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ABSTRACT

Particle Swarm Optimization (PSO) and Gravitational Search Algorithm are a well-known population-based
heuristic optimization techniques. PSO is inspired from a motion flock of birds searching for a food. In PSO, a bird
adjusts its position according to its own ‘‘experience’’ as well as the experience of other birds. Tracking and
memorizing the best position encountered build bird’s experience which will leads to optimal solution. GSA is
based on the Newtonian gravity and motion laws between several masses. In GSA, the heaviest mass presents an
optimum solution in the search space. Other agents inside the population are attracted to heaviest mass and will
finally converge to produce best solution. Black Hole Algorithm (BH) is one of the optimization technique recently
proposed for data clustering problem. BH algorithm is inspired by the natural universe phenomenon called "black
hole”. In BH algorithm, the best solution is selected to be the black hole and the rest of candidates which are called
stars will be drawn towards the black hole. In this paper, performance of BH algorithm will be analyzed and
reviewed for continuous search space using CEC2014 benchmark dataset against Gravitational Search Algorithm
(GSA) and Particle Swarm Optimization (PSO). CEC2014 benchmark dataset contains 4 unimodal, 7 multimodal
and 6 hybrid functions. Several common parameters has been chosen to make an equal comparison between these

algorithm such as size of population is 30, 1000 iteration, 30 dimension and 30 times of experiment.
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1. INTRODUCTION

Optimization is an applied science which explores
the best values of the parameters of a problem that may
take under specified conditions [1][2]. The design of an
optimization problem generally starts with the design of
an objective function [3][4][5][6]. The metaheuristic
optimization algorithms use two basic strategies while
searching for the global optimum; exploration and
exploitation [3].

There are numerous metaheuristic optimization
algorithms to date. Those algorithms are Ant Colony
Algorithm [7], Firefly Algorithm [8], Artificial Bee
Colony [4], Cuckoo Search Algorithm [9], Harmony
Search Algorithm [10]. However, in this study, swarm
intelligence algorithms, which are part of metaheuristic
optimization algorithms, are studied. In particular, the
performance of particle swarm optimization (PSO),
gravitational search algorithm (GSA), and the most recent
black hole algorithm (BH) are evaluated based on the
latest benchmark functions called CEC2014 benchmark
functions [11]. The purpose of this study is to explore the
capability of PSO, GSA, and BH algorithms and to obtain
a general conclusion regarding which one is the best
among others.

The paper is organized as follows: Section 2
present a brief introduction to all algorithms involved,;
PSO, GSA and BH. Section 3 describe about benchmark
functions, common setting and parameter will be used in

the experiment. The experimental result and discussion
are provided in Section 4. Finally, Section 5 concludes the
work.

2. ALGORITHM
2.1  Particle Swarm Optimization (PSO)

PSO is a stochastic global optimization technique
inspired by social behaviour of bird flocking or fish
schooling [12]. PSO uses simple mechanism observed
from swarm behaviour to guide particles in search for a
global optimal solution. In PSO, each particle moving
inside search space with a velocity dynamically adjusted
according to its own previous best position and its
neighbourhood best position. Hence, every particle is
representing as a potential optimal solution for the
problem. Initially, each particle is randomly placed inside
of d-dimensional search space. The ith particle is
represented as X; = (x} ..x ... x1).

At the specific time “¢”, the velocity for ith particle
is calculated using below formula:

vt +1) = w(®)vl(t) + ¢yrand;, (pbestid —xg (t)) +
crand;, (gbestd - x{i(t)) (1)

Where, pbest; represent best previous position of
the ith particle and gbest represent best previous position

[10]
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among all the particles in the population. Particle position
for the next iteration is calculated as follow:

x{(t+1) = x4 () +vi(t+ 1) 2

The general principle of PSO is shown in Figure 1.

START

| POPULATION INITIALIZATION |

—“| EVALUATE firmess EACH PARTICLE |

UPDATE pBest EACH

PARTICLE, gfest

CALCULATE velocity,
position EACH PARTICLE

MEET END
CRITERION
?

