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Abstract In this paper, mathematical modelling for the large deformation of a magneto-electro-
elastic rectangular bi-layered laminate with general boundary conditions is presented. Constitutive 
equations involving the magneto-electro-elastic (MEE) material properties are introduced, Maxwell 
equations accounts for the electric and magnetic effects are also utilized. First-order shear deformation 
theory (FSDT) considering the von Karman nonlinear strain is adopted, and the plain strain/stress 
assumption applicable for thin plate analysis is used. A rather compact set of governing equations 
related to kinematical variables, electric/magnetic potentials and the Airy stress function is obtained as 
a consequence of the preliminary condensation for the electro-magnetic state to the plate kinematics. 
Semi-analytic solution for a bi-layered BaTiO3-CoFe2O4 laminate with specified boundary conditions 
subjected to various external applied loads is performed. By employing the Bubnov-Galerkin method, 
the set of nonlinear partial differential equations is transformed to a set of third-order nonlinear 
algebraic equations for the static deformation due to applied load. Numerical results are carried out by 
using the multivariate Newton's method with respect to various volume fractions indicating the volume 
ratio between piezoelectric BaTiO3 layer and piezomagnetic CoFe2O4. From the result, the 
nonlinearity of the von Karman strain appears to enhance system rigidity as smaller deformations will 
be detected when external load is applied. Also, some other interesting results are obtained which 
could be useful to future analysis and design of multiphase composite plates. 
Keywords: Magneto-electro-elastic, Von Karman nonlinear strain, deformable theory, Bubnov-
Galerkin method, multivariate Newton’s method. 

 
Introduction 

 
Smart material made of the composition using piezoelectric and piezomagnetic components, either 
fiber-reinforced or layered, are generally referred as the magneto-electro-elastic material. The MEE 
material possess the multiphase mechanism, which can enable the energy conversion among 
magnetism, electricity and elasticity within the structure, and is found to have a wide range of application 
in various engineering fields. As one of the common seen structure type in engineering science, plate 
structure has drawn a lot research attraction in either the dynamic or static behaviour while it is under a 
certain type of applied load. 
 
A rather compact governing equation for the magneto-electro-elastic rectangular plate is proposed by 
Liu [1], in which the exact solutions for the deformation of fibre-reinforced BaTiO3/CoFe2O4 composites 
subjected to various loads are analytically obtained based on the Kirchhoff thin-plate theory. Later on, 
by adopting the von Karman strain for the geometry nonlinearity, large deflection of a rectangular 
magneto-electro-elastic thin plate under transverse static load is investigated by Xue and colleagues [2], 
in which simply-supported boundary conditions are considered and coupling effect on the deflection are 
examined. Furthermore, by employing the first order shear deformation theory in accordance with von 
Karman stress function, a model for the large deflection of magneto-electro-elastic tri-layered laminate 
is derived by Milazzo [3]. Closed form solution for the simply-supported plate to a set of partial differential 
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equations involving kinematical variables and stress function is presented, numerical results are carried 
out for various composition between the piezoelectric BaTiO3 and piezomagnetic CoFe2O4 layers with 
respect to different thickness ratio. Recently, the nonlinear free vibration of a symmetrically stacked 
MEE laminates with simply supported boundary conditions and close-circuit electro-magnetic conditions 
is studied by Razavi and Shooshtari [4]. As expected, by using the Galerkin’s method, nonlinear 
governing equations are transformed into a set of coupled nonlinear ordinary differential equations with 
quadratic and cubic nonlinear terms. Perturbation method along time variable is used, and closed-form 
solution for the nonlinear frequency ratio is obtained. Also, Nazargah and Cheraghi [5] have presented 
a three-dimensional solution for the bending analysis of functionally graded and layered neutral 
magneto-electro-elastic plates resting on two-parameter elastic foundations with considering imperfect 
interfacial bonding. In this study, equations of motion, Gauss’ equations for electrostatics and 
magnetostatics, boundary and interface conditions are introduced and the interfacial imperfection is 
modelled as a generalized spring layer.  
 
The investigation on the composite structure comprising of a ferroelectric and a magnetostrictive 
material is performed by Subhani and co-workers [6], in which experimental setup for both electrical 
loading and magnetic loading are deployed. In this work, theoretical model for the constitutive relations 
in a thermodynamical framework has been proposed and the simulation results for magneto-electric 
composites for different volume fractions are presented. Also, a study of electro-magneto-thermoelastic 
interactions under Green-Naghdi theory-III of generalized thermoelasticity in the presence of initial 
stress is conducted by Biswas and Dahab [7]. In their study, fundamental equations of the two-
dimensional problem in orthotropic medium under the influence of electric and magnetic field are 
obtained in the form of vector-matrix for differential equation by employing the normal mode analysis. 
The solution for temperature distribution, displacements, and stress components is obtained by utilizing 
the method of eigenfunction expansion, and the effect of magnetic field, electric field and phase velocity 
are displayed. 
 
Since most of the literature available are dealing with the plates or laminate with simply-supported 
boundary conditions, this gives rise the desire to investigate the related behaviors of MEE plate under 
the other type of boundary conditions such as clamped around or cantilever one. The purpose of the 
present study is to develop a general expression for the solution to the large deformation of MEE bi-
layered laminates with general boundary conditions and subject to various mechanical loading. In this 
work, multivariate Newton's method is used to solve nonlinear algebraic equations arising from the 
implementation of Bubnov-Galerkin’s method on the nonlinear governing equation via collecting multiple 
terms of the generalized Fourier series solution. It is well known that Galerkin’s method is a family of 
methods converting continuous differential operators into discrete linear/nonlinear system by applying 
finite sets of basis functions with certain constraints as the approximate solutions. When referring to 
Galerkin method, which is named after the Soviet mathematician Boris Galerkin, three major categories 
are brought out, they are respectively Ritz-Galerkin method (named after Walther Ritz), Bubnov-
Galerkin method (named after Ivan Bubnov) and Petrov-Galerkin method (named after Georgii I. 
Petrov). Based on the nonlinearity of the proposed governing equation, Bubnov version of the Galerkin 
method is adopted in the present study, meanwhile, the weighting functions are chosen to be the same 
as the orthogonal basis functions as expected. A schematic procedure has been clearly specified and 
the related nonlinear terms are successfully resolved by introducing new index in the summation 
notation, furthermore, 3D visualization about the nonlinear effect on the static deformation of the MEE 
plate has been graphically presented, which is never seen in the existing available literature. 
 
In this paper, first-order shear deformation as well as the von Karman nonlinear strain will be adopted 
as usual, plain strain/stress assumption applicable for thin plate analysis is also suggested. The 
governing equations related to the kinematical variables, electric/magnetic potentials are therefore 
derived, and the set of nonlinear partial differential equations will be transformed to a set of cubic 
nonlinear algebraic equations by using Galerkin’s method. The proposed mathematical formulation is 
based on the first-order shear deformable theory (FSDT), which is a classical model for thin plate 
analysis, and it is not suitable for the analysis of thick magneto-electro-elastic laminates. Therefore, the 
current frame of work will be restricted to rather thin MEE plates or laminates with the ratio of thickness 
to span less than 1/10. Numerical results will be carried out through the multivariate Newton’s method, 
the effect of volume fraction between piezoelectric BaTiO3 and piezomagnetic CoFe2O4 continua on 
the large deformation plate are further investigated. 
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Formulation 
 
Governing Equations 
Consider the Cartesian coordinate (x, y, z) as indicated in Figure 1 below, and let the bi-layered 

 

 
 

Figure 1. Physical model of the magneto-electro-elastic bi-layered laminate 
 
 
BaTiO3/CoFe2O4 laminate be modelled as a transversely isotropic thin plate, the constitutive equations 
for the bending problem of a thin MEE plate based on both the plane strain and plane stress assumptions 
in accordance with the non-zero transverse fields can be expressed as Liu [1], 
 
𝜎𝜎𝑥𝑥 = 𝑐𝑐11𝜀𝜀𝑥𝑥 + 𝑐𝑐12𝜀𝜀𝑦𝑦 + 𝑒𝑒31

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑞𝑞31
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                        (1) 

𝜎𝜎𝑦𝑦 = 𝑐𝑐12𝜀𝜀𝑥𝑥 + 𝑐𝑐11𝜀𝜀𝑦𝑦 + 𝑒𝑒31
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑞𝑞31
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                   (2) 
𝜏𝜏𝑥𝑥𝑦𝑦 = 𝑐𝑐66𝛾𝛾𝑥𝑥𝑦𝑦                                       (3) 
𝐷𝐷𝜕𝜕 = 𝑒𝑒31𝜀𝜀𝑥𝑥 + 𝑒𝑒31𝜀𝜀𝑦𝑦 − 𝜅𝜅33

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑑𝑑33

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                         (4) 

𝐵𝐵𝜕𝜕 = 𝑞𝑞31𝜀𝜀𝑥𝑥 + 𝑞𝑞31𝜀𝜀𝑦𝑦 − 𝑑𝑑33
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜇𝜇33

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                         (5) 
 
where 𝜎𝜎𝑥𝑥, 𝜎𝜎𝑦𝑦 and 𝜏𝜏𝑥𝑥𝑦𝑦 are the normal and shear stresses, 𝜀𝜀𝑥𝑥, 𝜀𝜀𝑦𝑦 and 𝛾𝛾𝑥𝑥𝑦𝑦 are the corresponding normal 
and shear strains, 𝐷𝐷𝜕𝜕 and 𝐵𝐵𝜕𝜕 denote the electric and magnetic displacements along transverse direction, 
𝜙𝜙 and 𝜓𝜓 are the electric and magnetic potentials. The other parameters are all material constants, 
among which 𝑐𝑐11, 𝑐𝑐12, 𝑐𝑐66 are the elastic constants, 𝑒𝑒31 is the piezo-elastic constant, 𝑞𝑞31 is the piezo-
magnetic constant, 𝜅𝜅33 is the dielectric constant, 𝑑𝑑33  is the magneto-electric constant and 𝜇𝜇33  is the 
magnetic constant, respectively. 
 
