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ABSTRACT 
 
Particle Swarm Optimization (PSO) and Gravitational Search Algorithm are a well-known population-based 
heuristic optimization techniques. PSO is inspired from a motion flock of birds searching for a food. In PSO, a bird 
adjusts its position according to its own ‘‘experience’’ as well as the experience of other birds. Tracking and 
memorizing the best position encountered build bird’s experience which will leads to optimal solution. GSA is 
based on the Newtonian gravity and motion laws between several masses. In GSA, the heaviest mass presents an 
optimum solution in the search space. Other agents inside the population are attracted to heaviest mass and will 
finally converge to produce best solution. Black Hole Algorithm (BH) is one of the optimization technique recently 
proposed for data clustering problem. BH algorithm is inspired by the natural universe phenomenon called "black 
hole”. In BH algorithm, the best solution is selected to be the black hole and the rest of candidates which are called 
stars will be drawn towards the black hole. In this paper, performance of BH algorithm will be analyzed and 
reviewed for continuous search space using CEC2014 benchmark dataset against Gravitational Search Algorithm 
(GSA) and Particle Swarm Optimization (PSO). CEC2014 benchmark dataset contains 4 unimodal, 7 multimodal 
and 6 hybrid functions. Several common parameters has been chosen to make an equal comparison between these 
algorithm such as size of population is 30, 1000 iteration, 30 dimension and 30 times of experiment.  
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1. INTRODUCTION 

 

Optimization is an applied science which explores 
the best values of the parameters of a problem that may 
take under specified conditions [1][2]. The design of an 
optimization problem generally starts with the design of 
an objective function [3][4][5][6]. The metaheuristic 
optimization algorithms use two basic strategies while 
searching for the global optimum; exploration and 
exploitation [3].  

There are numerous metaheuristic optimization 
algorithms to date. Those algorithms are Ant Colony 
Algorithm [7], Firefly Algorithm [8], Artificial Bee 
Colony [4], Cuckoo Search Algorithm [9], Harmony 
Search Algorithm [10]. However, in this study, swarm 
intelligence algorithms, which are part of metaheuristic 
optimization algorithms, are studied. In particular, the 
performance of particle swarm optimization (PSO), 
gravitational search algorithm (GSA), and the most recent 
black hole algorithm (BH) are evaluated based on the 
latest benchmark functions called CEC2014 benchmark 
functions [11]. The purpose of this study is to explore the 
capability of PSO, GSA, and BH algorithms and to obtain 
a general conclusion regarding which one is the best 
among others. 

The paper is organized as follows: Section 2 
present a brief introduction to all algorithms involved; 
PSO, GSA and BH. Section 3 describe about benchmark 
functions, common setting and parameter will be used in 

the experiment. The experimental result and discussion 
are provided in Section 4. Finally, Section 5 concludes the 
work. 
 
2. ALGORITHM 

 
2.1 Particle Swarm Optimization (PSO) 
 

PSO is a stochastic global optimization technique 
inspired by social behaviour of bird flocking or fish 
schooling [12]. PSO uses simple mechanism observed 
from swarm behaviour to guide particles in search for a 
global optimal solution. In PSO, each particle moving 
inside search space with a velocity dynamically adjusted 
according to its own previous best position and its 
neighbourhood best position. Hence, every particle is 
representing as a potential optimal solution for the 
problem. Initially, each particle is randomly placed inside 
of d-dimensional search space. The ith particle is 
represented as	 ܺ ൌ ൫ݔ

ଵ ݔ…
ௗ ݔ…

൯. 
At the specific time “t”, the velocity for ith particle 

is calculated using below formula: 
 

ݒ
ௗሺݐ  1ሻ ൌ ߱ሺݐሻݒ

ௗሺݐሻ  ܿଵ݀݊ܽݎଵ ቀݐݏܾ݁
ௗ െ ݔ

ௗሺݐሻቁ 

ܿଶ݀݊ܽݎଶ ቀܾ݃݁ݐݏௗ െ ݔ
ௗሺݐሻቁ                                 (1) 

 
Where, ݐݏܾ݁ represent best previous position of 

the ith particle and ܾ݃݁ݐݏ represent best previous position 
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among all the particles in the population. Particle position 
for the next iteration is calculated as follow: 

 
ݔ
ௗሺݐ  1ሻ ൌ ݔ

ௗሺݐሻ  ݒ
ௗሺݐ  1ሻ    (2) 

 
The general principle of PSO is shown in Figure 1. 
 