Figure 1. General principle of PSO

2.2 Gravitational Search Algorithm (GSA)

GSA has been inspired from physical phenomenon
of interaction between objects in the universe. It is
defined by Newton as, “Every particle in the universe
attract every other particle with a force that is directly
proportional to the square of the distance between them”.
This definition is known as gravitational force and is
defined as follow:

GM1 M.
F = ©

In GSA, agents are considered as objects and their
performance are expressed by their masses [3] value
which calculated from specific fitness function. The
population will be initialized by placing the agent at
randomly position inside search space. Assuming
gravitational and inertia mass is equal, agents masses are
calculated using following equations:

best(t) = jer{rllfl..),(N} fit; (@) 4)

worst(t) = ,-e?f,‘..‘?m fit;(t) (5)

Mai = Mpi = Mii where M,:,i = 1,2,3 ..N (6)
__ fiti(t)—worst(t)

m; (t) - best(t)— worst(t) (7)
__ mi(®

MO) = 5" s ®)

So, at specific time “¢”, the gravitational force acting on

agent “;” from agent *” can be represent as following:
d _ Mpi(t)XMaj(t) d d
Fij(0) = 6(0) =252 (xf (0 — () (©)

The Euclidian distance between two agents is:

Ry () = [X:(®), X, (10)

START

| POPULATION INITIALIZATION |

“l EVALUATE fitmess EACH AGENT |

UPDATE gravity, best, worst

CALCULATE marss,
aceeleration EACH AGENT

UPDATE wlocity, position

MEET END
CRITERION
?

Figure 2. General principle of GSA

The gravitational coefficient G(t) will be reduced with
time to control the search accuracy.
G(t) = G(Go, t) (11)

Following formulas has been used to determine the “i"th
agent acceleration:

FA@) = X, jirand; F(t) (12)
depy — F®
a; ) = m (13)

Then, the agent new velocity and position are calculated
using these equations:

v{i(t +1) = rand; X Uid(t) + a?(t)
xF(t+1) =x{®) +vi(t+1)

(14)
(15)

The general principle of GSA is shown in Figure 2.
2.3 Black Hole Algorithm (BH)

BH was created from a black hole phenomenon. It
was first intended to be use as an alternative for clustering
problem. Black hole phenomenon has been named by
John Wheeler an American Physicist in 1967. It is a space
having a huge gravitational power in which anything
crosses the boundary will be swallowed even the light. A
black hole in space is what forms when a star of massive
size collapses [13].

Imagined an n-population of stars with initially
placed inside of d-dimensional search space as follow:
X = (x!xfxl) (16)

Then, each star will be evaluated using chosen
fitness function. Star having the best fitness value will be
selected to become a black hole. The new position for all
stars will be calculated using this formula:

x(t +1) = x4(t) + rand X (xgH —x2 (t)) (17)

[11]
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Figure 3. Standard BH flowchart

The new star will be created at random location
every time it cross event horizon. Event horizon is a
radius boundary around black hole. The value is
determined by the following formula:

fitnesspy
2?’:1 fitness;

R = where N = population size (18)

The general principle of BH is shown in Figure 3.
3. EXPERIMENTS, RESULTS AND
DISCUSSION

The parameter setting of PSO, GSA, and BH are
shown in Table 1. Number of run, number of iteration,
population size, and number of dimension are general
parameter applied to all algorithms. Inertia weight (w),
cognitive (c;) and social (c;) parameters are exclusive to
PSO. On the other hand, initial gravitation constant (Gy)
and alpha (), are exclusive to GSA.

The experiments were based on the recently
published benchmark functions called CEC2014
benchmark functions [11]. The formulation of the
CEC2014 benchmark functions are listed in Table 6 and
Table 7. The benchmark functions are divided into
unimodal, multimodal, and hybrid functions with optimal
value are also included.

Table 1 Parameter setting

Parameter Value
Number of run per experiment 30
T
E Number of iteration per run 1000
8 Population size 30
Number of dimension 30
e Inertia Weight, o 09t004
2 Coefficient Factor, ¢;,c, 2,2
< Initial Gravity, G, 100
)
o Alpha, a -20

The average value, standard deviation value, minimum
value, and maximum value from experimental result were
recorded and tabulated in Table 2, Table 3, Table 4 and

[12]

Table 5. The average value is being used as comparison
between algorithms and value written in bold indicates
the best result among them.