By adopting the von Karman nonlinear strain for large deflection of plates, the following strain-
displacement relations are introduced by Reddy [8] 

 

𝜀𝜀𝑥𝑥 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�
2
                     (6) 

𝜀𝜀𝑦𝑦 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

+ 1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
�
2
                                 (7) 

𝛾𝛾𝑥𝑥𝑦𝑦 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
∙ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

                    (8) 
 
where 𝑢𝑢, 𝑣𝑣 and 𝑤𝑤 are the elastic displacement components in the 𝑥𝑥-, 𝑦𝑦- and 𝑧𝑧- directions, respectively. 
 
Based on the assumption valid for thin plate structures [1, 9], one can ignore the in-plane electric and 
magnetic fields and only focus on the transverse electric field 𝐸𝐸𝜕𝜕 and magnetic field 𝐻𝐻𝜕𝜕, which relates 
the electric potential 𝜙𝜙 and  magnetic potential 𝜓𝜓 by the following Maxwell equations: 

 
𝐸𝐸𝜕𝜕 = −𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
,𝐻𝐻𝜕𝜕 = −𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
.                      

 
Furthermore, according to the equilibrium equations of electric charge and current, the electric and 
magnetic potentials can be solved analytically in terms of the material parameters and transverse 
deflection of the deformed plate by [1, 2]  
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −∆1
∆
𝑧𝑧∇2𝑤𝑤 + 𝜙𝜙1(𝑥𝑥,𝑦𝑦)                  (9) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −∆2
∆
𝑧𝑧∇2𝑤𝑤 + 𝜓𝜓1(𝑥𝑥,𝑦𝑦)                 (10) 

 
where 𝜙𝜙1(𝑥𝑥,𝑦𝑦) and 𝜓𝜓1(𝑥𝑥,𝑦𝑦) represent the variations of electric field and magnetic field in the thickness  
direction while the plate is deformed, and the related parameter are defined as  

 

∆≡ det �𝜅𝜅33 𝑑𝑑33
𝑑𝑑33 𝜇𝜇33

� , ∆1≡ det �𝑒𝑒31 𝑑𝑑33
𝑞𝑞31 𝜇𝜇33

� , ∆2≡ det �
𝜅𝜅33 𝑒𝑒31
𝑑𝑑33 𝑞𝑞31�. 

 
It should be noted that for closed-circuit condition are under consideration, it implies that [1] 

 
𝜙𝜙1(𝑥𝑥,𝑦𝑦) = 𝜓𝜓1(𝑥𝑥,𝑦𝑦) = 0. 
 
Recalling that the resultant forces and moments are defined as follows 

 
𝑁𝑁𝑥𝑥 = ∫ 𝜎𝜎𝑥𝑥

ℎ/2
−ℎ/2 𝑑𝑑𝑧𝑧, 𝑁𝑁𝑦𝑦 = ∫ 𝜎𝜎𝑦𝑦

ℎ/2
−ℎ/2 𝑑𝑑𝑧𝑧, 𝑁𝑁𝑥𝑥𝑦𝑦 = ∫ 𝜏𝜏𝑥𝑥𝑦𝑦

ℎ/2
−ℎ/2 𝑑𝑑𝑧𝑧;    

𝑀𝑀𝑥𝑥 = ∫ 𝜎𝜎𝑥𝑥𝑧𝑧
ℎ/2
−ℎ/2 𝑑𝑑𝑧𝑧, 𝑀𝑀𝑦𝑦 = ∫ 𝜎𝜎𝑦𝑦𝑧𝑧

ℎ/2
−ℎ/2 𝑑𝑑𝑧𝑧, 𝑀𝑀𝑥𝑥𝑦𝑦 = ∫ 𝜏𝜏𝑥𝑥𝑦𝑦𝑧𝑧

ℎ/2
−ℎ/2 𝑑𝑑𝑧𝑧,   

 
and equation of static equilibrium for bending plate can be given by 

 
𝜕𝜕2𝑀𝑀𝑥𝑥

𝜕𝜕𝑥𝑥2
+ 2 𝜕𝜕2𝑀𝑀𝑥𝑥𝑥𝑥

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
+ 𝜕𝜕2𝑀𝑀𝑥𝑥

𝜕𝜕𝑦𝑦2
+ 𝑁𝑁𝑥𝑥

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

+ 𝑁𝑁𝑦𝑦
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑦𝑦2

+ 2𝑁𝑁𝑥𝑥𝑦𝑦
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

+ ∆𝑞𝑞(𝑥𝑥,𝑦𝑦) = 0,                                     (11) 
 
where  ∆𝑞𝑞(𝑥𝑥,𝑦𝑦) ≡ 𝑞𝑞upper(𝑥𝑥,𝑦𝑦) − 𝑞𝑞lower(𝑥𝑥,𝑦𝑦) denotes the difference of applied load between top surface 
and bottom surface of the plate. 
 
Substituting Eq. (6)-(10) into Eq. (1)-(3) and integrate them along the thickness direction lead to the 
following 

 
𝑀𝑀𝑥𝑥 = −ℎ3

12
�𝑐𝑐11

𝜕𝜕2𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥2

+ 𝑐𝑐12
𝜕𝜕2𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦2

+ 𝑒𝑒31
∆1
∆
∇2𝑤𝑤 + 𝑞𝑞31

∆2
∆
∇2𝑤𝑤�,  

𝑀𝑀𝑦𝑦 = −ℎ3

12
�𝑐𝑐12

𝜕𝜕2𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥2

+ 𝑐𝑐11
𝜕𝜕2𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦2

+ 𝑒𝑒31
∆1
∆
∇2𝑤𝑤 + 𝑞𝑞31

∆2
∆
∇2𝑤𝑤�,  

𝑀𝑀𝑥𝑥𝑦𝑦 = −ℎ3

12
∙ 2𝑐𝑐66

𝜕𝜕2𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

,  

𝑁𝑁𝑥𝑥 = ℎ �𝑐𝑐11 �
𝜕𝜕𝜕𝜕0(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝑥𝑥
+ 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�
2
� + 𝑐𝑐12 �

𝜕𝜕𝜕𝜕0(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

+ 1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
�
2
� + 𝑒𝑒31𝜙𝜙1(𝑥𝑥,𝑦𝑦) + 𝑞𝑞31𝜓𝜓1(𝑥𝑥,𝑦𝑦)�,  

𝑁𝑁𝑦𝑦 = ℎ �𝑐𝑐12 �
𝜕𝜕𝜕𝜕0(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝑥𝑥
+ 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�
2
� + 𝑐𝑐11 �

𝜕𝜕𝜕𝜕0(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

+ 1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
�
2
� + 𝑒𝑒31𝜙𝜙1(𝑥𝑥,𝑦𝑦) + 𝑞𝑞31𝜓𝜓1(𝑥𝑥,𝑦𝑦)�,  

𝑁𝑁𝑥𝑥𝑦𝑦 = ℎ �𝑐𝑐66 �
𝜕𝜕𝜕𝜕0(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝑥𝑥
+ 𝜕𝜕𝜕𝜕0(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝑦𝑦
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
��.  

 
Therefore, the governing equation for bending deformation of a MEE plate can be derived as follows 

 
ℎ3

12
�𝑐𝑐11 + 𝑒𝑒31

∆1
∆

+ 𝑞𝑞31
∆2
∆
� ∇4𝑤𝑤 = ∆𝑞𝑞(𝑥𝑥,𝑦𝑦) + ℎ �1

2
�𝑐𝑐11 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�
2

+ 𝑐𝑐12 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
�
2
� 𝜕𝜕

2𝜕𝜕
𝜕𝜕𝑥𝑥2

+ 1
2
�𝑐𝑐12 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�
2

+

𝑐𝑐11 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
�
2
� 𝜕𝜕

2𝜕𝜕
𝜕𝜕𝑦𝑦2

+ 2𝑐𝑐66
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

+ [𝑒𝑒31𝜙𝜙1(𝑥𝑥,𝑦𝑦) + 𝑞𝑞31𝜓𝜓1(𝑥𝑥,𝑦𝑦)] 𝜕𝜕
2𝜕𝜕
𝜕𝜕𝑥𝑥2

+ [𝑒𝑒31𝜙𝜙1(𝑥𝑥,𝑦𝑦) + 𝑞𝑞31𝜓𝜓1(𝑥𝑥,𝑦𝑦)] 𝜕𝜕
2𝜕𝜕
𝜕𝜕𝑦𝑦2

�.   (12) 
                                  
                          
And it could be further simplified if additional material parameter is defined 
 
�𝐷𝐷𝐸𝐸 + 𝐷𝐷pz + 𝐷𝐷pm�∇4𝑤𝑤 = ∆𝑞𝑞(𝑥𝑥,𝑦𝑦) + ℎ �1

2
𝑐𝑐12∇2𝑤𝑤 ∙ ∇2𝑤𝑤 + 𝑐𝑐66 ��

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�
2 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

+ 2 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
�
2 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑦𝑦2