 

Figure 1. General principle of PSO 

2.2 Gravitational Search Algorithm (GSA) 
 

GSA has been inspired from physical phenomenon 
of interaction between objects in the universe. It is 
defined by Newton as, “Every particle in the universe 
attract every other particle with a force that is directly 
proportional to the square of the distance between them”. 
This definition is known as gravitational force and is 
defined as follow: 

 

ܨ ൌ
ீெభெమ

ோమ
    (3) 

 
In GSA, agents are considered as objects and their 

performance are expressed by their masses [3] value 
which calculated from specific fitness function. The 
population will be initialized by placing the agent at 
randomly position inside search space. Assuming 
gravitational and inertia mass is equal, agents masses are 
calculated using following equations: 

 
ሻݐሺݐݏܾ݁ ൌ max

∈ሼଵ,…,ேሽ
 ሻ    (4)ݐሺݐ݂݅

ሻݐሺݐݏݎݓ ൌ min
∈ሼଵ,…,ேሽ

 ሻ    (5)ݐሺݐ݂݅

 
ܯ ൌ ܯ ൌ ,ܯ	݁ݎ݄݁ݓ	ܯ ݅ ൌ 1,2,3…ܰ    (6) 
 

݉ሺݐሻ ൌ
௧ሺ௧ሻି௪௦௧ሺ௧ሻ

௦௧ሺ௧ሻି	௪௦௧ሺ௧ሻ
    (7) 

 

ሻݐሺܯ ൌ
ሺ௧ሻ

∑ ೕሺ௧ሻ
ಿ
ೕసభ

    (8) 

So, at specific time “t”, the gravitational force acting on 
agent “i” from agent “j” can be represent as following: 
 

ܨ
ௗሺݐሻ ൌ ሻݐሺܩ

ெሺ௧ሻൈெೌೕሺ௧ሻ

ோೕሺ௧ሻାఌ
ቀݔ

ௗሺݐሻ െ ݔ
ௗሺݐሻቁ    (9) 

The Euclidian distance between two agents is: 
 
ܴ ሺݐሻ ൌ ฮ ܺሺݐሻ, ܺሺݐሻฮଶ                                              (10) 

 
Figure 2. General principle of GSA 

 
The gravitational coefficient	ܩሺݐሻ will be reduced with 
time to control the search accuracy. 
 
ሻݐሺܩ ൌ ,ܩሺܩ  ሻ                                                            (11)ݐ
 
Following formulas has been used to determine the “i”th 
agent acceleration: 
 
ܨ
ௗሺݐሻ ൌ ∑ ܨ݀݊ܽݎ

ௗሺݐሻே
ୀଵ,ஷ                                       (12) 

 

ܽ
ௗሺݐሻ ൌ

ி
ሺ௧ሻ

ெሺ௧ሻ
                                                                (13) 

 
Then, the agent new velocity and position are calculated 
using these equations: 
 
ݒ
ௗሺݐ  1ሻ ൌ ݀݊ܽݎ ൈ ݒ

ௗሺݐሻ  ܽ
ௗሺݐሻ                           (14) 

ݔ
ௗሺݐ  1ሻ ൌ ݔ

ௗሺݐሻ  ݒ
ௗሺݐ  1ሻ                                  (15) 

 
The general principle of GSA is shown in Figure 2. 

 
2.3 Black Hole Algorithm (BH) 
 

BH was created from a black hole phenomenon. It 
was first intended to be use as an alternative for clustering 
problem. Black hole phenomenon has been named by 
John Wheeler an American Physicist in 1967. It is a space 
having a huge gravitational power in which anything 
crosses the boundary will be swallowed even the light. A 
black hole in space is what forms when a star of massive 
size collapses [13]. 