Table 2 Unimodal function result

Function | Measure BH GSA PsO
AVERAGE | 88570364 | 74838854 | 96722332
STDDEV 31842233 | 23787602 | 71277779
i MIN 25102312 | 38704969 | 25102312
MAX 1.51E+08 | 1.24E+08 | 4.06E+08
AVERAGE | 1.36E+09 | 3.29E+08 | 57729922
STDDEV 1.89E+09 | 4.34E+08 | 96226073
P2 MIN 226617.4 | 226617.4 | 1005150
MAX 8.00E+09 | 2.13E+09 | 4.08E+08
AVERAGE | 43136.29 | 76896.34 | 14178.49
STDDEV 27926.54 | 5996.396 | 14777.49
F MIN 1150.474 | 64485.01 | 1150.474
MAX 48712.46 | 87213.57 | 59125.39

Table 3 Multimodal function result.

Function Measure BH GSA PsO

AVERAGE | 1046.042 | 976.161 | 1031.017

STDDEV | 277.3205 | 289.4972 | 262.6738

& MIN 578.9538 | 732.3658 | 578.9538
MAX 2136.106 | 2177.511 | 1513.875

AVERAGE | 520.306 519.999 | 520.9736

STDDEV | 0.453085 | 0.000556 | 0.101111

& MIN 519.9975 | 519.9975 | 520.6635
MAX 520.0637 | 519.9997 | 521.0941

AVERAGE | 624.9259 | 624.7608 | 617.3393

STDDEV | 6.816158 | 2.449066 | 4.123768

e MIN 610.2717 | 621.1697 | 610.2717
MAX 638.7539 | 629.5551 | 626.4682

AVERAGE | 720.3244 | 706.2988 | 710.0631

STDDEV 19.22478 | 3.606268 | 11.96609

F MIN 701.0355 | 701.0355 | 701.2862
MAX 767.6485 | 714.0935 | 747.8384

For unimodal functions, GSA is better than PSO
and BH for F1 function. However, PSO is better than
GSA and BH for F2 and F3 functions while BH was not
able to outperform PSO and GSA in all cases. The
examples of boxplot and convergence curves for F1, F2,
and F3 functions are shown in Figure 4, Figure 5, and
Figure 6 respectively.

Similar to unimodal functions, multimodal
functions also shows that BH was not able to outperform
PSO and GSA in all cases. Further comparisons of PSO
and GSA show that GSA outperformed PSO in 7 cases
(F4, F5, F6, F7, F8, F9, and F10). On the other hand, PSO
outperformed GSA in 6 cases (F11, F12, F13, F14, F15,
and F16). The examples of boxplot and convergence
curves for F4 to F16 are shown in Figure 7 to Figure 18
respectively.

As for hybrid cases, the result show that PSO is
superior to GSA and BH in all cases. The examples of
boxplot and convergence curves for F17, F18, F19, F20,
F21, and F22 are shown in Figure 19 to Figure 24,
respectively.
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Table 4 Multimodal function result.