� +

[𝑒𝑒31𝜙𝜙1(𝑥𝑥,𝑦𝑦) + 𝑞𝑞31𝜓𝜓1(𝑥𝑥,𝑦𝑦)] ∙ ∇2𝑤𝑤�                                        (13) 
   

where 
 
𝐷𝐷𝐸𝐸 ≡

𝑐𝑐11ℎ3

12
, 𝐷𝐷pz ≡

ℎ3

12
𝑒𝑒31

∆1
∆

, 𝐷𝐷pm ≡ ℎ3

12
𝑞𝑞31

∆2
∆

  
 
represent the plate elastic rigidity, piezoelectric rigidity and piezomagnetic rigidity, respectively. It should 
be noted that the relation 𝑐𝑐11 = 𝑐𝑐12 + 2𝑐𝑐66 has been used in the above derivation. 
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Solution Method 
In seeking for the solution of nonlinear governing equation mentioned above, we can assume the 
following expression as the transverse deflection of the MEE plate  

 
𝑤𝑤(𝑥𝑥,𝑦𝑦) = ∑ ∑ 𝐴𝐴𝑚𝑚𝑚𝑚𝑋𝑋𝑚𝑚(𝑥𝑥)∞

𝑚𝑚=1 𝑌𝑌𝑚𝑚(𝑦𝑦)∞
𝑚𝑚=1                        (14) 

 
where 𝑋𝑋𝑚𝑚(𝑥𝑥) and 𝑌𝑌𝑚𝑚(𝑦𝑦) are homogeneous solution of Eq. (13) and be determined according to the 
specified boundary conditions. Some commonly seen mode shapes and the corresponding eigenvalues 
with respect to various boundary conditions are tabulated in Table 1 as below. It should be noted that  

 
Table 1. Mode shapes and the corresponding eigenvalues for specified boundary conditions 
 

Boundary 
Conditions 

Mode shape ( )ξmX  Eigenvalues mα  

Pinned-Pinned 
 ( ) ξπξ 







=
L

mX m sin  ,...3,2,1, == m
L
m

x
m

πα   

 
Fixed-Pined 
 

( ) ( )ξαξαγξαξαξ mmmmmmX sinsinhcoscosh −−−=  
where 

000000.1
000001.1
000777.1

3

2

1

=
=
=

γ
γ
γ

 

 L

L

L

210176.10

068583.7

926602.3

3

2

1

=

=

=

α

α

α

 

Fixed-Free 
 

( ) ( )ξαξαγξαξαξ mmmmmmX sinsinhcoscosh −−−=  
where 

999225.0
018466.1
734096.0

3

2

1

=
=
=

γ
γ
γ

 

 

 

L

L

L

854757.7

694091.4

875104.1

3

2

1

=

=

=

α

α

α

 

Fixed-Fixed ( ) ( )ξαξαγξαξαξ mmmmmmX sinsinhcoscosh −−−=  
where 

999966.0
000777.1
982502.0

3

2

1

=
=
=

γ
γ
γ

 

x

x

x

L

L

L

995607.10

853205.7

730041.4

3

2

1

=

=

=

α

α

α

 

 
Free-Free 
 

( ) ( )ξαξαγξαξαξ mmmmmmX sinsinhcoscosh +−+=  
where 

999966.0
000777.1
982502.0

3

2

1

=
=
=

γ
γ
γ

 

 

x

x

x

L

L

L

995607.10

853205.7

730041.4

3

2

1

=

=

=

α

α

α

 

 
 
the mode shapes 𝑋𝑋𝑚𝑚(𝑥𝑥)  and 𝑌𝑌𝑚𝑚(𝑦𝑦)   are chosen in the way satisfying the corresponding boundary 
conditions and also the function orthogonality. 
 
After 𝑋𝑋𝑚𝑚(𝑥𝑥) and 𝑌𝑌𝑚𝑚(𝑦𝑦) are determined, we can further expand the applied load on the top or bottom 
surface of the plate into the generalized double Fourier series as 
 
∆𝑞𝑞(𝑥𝑥,𝑦𝑦) = ∑ ∑ 𝑄𝑄𝑚𝑚𝑚𝑚𝑋𝑋𝑚𝑚(𝑥𝑥)∞

𝑚𝑚=1 𝑌𝑌𝑚𝑚(𝑦𝑦)∞
𝑚𝑚=1 .                       (15) 
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By substituting Eq. (14) and Eq. (15) into Eq.(13), we can have the following equation: 
 
∑ ∑ 𝐴𝐴𝑚𝑚𝑚𝑚{(𝐷𝐷 + 𝐸𝐸 + 𝑀𝑀)(𝛼𝛼𝑚𝑚4 + 2𝛼𝛼𝑚𝑚2 𝛽𝛽𝑚𝑚2 + 𝛽𝛽𝑚𝑚4) − ℎ[𝑒𝑒31𝜙𝜙1(𝑥𝑥,𝑦𝑦) + 𝑞𝑞31𝜓𝜓1(𝑥𝑥,𝑦𝑦)](𝛼𝛼𝑚𝑚2 +∞

𝑚𝑚=1
∞
𝑚𝑚=1

𝛽𝛽𝑚𝑚2)}𝑋𝑋𝑚𝑚(𝑥𝑥)𝑌𝑌𝑚𝑚(𝑦𝑦) = ∑ ∑ 𝑄𝑄𝑚𝑚𝑚𝑚𝑋𝑋𝑚𝑚(𝑥𝑥)𝑌𝑌𝑚𝑚(𝑦𝑦)∞
𝑚𝑚=1

∞
𝑚𝑚=1 + ℎ

2
�𝑐𝑐11 ��∑ ∑ 𝐴𝐴𝑚𝑚𝑚𝑚𝛼𝛼𝑚𝑚𝑋𝑋𝑚𝑚(𝑥𝑥)𝑌𝑌𝑚𝑚(𝑦𝑦)∞

𝑚𝑚=1
∞
𝑚𝑚=1 �

2
+

�∑ ∑ 𝐴𝐴𝑚𝑚𝑚𝑚𝛽𝛽𝑚𝑚∞
𝑚𝑚=1

∞
𝑚𝑚=1 𝑋𝑋𝑚𝑚(𝑥𝑥)𝑌𝑌𝑚𝑚(𝑦𝑦)�

2
� �∑ ∑ 𝐴𝐴𝑚𝑚𝑚𝑚(𝛼𝛼𝑚𝑚2 + 𝛽𝛽𝑚𝑚2)∞

𝑚𝑚=1
∞
𝑚𝑚=1 𝑋𝑋𝑚𝑚(𝑥𝑥)𝑌𝑌𝑚𝑚(𝑦𝑦)�� −

ℎ �𝑐𝑐66 ��∑ ∑ 𝐴𝐴𝑚𝑚𝑚𝑚𝛽𝛽𝑚𝑚∞
𝑚𝑚=1

∞
𝑚𝑚=1 𝑋𝑋𝑚𝑚(𝑥𝑥)𝑌𝑌𝑚𝑚(𝑦𝑦)�

2
(∑ ∑ 𝐴𝐴𝑚𝑚𝑚𝑚𝛼𝛼𝑚𝑚2 𝑋𝑋𝑚𝑚(𝑥𝑥)𝑌𝑌𝑚𝑚(𝑦𝑦)∞

𝑚𝑚=1
∞
𝑚𝑚=1 ) +

�∑ ∑ 𝐴𝐴𝑚𝑚𝑚𝑚𝛼𝛼𝑚𝑚𝑋𝑋𝑚𝑚(𝑥𝑥)𝑌𝑌𝑚𝑚(𝑦𝑦)∞
𝑚𝑚=1

∞
𝑚𝑚=1 �

2
�∑ ∑ 𝐴𝐴𝑚𝑚𝑚𝑚𝛽𝛽𝑚𝑚2∞

𝑚𝑚=1
∞
𝑚𝑚=1 𝑋𝑋𝑚𝑚(𝑥𝑥)𝑌𝑌𝑚𝑚(𝑦𝑦)��� +

2ℎ𝑐𝑐66�∑ ∑ 𝐴𝐴𝑚𝑚𝑚𝑚𝛼𝛼𝑚𝑚𝑋𝑋𝑚𝑚 (𝑥𝑥)∞
𝑚𝑚=1 𝑌𝑌𝑚𝑚(𝑦𝑦)∞

𝑚𝑚=1 ��∑ ∑ 𝐴𝐴𝑚𝑚𝑚𝑚𝛽𝛽𝑚𝑚 𝑋𝑋𝑚𝑚(𝑥𝑥)𝑌𝑌𝑚𝑚 (𝑦𝑦)∞
𝑚𝑚=1

∞
𝑚𝑚=1 ��∑ ∑ 𝐴𝐴𝑚𝑚𝑚𝑚𝛼𝛼𝑚𝑚𝛽𝛽𝑚𝑚 𝑋𝑋𝑚𝑚 (𝑥𝑥)∞

𝑚𝑚=1 𝑌𝑌𝑚𝑚 (𝑦𝑦)∞
𝑚𝑚=1 �  

 
where 𝛼𝛼𝑚𝑚 and 𝛽𝛽𝑚𝑚 refer to the eigenvalues for the corresponding boundary conditions. By introducing 
new index for the summation in nonlinear terms to avoid duplication, the right hand side of the above 
equation will be further expressed as 

 
∑ ∑ 𝑄𝑄𝑚𝑚𝑚𝑚𝑋𝑋𝑚𝑚(𝑥𝑥)𝑌𝑌𝑚𝑚(𝑦𝑦)∞

𝑚𝑚=1
∞
𝑚𝑚=1 +

ℎ
2
𝑐𝑐11�∑ ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝛼𝛼𝑖𝑖 𝑋𝑋𝑖𝑖(𝑥𝑥)𝑌𝑌𝑖𝑖(𝑦𝑦)∞

