Lot AtjAkiAmn @i @y BE || Xitemp GO || [ Viing O] +

%Cn T N Y1 2021 Yome1 2ot AijAriAmn B B (@ + BE) || Xikmp O | Ying O —

hege 2521 X521 Dieer Li21 Zome1 Lonet AijAiiAmnBj Bi @ || Xikmp CO ||| Yiing || +

2hcgg 2?212?‘;121?:1Z?°=1Z;?z=12;?=1AijAszmnai B amfBn ||Xikmp(x)||||yjlnq(y)|| (16)

In order to simplify the computation for finding out the coefficients 4,,, the following index notations are
invented. First set the new index Lto b

L=(p-1)N+q 7
thus we can convert the matrix into vector as
(Apg) = (A), L=12,--MN

and the retrieving equation will be
L
p=[3] a=@-DIv+1

where [(-)] denotes the Least Integer Function and ()| N is the modulus of N. Next we can use the same
philosophy to set the following indexes in order to reduce the dimension

I=G-10)-N+j = i=[t]i=0-DIN+1

J=k-1) N+l = k=[ﬂ,l=(j—1)|1v+1
K=@m-1)-N+n = m=[i],n=®-DIN+1.

By introducing the above notation, Eq. (16) can be re-written as

fL{(D +E + M)A} — hles1¢0(x, y) + q31900 (e, WIATIXY, || = QXY Il +
Pt ZVJ{Z%’% ¥I=V1 AIA]AKa[L]a[L]A%(”XYI]KL”3 -

N N
hees DN TN TRY,  AlA Ak a[i]a[i]ﬁI%W”XyI]KLlL +

N N
%Cn = yﬂ pyra AA Ak :BI|N:B]|NA%(”XYI]KL”3 -
heee I XN XRY, A4 Ak .BI|N.B]|Na[2£]”XYI]KL”3 +

N

thss 2?11 2?;1 2}20:1 E?L 2%:1 2;0:1 AIA]AKO‘Iﬂﬁ(]—1)|N+1a[%]ﬁ(K—1)|N+1 ”XYI]KL”3 (18)

in which some parameters are redefined as

A%nn = (a‘rzn + ,31%) = A%(

in = (@iBi) = T¢

11 = %, Y0l = [ | Y- mea 02
1X¥sssecl, = [ Xatemp CO [ Yjing O]

As we may see from Eq. (18) that even it looks so complicate but actually it is merely a set of nonlinear
equations with the following form

ALC) = Qu+GL(Ay, Ay -+, Ayy)
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or in matrix form to be

A-C=Q+G(A)

furthermore, the following nonlinear system is reached foreach L = 1,2,--- MN
FL(AI'A]'AK): ALCS - Q? - }v’:l\{ Zy:N1 Z%LVI(CIIJKL + CIZJKL + CI?’]KL + Cf"]KL + CIS]KL) AIA]AK
i.e.,

FL (A Ay Ag) = ALCP — Q) — TN SYN UM, cfo@l 4,A4)Ax = 0, for L =1,2,---,MN
where

C ={(D + E + M)A} — hle311(x,¥) + q3191 (x, Y)IAZHIXY, |
Q7 = Q. llxy.|l

GMLEEQJQIQJAMVWMJ
2R TR] 3

CIZ]KL = _hC66a[L]aILIB(2K—1)|N+1”XYI]KL”3
~nl N

h

2

CiikL Cllﬁ([—l)|N+1ﬁ(]—1)|N+1A%(||XYI]KL||3

Chik, = _hc66ﬁ(1—1)|N+1ﬁ(]—1)|N+1a[2%]”XYI]KL“3
CIS]KL = the‘.sa[ﬂﬂ(j—n|N+1a[%lﬁ(1(—1)|1v+1”XYI]KL”3

total _ 1 2 3 4 5
Ciixy = Cijkr + Cike + Ciykr + Cligr + Criky, -

For implementing the multivariate Newton’s method, the Jacobian of the system is required, which will
be obtained by evaluating the functions F; with respect to all independent variables, say 4, for L =
1,2,--,MNandl=1,2,-+,MN,