Function Measure BH GSA PSO

AVERAGE | 913.3048 | 947.4192 | 854.8536

STDDEV 42.41577 | 9.564984 | 13.18151

8 MIN 834.6769 | 929.3442 | 834.6769
MAX 971.3446 | 963.1726 | 882.0581

AVERAGE | 1110987 | 1077.898 | 1013.347

STDDEV | 97.44744 | 20.3977 39.0376

P MIN 959.6918 | 1043.274 | 959.6918
MAX 1268.172 | 1127.844 | 1095.535

AVERAGE | 3481.428 | 4617.347 | 2027.867

STDDEV 1132.673 | 425.2253 371.118

Fe MIN 1262.792 | 3669.495 | 1262.792
MAX 4331487 | 5230.704 | 2759.996

AVERAGE | 5870.741 | 5350.104 | 7166.539

STDDEV 1196.285 | 352.6554 | 1081.404

P MIN 3860.466 | 4685.935 | 3984.792
MAX 6526.11 6189.264 | 8707.647

AVERAGE | 1201.036 | 1200.016 | 1202.243

STDDEV 1.03915 0.008515 | 0.336511

F2 MIN 1200.005 | 1200.005 | 1201.291
MAX 1201.644 | 1200.044 | 1203.383

AVERAGE | 1300.821 | 1300.515 | 1300.987

STDDEV 0.633971 | 0.373776 | 0.708315

P MIN 1300.203 | 1300.226 | 1300.203
MAX 1302.185 | 1302.164 | 1302.704

AVERAGE | 1412.875 | 1404.689 | 1419.276

STDDEV 13.07767 | 9.784895 | 16.72074

i MIN 1400.201 | 1400.201 | 1400.207
MAX 1439.243 | 1435.619 1453.36

AVERAGE 1574.77 1554.118 | 1520.718

STDDEV 62.15823 | 22.23178 | 5.288353

Fs MIN 1508.884 | 1522.382 | 1508.884
MAX 1811.993 | 1597.114 | 1534.195

AVERAGE | 1612.951 1613.61 | 1612.529

STDDEV 0.635518 | 0.225436 0.45425

F1e MIN 1611.25 1613.185 1611.37
MAX 1613.535 | 1613.975 1613.24

Table 5 Hybrid function result.

Function Measure BH GSA PSO

AVERAGE | 30784257 | 55283638 | 19729686

STDDEV | 44065650 | 67306551 | 20705286

F7 MIN 1335720 | 3167296 1335720
MAX 25736003 | 3.28E+08 | 1.04E+08

AVERAGE | 6.38E+08 | 1.76E+09 | 32246294

STDDEV 1.19E+09 | 1.51E+09 | 1.45E+08

F18 MIN 2075.141 | 2519.887 | 2075.141
MAX 1.43E+08 | 5.06E+09 | 7.88E+08

AVERAGE | 2045.871 | 2105.174 | 2021.973

STDDEV 63.20811 | 42.23975 | 64.39642

F1e MIN 1922.153 2001.32 1922.153
MAX 2042.365 | 2222.969 | 2184.441

AVERAGE | 57585.45 | 91579.14 | 41567.73

STDDEV 30545.26 | 24091.65 | 16684.78

P20 MIN 18416.79 | 52543.42 | 20306.05
MAX 65022.72 | 153681.4 | 96529.06

AVERAGE | 3824788 | 4337785 3445418

STDDEV 2321736 1783216 3219689

Fa1 MIN 612435.2 | 1888554 | 612435.2
MAX 7217596 | 8681296 | 17397691

AVERAGE | 4341.088 4544.53 | 4169.702

STDDEV 537.9198 | 462.2675 629.623

P2 MIN 2967.647 | 3832.037 | 2967.647
MAX 5000.246 | 6206.148 | 5370.399

4. CONCLUSIONS

This study considers three different swarm
intelligence algorithms, namely PSO, GSA, and BH. The

purpose of this study is to evaluate the superiority of these
algorithms when finding the optimal solution based on
CEC2014 benchmark functions.

By observing the results produced based on the
unimodal, multimodal, and hybrid functions of CEC2014,
it can be concluded that briefly, both PSO and GSA
perform well in solving unimodal and multimodal
optimization problems. However, for the case of hybrid
optimization problem, PSO is superior to GSA and BH
for all cases. The next step of this research are to re-
execute similar experiments for high-dimensional
optimization problem and to perform a detailed statistical
analysis in order to obtain a more concrete conclusion as
well as to further understand the behaviour of the PSO,
GSA, and BH algorithms.
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Table 6 CEC2014 basic function.

Function

Equation

High Conditioned Elliptic

£(0)= 31075 ¢

iml

D
Bent Cigar H(x)=x +10° ]
D
Discuss [i(x)=10°x +3 ]
D=1 N ﬁ
Rosenbrock £i(x) =D (100(x7 =x,,,)* +(x,=1)%)
i=1
12 1L
Ackley fi(x)=—20exp(~0.2 szf ) -exp(Bzcus(zmg. N+20+e
=l iml
D kmax kmax B
Weiestrass So(x)=22( 2 [a* cos(2b* (x,+0.5))) - D Z a* cos(27b* -0.5)]
i=l k=0 K=
D X 2 D X
; =54 iyl
Griewank 0= 005 LTeosp+
D
Rastrigin fi(x)=2"(x} —10cos(27x,) +10)
i=l
D
fo(x)=418.9829x D= g(z,), 2, = x,+4.209687462275036e-+002
i=|
z; 5in{|z.|m) if |zi| <500
Schwefel _s 00)
g(z,)=4 (500- mod(?],SOO))sm(J 500 mod{zl,SOU )—- lOUUOD if z, > 500
. (z, +500)° .
d(z,|,500) - 500 —Ei 2 ifz <500
(mod(|z;|,500) )sin,| )] looon T
|2’ —round (2’ 10
Katsuura ;‘;D(x}— l:l[(l ,Z.u:— -
/4 D D
HappyCat fiulx)= D| +(0.5).x"+Y x)/D+0.5
i=l i=]
12 D D
HGBat fa(x)= (Zv +(0.5). X7+ %)/ D+05
i=l i=l