𝑖𝑖=1
∞
𝑖𝑖=1 ��∑ ∑ 𝐴𝐴𝑘𝑘𝑘𝑘𝛼𝛼𝑘𝑘 𝑋𝑋𝑘𝑘(𝑥𝑥)𝑌𝑌𝑘𝑘(𝑦𝑦)∞

𝑘𝑘=1
∞
𝑘𝑘=1 ��∑ ∑ 𝐴𝐴𝑚𝑚𝑚𝑚(𝛼𝛼𝑚𝑚2 + 𝛽𝛽𝑚𝑚2)∞

𝑚𝑚=1
∞
𝑚𝑚=1 𝑋𝑋𝑚𝑚(𝑥𝑥)𝑌𝑌𝑚𝑚(𝑦𝑦)� −

ℎ𝑐𝑐66�∑ ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝛼𝛼𝑖𝑖 𝑋𝑋𝑖𝑖(𝑥𝑥)𝑌𝑌𝑖𝑖(𝑦𝑦)∞
𝑖𝑖=1

∞
𝑖𝑖=1 ��∑ ∑ 𝐴𝐴𝑘𝑘𝑘𝑘𝛼𝛼𝑘𝑘 𝑋𝑋𝑘𝑘(𝑥𝑥)𝑌𝑌𝑘𝑘(𝑦𝑦)∞

𝑘𝑘=1
∞
𝑘𝑘=1 ��∑ ∑ 𝐴𝐴𝑚𝑚𝑚𝑚𝛽𝛽𝑚𝑚2∞

𝑚𝑚=1
∞
𝑚𝑚=1 𝑋𝑋𝑚𝑚(𝑥𝑥)𝑌𝑌𝑚𝑚(𝑦𝑦)� +

ℎ
2
𝑐𝑐11�∑ ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖 𝑋𝑋𝑖𝑖(𝑥𝑥)𝑌𝑌𝑖𝑖(𝑦𝑦)∞

𝑖𝑖=1
∞
𝑖𝑖=1 � �∑ ∑ 𝐴𝐴𝑘𝑘𝑘𝑘𝛽𝛽𝑘𝑘∞

𝑘𝑘=1
∞
𝑘𝑘=1 𝑋𝑋𝑘𝑘(𝑥𝑥)𝑌𝑌𝑘𝑘(𝑦𝑦)� �∑ ∑ 𝐴𝐴𝑚𝑚𝑚𝑚(𝛼𝛼𝑚𝑚2 +∞

𝑚𝑚=1
∞
𝑚𝑚=1

𝛽𝛽𝑚𝑚2)𝑋𝑋𝑚𝑚(𝑥𝑥)𝑌𝑌𝑚𝑚(𝑦𝑦)� −
ℎ𝑐𝑐66�∑ ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖 𝑋𝑋𝑖𝑖(𝑥𝑥)𝑌𝑌𝑖𝑖(𝑦𝑦)∞

𝑖𝑖=1
∞
𝑖𝑖=1 � �∑ ∑ 𝐴𝐴𝑘𝑘𝑘𝑘𝛽𝛽𝑘𝑘∞

𝑘𝑘=1
∞
𝑘𝑘=1 𝑋𝑋𝑘𝑘(𝑥𝑥)𝑌𝑌𝑘𝑘(𝑦𝑦)� (∑ ∑ 𝐴𝐴𝑚𝑚𝑚𝑚𝛼𝛼𝑚𝑚2 𝑋𝑋𝑚𝑚(𝑥𝑥)𝑌𝑌𝑚𝑚(𝑦𝑦)∞

𝑚𝑚=1
∞
𝑚𝑚=1 ) +

2ℎ𝑐𝑐66�∑ ∑ 𝐴𝐴𝑚𝑚𝑚𝑚𝛼𝛼𝑚𝑚𝑋𝑋𝑚𝑚 (𝑥𝑥)∞
𝑚𝑚=1 𝑌𝑌𝑚𝑚(𝑦𝑦)∞

𝑚𝑚=1 ��∑ ∑ 𝐴𝐴𝑚𝑚𝑚𝑚𝛽𝛽𝑚𝑚 𝑋𝑋𝑚𝑚(𝑥𝑥)𝑌𝑌𝑚𝑚 (𝑦𝑦)∞
𝑚𝑚=1

∞
𝑚𝑚=1 ��∑ ∑ 𝐴𝐴𝑚𝑚𝑚𝑚𝛼𝛼𝑚𝑚𝛽𝛽𝑚𝑚 𝑋𝑋𝑚𝑚 (𝑥𝑥)∞

𝑚𝑚=1 𝑌𝑌𝑚𝑚 (𝑦𝑦)∞
𝑚𝑚=1 �.  

 
Implementing Galerkin’s method on the governing equation by integrating it with the weighting function 
which is chosen to be the same as the shape function, the following equation set can be obtained for 
 𝑝𝑝, 𝑞𝑞 = 1,2,3⋯: 
 
𝐴𝐴𝑝𝑝𝑝𝑝�(𝐷𝐷 + 𝐸𝐸 + 𝑀𝑀)�𝛼𝛼𝑝𝑝4 + 2𝛼𝛼𝑝𝑝2𝛽𝛽𝑝𝑝2 + 𝛽𝛽𝑝𝑝4� − ℎ[𝑒𝑒31𝜙𝜙1(𝑥𝑥,𝑦𝑦) + 𝑞𝑞31𝜓𝜓1(𝑥𝑥,𝑦𝑦)]�𝛼𝛼𝑝𝑝2 + 𝛽𝛽𝑝𝑝2���𝑋𝑋𝑝𝑝(𝑥𝑥)��𝑌𝑌𝑝𝑝(𝑦𝑦)� =
𝑄𝑄𝑝𝑝𝑝𝑝�𝑋𝑋𝑝𝑝(𝑥𝑥)��𝑌𝑌𝑝𝑝(𝑦𝑦)� + ℎ

2
𝑐𝑐11 ∑ ∑ ∑ ∑ ∑ ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝐴𝐴𝑘𝑘𝑘𝑘𝐴𝐴𝑚𝑚𝑚𝑚𝛼𝛼𝑖𝑖 𝛼𝛼𝑘𝑘 (𝛼𝛼𝑚𝑚2 +∞

𝑚𝑚=1
∞
𝑚𝑚=1

∞
𝑘𝑘=1

∞
𝑘𝑘=1

∞
𝑖𝑖=1

∞
𝑖𝑖=1

𝛽𝛽𝑚𝑚2) �𝑋𝑋𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑥𝑥)��𝑌𝑌𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑦𝑦)� −
ℎ𝑐𝑐66 ∑ ∑ ∑ ∑ ∑ ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝐴𝐴𝑘𝑘𝑘𝑘𝐴𝐴𝑚𝑚𝑚𝑚𝛼𝛼𝑖𝑖 𝛼𝛼𝑘𝑘 𝛽𝛽𝑚𝑚2∞

𝑚𝑚=1
∞
𝑚𝑚=1 �𝑋𝑋𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑥𝑥)��𝑌𝑌𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑦𝑦)�∞

𝑘𝑘=1
∞
𝑘𝑘=1

∞
𝑖𝑖=1

∞
𝑖𝑖=1 +

ℎ
2
𝑐𝑐11 ∑ ∑ ∑ ∑ ∑ ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝐴𝐴𝑘𝑘𝑘𝑘𝐴𝐴𝑚𝑚𝑚𝑚𝛽𝛽𝑖𝑖 𝛽𝛽𝑘𝑘 (𝛼𝛼𝑚𝑚2 + 𝛽𝛽𝑚𝑚2)∞

𝑚𝑚=1
∞
𝑚𝑚=1 �𝑋𝑋𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑥𝑥)��𝑌𝑌𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑦𝑦)�∞

𝑘𝑘=1
∞
𝑘𝑘=1

∞
𝑖𝑖=1

∞
𝑖𝑖=1 −

ℎ𝑐𝑐66 ∑ ∑ ∑ ∑ ∑ ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝐴𝐴𝑘𝑘𝑘𝑘𝐴𝐴𝑚𝑚𝑚𝑚𝛽𝛽𝑖𝑖 𝛽𝛽𝑘𝑘 𝛼𝛼𝑚𝑚2∞
𝑚𝑚=1

∞
𝑚𝑚=1 �𝑋𝑋𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑥𝑥)��𝑌𝑌𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑦𝑦)�∞

𝑘𝑘=1
∞
𝑘𝑘=1

∞
𝑖𝑖=1

∞
𝑖𝑖=1 +

2ℎ𝑐𝑐66 ∑ ∑ ∑ ∑ ∑ ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝐴𝐴𝑘𝑘𝑘𝑘𝐴𝐴𝑚𝑚𝑚𝑚𝛼𝛼𝑖𝑖 𝛽𝛽𝑘𝑘 𝛼𝛼𝑚𝑚𝛽𝛽𝑚𝑚∞
𝑚𝑚=1

∞
𝑚𝑚=1

∞
𝑘𝑘=1

∞
𝑘𝑘=1

∞
𝑖𝑖=1

∞
𝑖𝑖=1 �𝑋𝑋𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑥𝑥)��𝑌𝑌𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑦𝑦)�  

 
where �𝑋𝑋𝑝𝑝(𝑥𝑥)� ≡ ∫ 𝑋𝑋𝑝𝑝(𝑥𝑥)2𝐿𝐿𝑥𝑥

0 𝑑𝑑𝑥𝑥 and �𝑌𝑌𝑝𝑝(𝑦𝑦)� ≡ ∫ 𝑋𝑋𝑝𝑝(𝑥𝑥)2𝐿𝐿𝑥𝑥
0 𝑑𝑑𝑥𝑥 are the conventional 2-norm for functions 

and it is worth of noting that an additional nonlinear norm are defined in the following fashion 
 

�𝑋𝑋𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑥𝑥)� ≡ ∫ 𝑋𝑋𝑖𝑖(𝑥𝑥)𝑋𝑋𝑘𝑘(𝑥𝑥)𝑋𝑋𝑚𝑚(𝑥𝑥)𝐿𝐿𝑥𝑥
0 𝑋𝑋𝑝𝑝(𝑥𝑥)𝑑𝑑𝑥𝑥,    

�𝑌𝑌𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑦𝑦)� ≡ � 𝑌𝑌𝑖𝑖(𝑦𝑦)𝑌𝑌𝑘𝑘(𝑦𝑦)𝑌𝑌𝑚𝑚(𝑦𝑦)
𝐿𝐿𝑥𝑥

0
𝑌𝑌𝑝𝑝(𝑦𝑦)𝑑𝑑𝑦𝑦. 