F JF; 4
1(3),, = &) = o (AuCl — 00 - ZI SIS Clp! AiyAr) = € — 0 =

MN §MN yMN total 941 MN yMN YMN total 4 94) MN y"MN yMN total 94k _
(Z1=1 j=1 k=1 Cijxi aAlA]AK) - (Z1=1 j=1 k=1 Ciixt A 24, Ay ) — (XI5 X0 XRE Gt Ad4y aa,) =
0 MN TMN total MN TMN total MN TMN total _ 0
G - ( 21 X521 Crpp AIA]) - (21=1 2 e AIA]) - (21:1 2 e AIA]) =q -

MN y'MN total
3N ]=1C1]01Lal A4y

Newton’s method for systems [10] is stated in Appendix A for reader’s reference, it should be noted that
the initial approximation in the algorithm is chosen as the linear deformation conducted by Liu [1] for the
present study, and the 2-norm for y in stopping procedure |ly|| < TOL is used in the programming code.

After implementing the multivariate Newton’s method, the approximation of the coefficients A, can be
obtained numerically, and further be converted back to A, through Eq.(17), therefore, the series
solution for the nonlinear deformation presented in last section can be achieved, and corresponding
results subjected to various type of the applied loads are illustrated in the next section.

Numerical Results and Discussions

Electric and Magnetic Boundary Conditions

The electric boundary conditions and magneto boundary conditions on the top and bottom surfaces can
normally be divided into two categories, namely the Closed-Circuit conditions and Open-Circuit one,
however, for the sake of simplicity only the Closed-Circuit boundary conditions is investigated in this
paper.

For a closed-circuit MEE laminate, the potential on the top and bottom surfaces are

h

o(m3t2) =0 p(xrd) -
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thus, according to Eq. (9) and Eq.(10), it can be easily deduced that the variations of electric field and
magnetic field along the thickness direction will vanish, i.e., we have

¢106,y) =9, (x,y) = 0.

And the expression for the constant associated with the coefficient 4,, will be reduced into
€L ={(D + E + MAIXY, I,
and the following examples presented in this section will be always using the same setting.

Material Parameters for the MEE Plates

The nonlinear analyses for the MEE plate are carried out by considering a bi-layered BaTiO3/CoFe204
laminate with various volume fraction (vf) of BaTiO3, and the corresponding material properties are
presented in Table 2 with 20% offset on the volume fractions.

Table 2. Material parameters for the bi-layered BaTiO3/CoFe204 laminates

vf 0% 20% 40% 60% 80% 100%
a, 286 250 225 220 175 166
) 173 146 125 110 100 77
Cix 170 145 125 110 100 78
Cs3 269.5 240 220 190 170 162
Caa 453 45 45 45 50 43
e 0 —2 -3 35 4 4.4
13 0 4 7 11 14 18.6
as 0 0 0 0 0 116
P 0.08 0.33 038 0.9 1.0 112
£13 0.093 25 5.0 75 10 12,6
1 5.9 39 25 15 0.8 0.05
1133 157 133 1.0 0.75 05 0.1
P 580 410 300 200 100 0
. 700 550 280 260 120 0
a5 560 340 220 180 80 0
dyy 0 238 438 6.0 6.8 0
ds; 0 2000 2750 2500 1500 0
PR 5300 5400 5500 5600 5700 5800

Unit: elastic constants in 109 N/m2, piezoelectric constants in C/m2, piezomagnetic constants in N/A m2, dielectric
constants in 10-9 C2/N m2, magnetic constants in 10-6 N s2/C2, and magnetoelectric coefficients in 10-12 N s/VC.

Verification of the Methodology

To check the validity of the proposed mythology, the first case discussed here is the difference between
linear and nonlinear analyses on the MEE plate. Figure 2 illustrates the nonlinear deformation versus
linear
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Figure 2. Nonlinear versus linear analyses on the rectangular PZT plate subjected to various strength
of applied load

deformation for a simply-supported rectangular MEE plate with respect to various applied loads.
Thickness of the plate is set to be 0.05 m, length and width are chosen to be 20 and 10 times the
thickness, the volume fraction is 50%, of which the material constants are cited from Table 1 of the
literature conducted by Xue et al. [2] for comparison purpose.