Imagined an n-population of stars with initially 
placed inside of d-dimensional search space as follow: 

 
	 ܺ ൌ ൫ݔ

ଵ ݔ…
ௗ ݔ…

൯                                                    (16) 
 
Then, each star will be evaluated using chosen 

fitness function. Star having the best fitness value will be 
selected to become a black hole. The new position for all 
stars will be calculated using this formula: 

 

ݔ
ௗሺݐ  1ሻ ൌ ݔ

ௗሺݐሻ  	݀݊ܽݎ ൈ ቀݔு
ௗ െ ݔ

ௗሺݐሻቁ            (17) 
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Figure 3. Standard BH flowchart 

The new star will be created at random location 
every time it cross event horizon. Event horizon is a 
radius boundary around black hole. The value is 
determined by the following formula: 

 

ܴ ൌ
௧௦௦ಳಹ

∑ ௧௦௦
ಿ
సభ

ܰ	݁ݎ݄݁ݓ	 ൌ  (18)           ݁ݖ݅ݏ	݊݅ݐ݈ܽݑ

 
The general principle of BH is shown in Figure 3. 

 
3. EXPERIMENTS, RESULTS AND 

DISCUSSION 
 
The parameter setting of PSO, GSA, and BH are 

shown in Table 1. Number of run, number of iteration, 
population size, and number of dimension are general 
parameter applied to all algorithms. Inertia weight (ω), 
cognitive (c1) and social (c2) parameters are exclusive to 
PSO. On the other hand, initial gravitation constant (G0) 
and alpha (α), are exclusive to GSA. 

The experiments were based on the recently 
published benchmark functions called CEC2014 
benchmark functions [11]. The formulation of the 
CEC2014 benchmark functions are listed in Table 6 and 
Table 7. The benchmark functions are divided into 
unimodal, multimodal, and hybrid functions with optimal 
value are also included. 

 
Table 1 Parameter setting 

  Parameter Value 

G
en

er
al

 Number of run per experiment 30 

Number of iteration per run 1000 

Population size 30 

Number of dimension 30 

P
S

O
 

Inertia Weight, ω 0.9 to 0.4 

Coefficient Factor, c1,c2 2, 2 

G
S

A
 

Initial Gravity, G0 100 

Alpha, α -20 

 

The average value, standard deviation value, minimum 
value, and maximum value from experimental result were 
recorded and tabulated in Table 2, Table 3, Table 4 and 

Table 5. The average value is being used as comparison 
between algorithms and value written in bold indicates 
the best result among them. 

 
Table 2 Unimodal function result 

 

Table 3 Multimodal function result. 
 

 

For unimodal functions, GSA is better than PSO 
and BH for F1 function. However, PSO is better than 
GSA and BH for F2 and F3 functions while BH was not 
able to outperform PSO and GSA in all cases. The 
examples of boxplot and convergence curves for F1, F2, 
and F3 functions are shown in Figure 4, Figure 5, and 
Figure 6 respectively. 

Similar to unimodal functions, multimodal 
functions also shows that BH was not able to outperform 
PSO and GSA in all cases. Further comparisons of PSO 
and GSA show that GSA outperformed PSO in 7 cases 
(F4, F5, F6, F7, F8, F9, and F10). On the other hand, PSO 
outperformed GSA in 6 cases (F11, F12, F13, F14, F15, 
and F16). The examples of boxplot and convergence 
curves for F4 to F16 are shown in Figure 7 to Figure 18 
respectively. 

As for hybrid cases, the result show that PSO is 
superior to GSA and BH in all cases. The examples of 
boxplot and convergence curves for F17, F18, F19, F20, 
F21, and F22 are shown in Figure 19 to Figure 24, 
respectively. 
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Table 4 Multimodal function result. 
 

 
 

Table 5 Hybrid function result. 
 