 
Even though it looks very complicated, however, the whole system is merely a set of nonlinear equations 
in terms of the Fourier Series coefficient 𝐴𝐴𝑖𝑖𝑖𝑖 as stated as follows 

 
�𝐴𝐴𝑖𝑖𝑖𝑖� = 𝐹𝐹𝑖𝑖𝑖𝑖�𝐴𝐴𝑖𝑖𝑖𝑖�, for 𝑖𝑖 = 1,2,⋯𝑀𝑀;   𝑗𝑗 = 1,2,⋯ ,𝑁𝑁   
or alternatively 

 
𝐀𝐀𝑴𝑴×𝑵𝑵 = 𝐅𝐅𝑴𝑴×𝑵𝑵(𝐀𝐀𝑴𝑴×𝑵𝑵) 
 
which is only a set of nonlinear algebraic equations and can be solved numerically by using the multi-
variate Newton’s method in this study.  
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Multivariate Newton's Method 
For the specified integers 𝑝𝑝 and 𝑞𝑞, where 𝑝𝑝 = 1,2,⋯ ,𝑀𝑀, and 𝑞𝑞 = 1,2,⋯ ,𝑁𝑁, the governing equation can 
be converted into the following form after adopting Galerkin’s method 

 
𝐴𝐴𝑝𝑝𝑝𝑝�(𝐷𝐷 + 𝐸𝐸 + 𝑀𝑀)�𝛼𝛼𝑝𝑝4 + 2𝛼𝛼𝑝𝑝2𝛽𝛽𝑝𝑝2 + 𝛽𝛽𝑝𝑝4� − ℎ[𝑒𝑒31𝜙𝜙0(𝑥𝑥,𝑦𝑦) + 𝑞𝑞31𝜓𝜓0(𝑥𝑥,𝑦𝑦)]�𝛼𝛼𝑝𝑝2 + 𝛽𝛽𝑝𝑝2���𝑋𝑋𝑝𝑝(𝑥𝑥)��𝑌𝑌𝑝𝑝(𝑦𝑦)� =
𝑄𝑄𝑝𝑝𝑝𝑝�𝑋𝑋𝑝𝑝(𝑥𝑥)��𝑌𝑌𝑝𝑝(𝑦𝑦)� + ℎ

2
𝑐𝑐11 ∑ ∑ ∑ ∑ ∑ ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝐴𝐴𝑘𝑘𝑘𝑘𝐴𝐴𝑚𝑚𝑚𝑚𝛼𝛼𝑖𝑖 𝛼𝛼𝑘𝑘 (𝛼𝛼𝑚𝑚2 +∞

𝑚𝑚=1
∞
𝑚𝑚=1

∞
𝑘𝑘=1

∞
𝑘𝑘=1

∞
𝑖𝑖=1

∞
𝑖𝑖=1

𝛽𝛽𝑚𝑚2) �𝑋𝑋𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑥𝑥)��𝑌𝑌𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑦𝑦)� −
ℎ𝑐𝑐66 ∑ ∑ ∑ ∑ ∑ ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝐴𝐴𝑘𝑘𝑘𝑘𝐴𝐴𝑚𝑚𝑚𝑚𝛼𝛼𝑖𝑖 𝛼𝛼𝑘𝑘 𝛽𝛽𝑚𝑚2∞

𝑚𝑚=1
∞
𝑚𝑚=1 �𝑋𝑋𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑥𝑥)��𝑌𝑌𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑦𝑦)�∞

𝑘𝑘=1
∞
𝑘𝑘=1

∞
𝑖𝑖=1

∞
𝑖𝑖=1 +

ℎ
2
𝑐𝑐11 ∑ ∑ ∑ ∑ ∑ ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝐴𝐴𝑘𝑘𝑘𝑘𝐴𝐴𝑚𝑚𝑚𝑚𝛽𝛽𝑖𝑖 𝛽𝛽𝑘𝑘 (𝛼𝛼𝑚𝑚2 + 𝛽𝛽𝑚𝑚2)∞

𝑚𝑚=1
∞
𝑚𝑚=1 �𝑋𝑋𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑥𝑥)��𝑌𝑌𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑦𝑦)�∞

𝑘𝑘=1
∞
𝑘𝑘=1

∞
𝑖𝑖=1

∞
𝑖𝑖=1 −

ℎ𝑐𝑐66 ∑ ∑ ∑ ∑ ∑ ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝐴𝐴𝑘𝑘𝑘𝑘𝐴𝐴𝑚𝑚𝑚𝑚𝛽𝛽𝑖𝑖 𝛽𝛽𝑘𝑘 𝛼𝛼𝑚𝑚2∞
𝑚𝑚=1

∞
𝑚𝑚=1 �𝑋𝑋𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑥𝑥)��𝑌𝑌𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑦𝑦)�∞

𝑘𝑘=1
∞
𝑘𝑘=1

∞
𝑖𝑖=1

∞
𝑖𝑖=1 +

2ℎ𝑐𝑐66 ∑ ∑ ∑ ∑ ∑ ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝐴𝐴𝑘𝑘𝑘𝑘𝐴𝐴𝑚𝑚𝑚𝑚𝛼𝛼𝑖𝑖 𝛽𝛽𝑘𝑘 𝛼𝛼𝑚𝑚𝛽𝛽𝑚𝑚∞
𝑚𝑚=1

∞
𝑚𝑚=1

∞
𝑘𝑘=1

∞
𝑘𝑘=1

∞
𝑖𝑖=1

∞
𝑖𝑖=1 �𝑋𝑋𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑥𝑥)��𝑌𝑌𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑦𝑦)�                                 (16) 

   
In order to simplify the computation for finding out the coefficients 𝐴𝐴𝑝𝑝𝑝𝑝, the following index notations are 
invented. First set the new index L to b 

 
𝐿𝐿 = (𝑝𝑝 − 1) ∙ 𝑁𝑁 + 𝑞𝑞                              (17) 
    
thus we can convert the matrix into vector as 

 
�𝐴𝐴𝑝𝑝𝑝𝑝� = (𝐴𝐴𝐿𝐿), 𝐿𝐿 = 1,2,⋯𝑀𝑀𝑁𝑁   
 
and the retrieving equation will be  

 
𝑝𝑝 = �𝐿𝐿

𝑁𝑁
� , 𝑞𝑞 = (𝐿𝐿 − 1)|𝑁𝑁 + 1  

 
where ⌈(∙)⌉ denotes the Least Integer Function and (∙)|𝑁𝑁 is the modulus of 𝑁𝑁. Next we can use the same 
philosophy to set the following indexes in order to reduce the dimension 

 
𝐼𝐼 = (𝑖𝑖 − 1) ∙ 𝑁𝑁 + 𝑗𝑗  ⟹   𝑖𝑖 = � 𝐼𝐼

𝑁𝑁
� , 𝑗𝑗 = (𝐼𝐼 − 1)|𝑁𝑁 + 1  

𝐽𝐽 = (𝑘𝑘 − 1) ∙ 𝑁𝑁 + 𝑙𝑙  ⟹   𝑘𝑘 = �𝐽𝐽
𝑁𝑁
� , 𝑙𝑙 = (𝐽𝐽 − 1)|𝑁𝑁 + 1  

𝐾𝐾 = (𝑚𝑚 − 1) ∙ 𝑁𝑁 + 𝑛𝑛  ⟹   𝑚𝑚 = �𝐾𝐾
𝑁𝑁
� ,𝑛𝑛 = (𝐾𝐾 − 1)|𝑁𝑁 + 1.  