It should be noted that in Table 1 of the literature [2], magnetoelectric constants are not included, so the
authors here used the mean value for 40% volume fraction and 60% volume fraction of the
BaTiO3/CoFe204 bi-laminates as a reasonable estimate. Also, since in the study of Xue et al. [2], only
the first mode amplitude is accounted, thus the mode number in this case is settobe M = N =1, that
is, the first mode effect is promptly examined through this example.

As we may see from Figure 2, the linear and nonlinear deformations are as expected to be a straight
line and a parabola correspondingly. And it is obvious that linear deflection is comparably over-estimated
than the nonlinear deflection even when the applied load is in small magnitude, (say less than 0.01).
Also, it can be detected that the magnitude of nonlinear deflection is somehow smaller than that
presented in the reference paper, with the fact 2.0 versus 4.5 when the applied load density is 0.05.
This inconsistency is probably due to the variations in material constants and the adopted algorithms.

Effects of Mode Numbers

Even though first mode effect is conventionally more significant than the other mode in the modal
analysis, however, the methodology proposed in this study can actually cope with any value of mode
numbers, so the effect of mode numbers on the nonlinear deformation are shown in Figure 3. A simply-
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Figure 3. Nonlinear deformation for simply-supported square MEE plate with volume fraction 40% of
BaTiO3 with respect to different mode numbers

supported square bi-laminate with length and width both 1m, thickness 0.05 m is considered in this case,
and uniform load with magnitude equals to one-tenth of the rigidity (i.e., 0.1*Dg) is applied on the top
surface of the MEE plate. The volume fraction is set to be 40%, which is chosen aiming to fully reveal
the multiphase property of the MEE plate, and the mode number is increasing from 1 to 6 in order to
see the situation with different collecting terms.

From Figure 3, the variances on the nonlinear deformation with respect to different collecting terms can
be observed, as the mode number increases we can see the central deformation seems to be
decreasing accordingly. Moreover, it can be seen that the accumulated deformation upon the whole
plate got several extra hills attached as more collecting terms are made, which is reasonable because
the nonlinear terms will result in more perturbation while more modes are aggregated.

Effects of Volume Fractions
In order to see the effect of volume fraction on the deformation of a MEE plate, we investigate the
nonlinear deformation of simply-supported square bi-laminates subjected to uniform load with
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magnitude fixed as one-tenth of the elastic rigidity, i.e., Ag = 0.1Dg, for various value of volume fractions.
The width and length of the laminate are set to be both 1 m, and the thickness is set to be 1/20 the
width, in addition, number of collecting terms are both 3 terms along x- and y- direction, the maximum
deflection of the plate with respect to different volume fractions are depicted in Figure 4.
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0.00025
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A
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volume fraction, v

Figure 4. Maximum transverse deflection for simply-supported square MEE plates with various volume
fraction

As it may be detected, mechanical loading seems to have less impact on the deformation of multiphase
MEE plate, that is, for the two extreme cases, say pure piezoelectric (vf = 100%) and piezomagnetic
(vf = 0%) plates, it is obvious that the maximum deflections are larger than the other
piezoelectric/piezomagnetic coupled plates (vf = 20%,40%,60%). So it seems that the equivalent
rigidity induced by piezoelectricity/piezomagnetism seems to stabilize the system.

Tip Deformation of The Cantilever MEE Plate Subjected to Impulse Force
As shown in Eq. (14) and Table 1, the formulation of the present study enable the plate to have other
boundary conditions in addition to the simply-supported one, thus a rectangular plate with cantilever
boundary conditions will be discussed herein in order to demonstrate the applicability.