 
 
 

4. CONCLUSIONS 
 
This study considers three different swarm 

intelligence algorithms, namely PSO, GSA, and BH. The 

purpose of this study is to evaluate the superiority of these 
algorithms when finding the optimal solution based on 
CEC2014 benchmark functions. 

By observing the results produced based on the 
unimodal, multimodal, and hybrid functions of CEC2014, 
it can be concluded that briefly, both PSO and GSA 
perform well in solving unimodal and multimodal 
optimization problems. However, for the case of hybrid 
optimization problem, PSO is superior to GSA and BH 
for all cases. The next step of this research are to re-
execute similar experiments for high-dimensional 
optimization problem and to perform a detailed statistical 
analysis in order to obtain a more concrete conclusion as 
well as to further understand the behaviour of the PSO, 
GSA, and BH algorithms. 
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Table 6 CEC2014 basic function. 

Function Equation 

High Conditioned Elliptic 

Bent Cigar 

Discuss 

Rosenbrock 

Ackley 

Weiestrass 

Griewank 

Rastrigin 

Schwefel 

 

Katsuura 

HappyCat 

HGBat 

Expanded Griewank plus 
Ronsenbrock  

Expanded Scaffer’s F6 

Hybrid 
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Table 7 CEC2014 benchmarking test function. 

Type Function Equation Optimal 
U

ni
m

od
a

l 
Rotated High Conditioned Elliptic 

 
100 

Rotated Bent Cigar  200 

Rotated Discuss 
 

300 

M
ul

ti
m

od
al

 

Shifted and rotated Rosenbrock 
 

400 

Shifted and rotated Ackley 
 

500 

Shifted and rotated Weiestrass 
 

600 

Shifted and rotated Griewank 
 

700 

Shifted Rastrigin 
 

800 

Shifted and rotated Rastrigin 
 

900 

Shifted Schwefel 
 

1000 

Shifted and rotated Schwefel 
 

1100 

Shifted and rotated Katsuura 
 

1200 

Shifted and rotated Happycat 
 

1300 

Shifted and rotated HgBat 
 

1400 

Shifted and rotated Expanded Griewank-
Rosenbrock 

 
1500 

Shifted and rotated Expanded Scaffer F6 
 

1600 

H
yb

ri
d 

Hybrid 1 (N=3) 1700 

Hybrid 2 (N=3) 1800 

Hybrid 3 (N=4) 1900 

Hybrid 4 (N=4) 

 

2000 

Hybrid 5 (N=5) 

 

2100 

Hybrid 6 (N=5) 

 

2200 

 



Aliman et al. / Malaysian Journal of Fundamental and Applied Sciences Vol.11, No.1 (2015) 10-20 
 

 
| 16 | 

 

Figure 4 Rotated High Conditioned Elliptic function 

 

Figure 5 Rotated Bent Cigar function 

 

Figure 6: Rotated Discuss function 

 

Figure 7 Shifted and rotated Rosenbrock function 

 

Figure 8 Shifted and rotated Ackley function 
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Figure 9 Shifted and rotated Weiestrass function 

 

Figure 10 Shifted and rotated Griewank function 

 

Figure 11 Shifted Rastrigin function 

 

Figure 12 Shifted and rotated Rastrigin function 
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Figure 13 Shifted Schwefel function 

 

Figure 14 Shifted and rotated Schwefel function 

 

Figure 15 Shifted and rotated Katsuura function 

 

Figure 16 Shifted and rotated HappyCat function 
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Figure 17 Shifted and rotated HgBat function 

 

Figure 18 Shifted and rotated Expanded Scaffer F6 function 

 

Figure 19 Hybrid Function 1 (N=3) 

 

Figure 20 Hybrid Function 2 (N=3) 
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Figure 21 Hybrid Function 3 (N=4) 

 

Figure 22 Hybrid Function 4 (N=4) 

 

Figure 23 Hybrid Function 5 (N=5) 

 

Figure 24 Hybrid Function 6 (N=5) 

 

 
 
 
 