 
By introducing the above notation, Eq. (16) can be re-written as  
 
𝐴𝐴𝐿𝐿{(𝐷𝐷 + 𝐸𝐸 + 𝑀𝑀)Λ𝐿𝐿4 − ℎ[𝑒𝑒31𝜙𝜙0(𝑥𝑥,𝑦𝑦) + 𝑞𝑞31𝜓𝜓0(𝑥𝑥,𝑦𝑦)]Λ𝐿𝐿2 }‖𝑋𝑋𝑌𝑌𝐿𝐿‖ = 𝑄𝑄𝐿𝐿‖𝑋𝑋𝑌𝑌𝐿𝐿‖ +
ℎ
2
𝑐𝑐11 ∑ ∑ ∑𝑀𝑀𝑁𝑁𝐾𝐾=1𝑀𝑀𝑁𝑁

𝐽𝐽=1
𝑀𝑀𝑁𝑁
𝐼𝐼=1 𝐴𝐴𝐼𝐼𝐴𝐴𝐽𝐽𝐴𝐴𝐾𝐾𝛼𝛼� 𝐼𝐼

𝑁𝑁
�
𝛼𝛼
�𝐽𝐽
𝑁𝑁
�
Λ𝐾𝐾2 �𝑋𝑋𝑌𝑌𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿�3 −

ℎ𝑐𝑐66 ∑ ∑ ∑𝑀𝑀𝑁𝑁𝐾𝐾=1𝑀𝑀𝑁𝑁
𝐽𝐽=1 𝐴𝐴𝐼𝐼𝐴𝐴𝐽𝐽𝐴𝐴𝐾𝐾𝑀𝑀𝑁𝑁

𝐼𝐼=1 𝛼𝛼
� 𝐼𝐼
𝑁𝑁
�
𝛼𝛼
�𝐽𝐽
𝑁𝑁
�
𝛽𝛽𝐾𝐾|𝑁𝑁
2 �𝑋𝑋𝑌𝑌𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿�3 +

ℎ
2
𝑐𝑐11 ∑ ∑ ∑𝑀𝑀𝑁𝑁𝐾𝐾=1𝑀𝑀𝑁𝑁

𝐽𝐽=1 𝐴𝐴𝐼𝐼𝐴𝐴𝐽𝐽𝐴𝐴𝐾𝐾𝑀𝑀𝑁𝑁
𝐼𝐼=1 𝛽𝛽𝐼𝐼|𝑁𝑁𝛽𝛽𝐽𝐽|𝑁𝑁Λ𝐾𝐾2 �𝑋𝑋𝑌𝑌𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿�3 −

ℎ𝑐𝑐66 ∑ ∑ ∑𝑀𝑀𝑁𝑁𝐾𝐾=1𝑀𝑀𝑁𝑁
𝐽𝐽=1 𝐴𝐴𝐼𝐼𝐴𝐴𝐽𝐽𝐴𝐴𝐾𝐾𝑀𝑀𝑁𝑁

𝐼𝐼=1 𝛽𝛽𝐼𝐼|𝑁𝑁𝛽𝛽𝐽𝐽|𝑁𝑁𝛼𝛼�𝐾𝐾
𝑁𝑁
�

2 �𝑋𝑋𝑌𝑌𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿�3 +

2ℎ𝑐𝑐66 ∑ ∑ ∑ ∑ ∑ ∑ 𝐴𝐴𝐼𝐼𝐴𝐴𝐽𝐽𝐴𝐴𝐾𝐾𝛼𝛼� 𝐼𝐼
𝑁𝑁
�
𝛽𝛽(𝐽𝐽−1)|𝑁𝑁+1𝛼𝛼�𝐾𝐾

𝑁𝑁
�
𝛽𝛽(𝐾𝐾−1)|𝑁𝑁+1

∞
𝑚𝑚=1

∞
𝑚𝑚=1

∞
𝑘𝑘=1

∞
𝑘𝑘=1

∞
𝑖𝑖=1

∞
𝑖𝑖=1 �𝑋𝑋𝑌𝑌𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿�3                                (18) 

   
in which some parameters are redefined as 
 
Λ𝑚𝑚𝑚𝑚
2 = (𝛼𝛼𝑚𝑚2 + 𝛽𝛽𝑚𝑚2) = Λ𝐾𝐾2  
Γ𝑚𝑚𝑚𝑚2 = (𝛼𝛼𝑚𝑚2 𝛽𝛽𝑚𝑚2) = Γ𝐾𝐾2 
‖𝑋𝑋𝑌𝑌𝐿𝐿‖ ≡ �𝑋𝑋𝑝𝑝(𝑥𝑥)��𝑌𝑌𝑝𝑝(𝑦𝑦)� = �𝑋𝑋

�𝐿𝐿𝑁𝑁�
(𝑥𝑥)� �𝑌𝑌(𝐿𝐿−1)|𝑁𝑁+1(𝑦𝑦)� 

�𝑋𝑋𝑌𝑌𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿�3 ≡ �𝑋𝑋𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑥𝑥)��𝑌𝑌𝑖𝑖𝑘𝑘𝑚𝑚𝑝𝑝(𝑦𝑦)�. 
 
As we may see from Eq. (18) that even it looks so complicate but actually it is merely a set of nonlinear 
equations with the following form 
 
𝐴𝐴𝐿𝐿𝐶𝐶𝐿𝐿0  =  𝑄𝑄𝐿𝐿 + 𝐺𝐺𝐿𝐿(𝐴𝐴1,𝐴𝐴2,⋯ ,𝐴𝐴𝑀𝑀𝑁𝑁)  
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or in matrix form to be 
 
𝐀𝐀 ∙ 𝐂𝐂 = 𝐐𝐐 + 𝐆𝐆(𝐀𝐀) 
 
furthermore, the following nonlinear system is reached for each 𝐿𝐿 = 1,2,⋯𝑀𝑀𝑁𝑁 
 
𝐹𝐹𝐿𝐿�𝐴𝐴𝐼𝐼 ,𝐴𝐴𝐽𝐽 ,𝐴𝐴𝐾𝐾�: 𝐴𝐴𝐿𝐿𝐶𝐶𝐿𝐿0 − 𝑄𝑄𝐿𝐿0 − ∑ ∑ ∑ �𝐶𝐶𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿1 + 𝐶𝐶𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿2 + 𝐶𝐶𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿3 + 𝐶𝐶𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿4 + 𝐶𝐶𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿5 �𝑀𝑀𝑁𝑁

𝐾𝐾=1
𝑀𝑀𝑁𝑁
𝐽𝐽=1

𝑀𝑀𝑁𝑁
𝐼𝐼=1 𝐴𝐴𝐼𝐼𝐴𝐴𝐽𝐽𝐴𝐴𝐾𝐾   

 
i.e., 
 
𝐹𝐹𝐿𝐿�𝐴𝐴𝐼𝐼 ,𝐴𝐴𝐽𝐽 ,𝐴𝐴𝐾𝐾� ≡ 𝐴𝐴𝐿𝐿𝐶𝐶𝐿𝐿0 − 𝑄𝑄𝐿𝐿0 − ∑ ∑ ∑ 𝐶𝐶𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿total𝑀𝑀𝑁𝑁

𝐾𝐾=1
𝑀𝑀𝑁𝑁
𝐽𝐽=1

𝑀𝑀𝑁𝑁
𝐼𝐼=1 𝐴𝐴𝐼𝐼𝐴𝐴𝐽𝐽𝐴𝐴𝐾𝐾 = 0, for 𝐿𝐿 = 1,2,⋯ ,𝑀𝑀𝑁𝑁  

 
where 
 
𝐶𝐶𝐿𝐿0 ≡ {(𝐷𝐷 + 𝐸𝐸 + 𝑀𝑀)Λ𝐿𝐿4 − ℎ[𝑒𝑒31𝜙𝜙1(𝑥𝑥,𝑦𝑦) + 𝑞𝑞31𝜓𝜓1(𝑥𝑥,𝑦𝑦)]Λ𝐿𝐿2 }‖𝑋𝑋𝑌𝑌𝐿𝐿‖ 
𝑄𝑄𝐿𝐿0 ≡ 𝑄𝑄𝐿𝐿‖𝑋𝑋𝑌𝑌𝐿𝐿‖ 

𝐶𝐶𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿1 ≡
ℎ
2 𝑐𝑐11𝛼𝛼� 𝐼𝐼𝑁𝑁�

𝛼𝛼
�𝐽𝐽𝑁𝑁�
Λ𝐾𝐾2 �𝑋𝑋𝑌𝑌𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿�3 

𝐶𝐶𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿2 ≡ −ℎ𝑐𝑐66𝛼𝛼� 𝐼𝐼𝑁𝑁�
𝛼𝛼
�𝐽𝐽𝑁𝑁�
𝛽𝛽(𝐾𝐾−1)|𝑁𝑁+1
2 �𝑋𝑋𝑌𝑌𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿�3 

𝐶𝐶𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿3 ≡
ℎ
2 𝑐𝑐11𝛽𝛽(𝐼𝐼−1)|𝑁𝑁+1𝛽𝛽(𝐽𝐽−1)|𝑁𝑁+1Λ𝐾𝐾2 �𝑋𝑋𝑌𝑌𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿�3 

𝐶𝐶𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿4 ≡ −ℎ𝑐𝑐66𝛽𝛽(𝐼𝐼−1)|𝑁𝑁+1𝛽𝛽(𝐽𝐽−1)|𝑁𝑁+1𝛼𝛼�𝐾𝐾
𝑁𝑁
�

2 �𝑋𝑋𝑌𝑌𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿�3  

𝐶𝐶𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿5 ≡ 2ℎ𝑐𝑐66𝛼𝛼� 𝐼𝐼
𝑁𝑁
�
𝛽𝛽(𝐽𝐽−1)|𝑁𝑁+1𝛼𝛼�𝐾𝐾

𝑁𝑁
�
𝛽𝛽(𝐾𝐾−1)|𝑁𝑁+1�𝑋𝑋𝑌𝑌𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿�3  

𝐶𝐶𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿total = 𝐶𝐶𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿1 + 𝐶𝐶𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿2 + 𝐶𝐶𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿3 + 𝐶𝐶𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿4 + 𝐶𝐶𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿5  . 
 