The width of the laminate is chosen to be 1 m and the length is set to be 0.5 m, whereas the thickness
is 0.05 m, and number of collecting terms are set to be both 3. For the cantilever MEE plate, mode
shape functions along x- and y- directions are approximated by

X (x) = cosh a,, x — cos @, X — Y (sinh a,, x — sin a,, x)

and

Y,(y) = cosh B,y + cos B, ¥y — 8,(sinh B, x + sin B, x)
where

a, = 1.875104/Ly, a, = 4.694091/L,, as = 7.854757/L,,
71 = 0.734096, y, = 1.018466, y5 = 0.999225,

and
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By = 4.730041/Ly, B, = 7.853205/L,, B3 = 10.995607/L,,
8, = 0.982502, 8, = 1.000777, 85 = 0.999966,

in which L, and L,, denote the width and length of the MEE plate respectively.

An impulse force with magnitude one-tenth of the elastic rigidity is applied at the middle point of the free
edge, i.e., Aqg = 0.1Dg * delta(x — L) = delta(y — L, /2), delta(.) denotes the Dirac delta function. Static

deformation of the bi-layered MEE plate with various volume fractions are measured and then
summarized in Figure 5 and Figure 6. Figure 5 shows the overall deformation of the MEE laminate with

BiLayer-50-CFFF-unitimpulse-sumW with M=3 and N=3

0.0004

74
7550 A

s ZIKL

0.0002 ~ A, o":"“’ &
SERNEX
OSSR

AL
S50
030,

&

Figure 5. Nonlinear deformation for a Cantilever rectangular equally bi-laminated MEE plate
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Figure 6. Tip displacement of the Cantilever rectangular MEE plates versus various volume fractions
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50% volume fraction, while Figure 6 illustrates the tip deformation of the laminate with respect to various
volume fractions.

It can be found from Figure 5 that the maximal deformation might occurs at the point other than the
middle point, it could be just at the edge tips. Therefore, the largest deformation for the whole cantilever
plate subjected to impulse force are evaluated and depicted in Figure 6 with different volume fraction
are considered.

In Figure 6, linear and nonlinear tip deformations of the cantilever MEE laminates are demonstrated, as
expected, nonlinear system adds stabilizing factor over the linear system, that is, a less conservative
estimate can be found through the nonlinear modelling, so to speak. With the same trend found in Figure
4, MEE laminate with 20% volume fraction seems to be more rigid than the other constitute, a detail
investigation should be conducted, future study regarding this issue will be made in near soon.

Conclusions

Mathematical modelling for the large deformation of a magneto-electro-elastic bi-layered laminate is
presented in this study. Numerical results are carried out by using the multivariate Newton’s method
with respect to various volume fractions which refers to volume ratio between piezoelectric and
piezomagnetic continua. Verification of the proposed methodology is confirmed, and major conclusions
are as follows:

(1)
(2)

Linear analysis is easier but always produces over-estimate result in compare with the one
conducted by nonlinear formulation.

Nonlinearity of the von Karman strain seems to stabilize the system rigidity, so that smaller
deformation will be detected when applied load is imposed.

Generally speaking, the multiphase laminate is more rigid than the single-phase continuum. That
is, piezoelectricity or piezomagnetizm are actually contributing equivalent rigidities to the whole
system.

The effect of volume fraction plays an important role on the nonlinear deformation of the MEE
plate. Bi-laminate with 20% of the volume fraction can be found to have greatly reduction on the
maximum deformation under applied load.
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Appendix A. Algorithm for Multivariate Newton’s
Method

To approximate the solution of the nonlinear system F(x) = 0 given an initial approximation x:
INPUT number n of equations and unknowns; initial approximation x = (x; _ x,)*, tolerance TOL;
maximum number of iterations N.

OUTPUT approximate solution x = (x; _x,)* or a message that the number of iterations was

exceeded.
Step 1 Setk =1.
Step 2 While (k < N) do steps 3 — 7.
Step 3 Calculate F(x) and J(x), where J(x);; = (8fi(x)/dx;) for 1 < i,j < n.
Step 4 Solve the n x n linear system J(x)y = —F(x).
Step 5 Setx=x+y.
Step 6 If lyll < TOL then OUTPUT (x);
(The procedure was successful.)
STOP.
Step 7 Setk=k+1.
Step 8 OUTPUT (‘Maximum number of iterations exceeded’);
(The procedure was unsuccessful. )
STOP.
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