For implementing the multivariate Newton’s method, the Jacobian of the system is required, which will 
be obtained by evaluating the functions 𝐹𝐹𝐿𝐿 with respect to all independent variables, say 𝐴𝐴𝑘𝑘 , for 𝐿𝐿 =
1,2,⋯ ,𝑀𝑀𝑁𝑁 and 𝑙𝑙 = 1,2,⋯ ,𝑀𝑀𝑁𝑁,  
 
𝐉𝐉 �𝑭𝑭

𝐀𝐀
�
𝐿𝐿𝑘𝑘

= �𝜕𝜕𝐹𝐹𝐿𝐿
𝜕𝜕𝐴𝐴𝑙𝑙
� = 𝜕𝜕

𝜕𝜕𝐴𝐴𝑙𝑙
�𝐴𝐴𝐿𝐿𝐶𝐶𝐿𝐿0 − 𝑄𝑄𝐿𝐿0 − ∑ ∑ ∑ 𝐶𝐶𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿total𝑀𝑀𝑁𝑁

𝐾𝐾=1
𝑀𝑀𝑁𝑁
𝐽𝐽=1

𝑀𝑀𝑁𝑁
𝐼𝐼=1 𝐴𝐴𝐼𝐼𝐴𝐴𝐽𝐽𝐴𝐴𝐾𝐾� = 𝐶𝐶𝑘𝑘0 − 0 −

�∑ ∑ ∑ 𝐶𝐶𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿total𝑀𝑀𝑁𝑁
𝐾𝐾=1

𝑀𝑀𝑁𝑁
𝐽𝐽=1

𝑀𝑀𝑁𝑁
𝐼𝐼=1

𝜕𝜕𝐴𝐴𝐼𝐼
𝜕𝜕𝐴𝐴𝑙𝑙

𝐴𝐴𝐽𝐽𝐴𝐴𝐾𝐾� − �∑ ∑ ∑ 𝐶𝐶𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿total𝑀𝑀𝑁𝑁
𝐾𝐾=1

𝑀𝑀𝑁𝑁
𝐽𝐽=1

𝑀𝑀𝑁𝑁
𝐼𝐼=1 𝐴𝐴𝐼𝐼

𝜕𝜕𝐴𝐴𝐽𝐽
𝜕𝜕𝐴𝐴𝑙𝑙

𝐴𝐴𝐾𝐾� − �∑ ∑ ∑ 𝐶𝐶𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿total𝑀𝑀𝑁𝑁
𝐾𝐾=1

𝑀𝑀𝑁𝑁
𝐽𝐽=1

𝑀𝑀𝑁𝑁
𝐼𝐼=1 𝐴𝐴𝐼𝐼𝐴𝐴𝐽𝐽

𝜕𝜕𝐴𝐴𝐾𝐾
𝜕𝜕𝐴𝐴𝑙𝑙

� =

𝐶𝐶𝑘𝑘0 − �∑ ∑ 𝐶𝐶𝐼𝐼𝐽𝐽𝑘𝑘𝐿𝐿total𝑀𝑀𝑁𝑁
𝐽𝐽=1

𝑀𝑀𝑁𝑁
𝐼𝐼=1 𝐴𝐴𝐼𝐼𝐴𝐴𝐽𝐽� − �∑ ∑ 𝐶𝐶𝐼𝐼𝐽𝐽𝑘𝑘𝐿𝐿total𝑀𝑀𝑁𝑁

𝐽𝐽=1
𝑀𝑀𝑁𝑁
𝐼𝐼=1 𝐴𝐴𝐼𝐼𝐴𝐴𝐽𝐽� − �∑ ∑ 𝐶𝐶𝐼𝐼𝐽𝐽𝑘𝑘𝐿𝐿total𝐴𝐴𝐼𝐼𝐴𝐴𝐽𝐽𝑀𝑀𝑁𝑁

𝐽𝐽=1
𝑀𝑀𝑁𝑁
𝐼𝐼=1 � = 𝐶𝐶𝑘𝑘0 −

3∑ ∑ 𝐶𝐶𝐼𝐼𝐽𝐽𝑘𝑘𝐿𝐿total𝑀𝑀𝑁𝑁
𝐽𝐽=1

𝑀𝑀𝑁𝑁
𝐼𝐼=1 𝐴𝐴𝐼𝐼𝐴𝐴𝐽𝐽 .  

 
Newton’s method for systems [10] is stated in Appendix A for reader’s reference, it should be noted that 
the initial approximation in the algorithm is chosen as the linear deformation conducted by Liu [1] for the 
present study, and the 2-norm for 𝐲𝐲 in stopping procedure ‖𝐲𝐲‖ < 𝑇𝑇𝑇𝑇𝐿𝐿 is used in the programming code.  
 
After implementing the multivariate Newton’s method, the approximation of the coefficients 𝐴𝐴𝐿𝐿 can be 
obtained numerically, and further be converted back to 𝐴𝐴𝑝𝑝𝑝𝑝  through Eq.(17), therefore, the series 
solution for the nonlinear deformation presented in last section can be achieved, and corresponding 
results subjected to various type of the applied loads are illustrated in the next section. 
 
Numerical Results and Discussions 
 
Electric and Magnetic Boundary Conditions 
The electric boundary conditions and magneto boundary conditions on the top and bottom surfaces can 
normally be divided into two categories, namely the Closed-Circuit conditions and Open-Circuit one, 
however, for the sake of simplicity only the Closed-Circuit boundary conditions is investigated in this 
paper. 

 
For a closed-circuit MEE laminate, the potential on the top and bottom surfaces are 

 
𝜙𝜙 �𝑥𝑥,𝑦𝑦, ± ℎ

2
� = 0,   𝜓𝜓�𝑥𝑥,𝑦𝑦, ± ℎ

2
� = 0,  
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thus, according to Eq. (9) and Eq.(10), it can be easily deduced that the variations of electric field and 
magnetic field along the thickness direction will vanish, i.e., we have  

 
𝜙𝜙1(𝑥𝑥,𝑦𝑦) = 𝜓𝜓1(𝑥𝑥,𝑦𝑦) = 0. 
And the expression for the constant associated with the coefficient 𝐴𝐴𝑝𝑝𝑝𝑝 will be reduced into 

 
𝐶𝐶𝐿𝐿0 ≡ {(𝐷𝐷 + 𝐸𝐸 + 𝑀𝑀)Λ𝐿𝐿4 }‖𝑋𝑋𝑌𝑌𝐿𝐿‖, 
 
and the following examples presented in this section will be always using the same setting. 
 
Material Parameters for the MEE Plates 
The nonlinear analyses for the MEE plate are carried out by considering a bi-layered BaTiO3/CoFe2O4 
laminate with various volume fraction (vf) of BaTiO3, and the corresponding material properties are 
presented in Table 2 with 20% offset on the volume fractions.  

 
Table 2. Material parameters for the bi-layered BaTiO3/CoFe2O4 laminates 

 
vf  0% 20% 40% 60% 80% 100% 

11C  286 250 225 220 175 166 

12C  173 146 125 110 100 77 

13C  170 145 125 110 100 78 

33C  269.5 240 220 190 170 162 

44C  45.3 45 45 45 50 43 

31e  0 ̶ 2 ̶ 3 ̶ 3.5 ̶ 4 ̶ 4.4 

33e  0 4 7 11 14 18.6 

15e  0 0 0 0 0 11.6 

11ε  0.08 0.33 0.8 0.9 1.0 11.2 

33ε  0.093 2.5 5.0 7.5 10 12.6 

11µ  ̶ 5.9 ̶ 3.9 ̶ 2.5 ̶ 15 ̶ 0.8 0.05 

33µ  1.57 1.33 1.0 0.75 0.5 0.1 

31q  580 410 300 200 100 0 

33q  700 550 280 260 120 0 

15q  560 340 220 180 80 0 

11d  0 2.8 4.8 6.0 6.8 0 

33d  0 2000 2750 2500 1500 0 

ρρ  5300 5400 5500 5600 5700 5800 

Unit: elastic constants  in 109  N/m2, piezoelectric constants  in C/m2, piezomagnetic constants  in N/A m2, dielectric 
constants  in 10-9 C2/N m2, magnetic constants  in 10-6 N s2/C2, and magnetoelectric coefficients  in 10-12 N s/VC. 
 
 
Verification of the Methodology 
To check the validity of the proposed mythology, the first case discussed here is the difference between 
linear and nonlinear analyses on the MEE plate. Figure 2 illustrates the nonlinear deformation versus 
linear  
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Figure 2. Nonlinear versus linear analyses on the rectangular PZT plate subjected to various strength 
of applied load 
 
 
deformation for a simply-supported rectangular MEE plate with respect to various applied loads. 
Thickness of the plate is set to be 0.05 m, length and width are chosen to be 20 and 10 times the 
thickness, the volume fraction is 50%, of which the material constants are cited from Table 1 of the 
literature conducted by Xue et al. [2] for comparison purpose. 
 
It should be noted that in Table 1 of the literature [2], magnetoelectric constants are not included, so the 
authors here used the mean value for 40% volume fraction and 60% volume fraction of the 
BaTiO3/CoFe2O4 bi-laminates as a reasonable estimate. Also, since in the study of Xue et al. [2], only 
the first mode amplitude is accounted, thus the mode number in this case is set to be 1== NM , that 
is, the first mode effect is promptly examined through this example. 
 
As we may see from Figure 2, the linear and nonlinear deformations are as expected to be a straight 
line and a parabola correspondingly. And it is obvious that linear deflection is comparably over-estimated 
than the nonlinear deflection even when the applied load is in small magnitude, (say less than 0.01). 
Also, it can be detected that the magnitude of nonlinear deflection is somehow smaller than that 
presented in the reference paper, with the fact 2.0 versus 4.5 when the applied load density is 0.05. 
This inconsistency is probably due to the variations in material constants and the adopted algorithms. 
 
Effects of Mode Numbers 
Even though first mode effect is conventionally more significant than the other mode in the modal 
analysis, however, the methodology proposed in this study can actually cope with any value of mode 
numbers, so the effect of mode numbers on the nonlinear deformation are shown in Figure 3. A simply- 
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Figure 3. Nonlinear deformation for simply-supported square MEE plate with volume fraction 40% of 
BaTiO3 with respect to different mode numbers 
 
 
supported square bi-laminate with length and width both 1m, thickness 0.05 m is considered in this case, 
and uniform load with magnitude equals to one-tenth of the rigidity (i.e., 0.1*𝐷𝐷𝐸𝐸) is applied on the top 
surface of the MEE plate. The volume fraction is set to be 40%, which is chosen aiming to fully reveal 
the multiphase property of the MEE plate, and the mode number is increasing from 1 to 6 in order to 
see the situation with different collecting terms.  
 
From Figure 3, the variances on the nonlinear deformation with respect to different collecting terms can 
be observed, as the mode number increases we can see the central deformation seems to be 
decreasing accordingly. Moreover, it can be seen that the accumulated deformation upon the whole 
plate got several extra hills attached as more collecting terms are made, which is reasonable because 
the nonlinear terms will result in more perturbation while more modes are aggregated. 
 
Effects of Volume Fractions 
In order to see the effect of volume fraction on the deformation of a MEE plate, we investigate the 
nonlinear deformation of simply-supported square bi-laminates subjected to uniform load with 
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magnitude fixed as one-tenth of the elastic rigidity, i.e., ∆𝑞𝑞 = 0.1𝐷𝐷𝐸𝐸, for various value of volume fractions. 
The width and length of the laminate are set to be both 1 m, and the thickness is set to be 1/20 the 
width, in addition, number of collecting terms are both 3 terms along x- and y- direction, the maximum 
deflection of the plate with respect to different volume fractions are depicted in Figure 4.  

 

 
 
Figure 4. Maximum transverse deflection for simply-supported square MEE plates with various volume 
fraction 
 
 
As it may be detected, mechanical loading seems to have less impact on the deformation of multiphase 
MEE plate, that is, for the two extreme cases, say pure piezoelectric (𝑣𝑣𝑣𝑣 = 100%) and piezomagnetic 
(𝑣𝑣𝑣𝑣 = 0%) plates, it is obvious that the maximum deflections are larger than the other 
piezoelectric/piezomagnetic coupled plates (𝑣𝑣𝑣𝑣 = 20%, 40%, 60%). So it seems that the equivalent 
rigidity induced by piezoelectricity/piezomagnetism seems to stabilize the system. 
 
Tip Deformation of The Cantilever MEE Plate Subjected to Impulse Force 
As shown in Eq. (14) and Table 1, the formulation of the present study enable the plate to have other 
boundary conditions in addition to the simply-supported one, thus a rectangular plate with cantilever 
boundary conditions will be discussed herein in order to demonstrate the applicability.  
 
The width of the laminate is chosen to be 1 m and the length is set to be 0.5 m, whereas the thickness 
is 0.05 m, and number of collecting terms are set to be both 3. For the cantilever MEE plate, mode 
shape functions along x- and y- directions are approximated by  
 
𝑋𝑋𝑚𝑚(𝑥𝑥) = cosh𝛼𝛼𝑚𝑚 𝑥𝑥 − cos𝛼𝛼𝑚𝑚 𝑥𝑥 − 𝛾𝛾𝑚𝑚(sinh𝛼𝛼𝑚𝑚 𝑥𝑥 − sin𝛼𝛼𝑚𝑚 𝑥𝑥) 
 
and  
 
𝑌𝑌𝑚𝑚(𝑦𝑦) = cosh𝛽𝛽𝑚𝑚 𝑦𝑦 + cos𝛽𝛽𝑚𝑚 𝑦𝑦 − 𝛿𝛿𝑚𝑚(sinh𝛽𝛽𝑚𝑚 𝑥𝑥 + sin𝛽𝛽𝑚𝑚 𝑥𝑥) 
 
where 
 
𝛼𝛼1 = 1.875104 𝐿𝐿𝑥𝑥⁄ , 𝛼𝛼2 = 4.694091 𝐿𝐿𝑥𝑥⁄ , 𝛼𝛼3 = 7.854757 𝐿𝐿𝑥𝑥⁄ ,  
𝛾𝛾1 = 0.734096, 𝛾𝛾2 = 1.018466, 𝛾𝛾3 = 0.999225, 
 
and  
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𝛽𝛽1 = 4.730041 𝐿𝐿𝑦𝑦⁄ , 𝛽𝛽2 = 7.853205 𝐿𝐿𝑦𝑦⁄ , 𝛽𝛽3 = 10.995607/𝐿𝐿𝑦𝑦, 
𝛿𝛿1 = 0.982502, 𝛿𝛿2 = 1.000777, 𝛿𝛿3 = 0.999966, 
 
in which 𝐿𝐿𝑥𝑥 and 𝐿𝐿𝑦𝑦 denote the width and length of the MEE plate respectively. 
 
An impulse force with magnitude one-tenth of the elastic rigidity is applied at the middle point of the free 
edge, i.e., ∆𝑞𝑞 = 0.1𝐷𝐷𝐸𝐸 ∗ 𝑑𝑑𝑒𝑒𝑙𝑙𝑑𝑑𝑑𝑑(𝑥𝑥 − 𝐿𝐿𝑥𝑥) ∗ 𝑑𝑑𝑒𝑒𝑙𝑙𝑑𝑑𝑑𝑑(𝑦𝑦 − 𝐿𝐿𝑦𝑦/2), delta(.) denotes the Dirac delta function. Static 
deformation of the bi-layered MEE plate with various volume fractions are measured and then 
summarized in Figure 5 and Figure 6. Figure 5 shows the overall deformation of the MEE laminate with 

 

 
 

Figure 5. Nonlinear deformation for a Cantilever rectangular equally bi-laminated MEE plate 
 
 

 
 

Figure 6. Tip displacement of the Cantilever rectangular MEE plates versus various volume fractions 
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50% volume fraction, while Figure 6 illustrates the tip deformation of the laminate with respect to various 
volume fractions. 
 
It can be found from Figure 5 that the maximal deformation might occurs at the point other than the 
middle point, it could be just at the edge tips. Therefore, the largest deformation for the whole cantilever 
plate subjected to impulse force are evaluated and depicted in Figure 6 with different volume fraction 
are considered. 
 
In Figure 6, linear and nonlinear tip deformations of the cantilever MEE laminates are demonstrated, as 
expected, nonlinear system adds stabilizing factor over the linear system, that is, a less conservative 
estimate can be found through the nonlinear modelling, so to speak. With the same trend found in Figure 
4, MEE laminate with 20% volume fraction seems to be more rigid than the other constitute, a detail 
investigation should be conducted, future study regarding this issue will be made in near soon. 
 
Conclusions 
 
Mathematical modelling for the large deformation of a magneto-electro-elastic bi-layered laminate is 
presented in this study. Numerical results are carried out by using the multivariate Newton’s method 
with respect to various volume fractions which refers to volume ratio between piezoelectric and 
piezomagnetic continua. Verification of the proposed methodology is confirmed, and major conclusions 
are as follows: 

 
(1) Linear analysis is easier but always produces over-estimate result in compare with the one 

conducted by nonlinear formulation. 
(2) Nonlinearity of the von Karman strain seems to stabilize the system rigidity, so that smaller 

deformation will be detected when applied load is imposed. 
(3) Generally speaking, the multiphase laminate is more rigid than the single-phase continuum. That 

is, piezoelectricity or piezomagnetizm are actually contributing equivalent rigidities to the whole 
system. 

(4) The effect of volume fraction plays an important role on the nonlinear deformation of the MEE 
plate. Bi-laminate with 20% of the volume fraction can be found to have greatly reduction on the 
maximum deformation under applied load. 
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Appendix A. Algorithm for Multivariate Newton’s 
Method  
 
To approximate the solution of the nonlinear system 𝐅𝐅(𝐱𝐱) = 𝟎𝟎 given an initial approximation x: 
INPUT   number n of equations and unknowns; initial approximation 𝐱𝐱 = (𝑥𝑥1 ,…,𝑥𝑥𝑚𝑚)𝑡𝑡 , tolerance TOL;  
maximum number of iterations N. 
OUTPUT   approximate solution 𝐱𝐱 = (𝑥𝑥1 ,…,𝑥𝑥𝑚𝑚)𝑡𝑡  or a message that the number of iterations was    
exceeded. 

 
Step 1   Set 𝑘𝑘 = 1.  
Step 2   While (𝑘𝑘 ≤ 𝑁𝑁) do steps 3 − 7. 
Step 3   Calculate 𝐅𝐅(𝐱𝐱) and 𝐽𝐽(𝐱𝐱), where  𝐽𝐽(𝐱𝐱)𝑖𝑖,𝑖𝑖 = �𝜕𝜕𝑣𝑣𝑖𝑖(𝐱𝐱)/𝜕𝜕𝑥𝑥𝑖𝑖� for 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛.  
Step 4   Solve the 𝑛𝑛 × 𝑛𝑛 linear system 𝐽𝐽(𝐱𝐱)𝐲𝐲 = −𝐅𝐅(𝐱𝐱).  
Step 5   Set 𝐱𝐱 = 𝐱𝐱 + 𝐲𝐲.  
Step 6   If ‖𝐲𝐲‖ < 𝑇𝑇𝑇𝑇𝐿𝐿 then OUTPUT (𝐱𝐱); 
                      (The procedure was successful.) 
                 STOP. 
Step 7  Set 𝑘𝑘 = 𝑘𝑘 + 1.  
Step 8            OUTPUT (‘Maximum number of iterations exceeded’); 
                      (The procedure was unsuccessful. ） 
                                STOP. 
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