Expanded Griewank plus
Ronsenbrock

Ju(x) = f,(fi(x )+ f(fo () + ot [ (f(Xpo: Xp)) + (S (x50 %,))

Expanded Scaffer’s F6

Sia(0) = g(x, %) + g(xy, %) +...+ g (X, Xp) + 2(xp, X))

2(x.y)=05+ (sin’(y/x” + ¥7) = 0.5)

(1+0.001(x> + y*))

Hybrid

F(x) = g,(Mz))+g,(M,3,) + ...+ g, (M2, + F'(x)
F(x):  hybrid function
gi(x): " basic function used to construct the hybrid function
N: number of basic functions
2=[2,,%3,02 2y ]
y=x-0,,5 =randperm(l: D)

5 =[5 Vs ¥, 122 =05, s Vs, e B, Lo 3y =05 s, ..
T o+l e
i= &\

N=l
n = fp,D],nz = I-pzD-l,,.,,n_‘\._, = rp_,\._,D-l,nN = D—Zn,

iml

P used to control the percentage of gi(x)

N
it dimension for each basic function an. =D

i=]

[14]
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Table 7 CEC2014 benchmarking test function.

Type Function Equation Optimal
R Rotated High Conditioned Elliptic F(x)=fiM(x-o))+F* 100
£- Rotated Bent Cigar F(x)= L(M(x-0,)+ F, * 200
=
> Rotated Discuss F(x)=fi(M(x-0,)) + F/,* 300

2.048(x—
Shifted and rotated Rosenbrock Fi(x)= ﬂ(M(#) +D)+F* 400
Shifted and rotated Ackley Fi(x)= f{(M(x—0;))+ F* 500
i . 0.5(x=0,)
Shifted and rotated Weiestrass F(x)= fﬁ(‘\fl(?)) +F* 600
Shifted and rotated Griewank Fy(x) =_}’7(M(%)}+ £* 700
5.12
Shifted Rastrigin F(x)=f( #Jﬂﬂ* 800
Shifted and rotated Rastrigin Fy(x)= _@(M(is‘lzigo_%})H F* 900
=
g 1000(x —
g Shifted Schwefel Fy(0)= £y 1000
E
1000(x—o
= Shifted and rotated Schwefel Fo(x)= _ﬁ,(M(#)) +E* 1100
. S(x 0,2}
Shifted and rotated Katsuura Fo(x)=fiu(M(—— )+ F, * 1200
. 5(x-o;) *
Shifted and rotated Happycat Fa(x)=f,(M(———= 100 N+ Fs 1300
. S(x-o0,)
Shifted and rotated HgBat E(x)=f,(M(———~ 100 N+EL* 1400
Shifted and rotated Expanded Griewank- S(x- *
Rosenbrock Fig(x) = fis(M(—— == 100 )* 1)+ F; 1500
Shifted and rotated Expanded Scaffer F6 Fe(x)= fi,(M(x=-0,0)+ 1)+ F¢ * 1600
=1[0.3,0.3,0.4]
. _ 21 Modified Schwefel's Function f5
Hybrid 1 (N=3) £2: Rastrigin’s Function f3 1700
g3: High Conditioned Elliptic Function f;
=[03,03,04]
. _ g1: Bent Cigar Function f
Hybrid 2 (N=3) g>: HGBat Function f;, 1800
2. Rastrigin’s Function f;
p=[02,02,03,023]
g;: Griewank’s Function f;
Hybrid 3 (N=4) g2>: Weierstrass Function fg 1900
g2;: Rosenbrock’s Function f;
g4 Scaffer’s F6 Function:f4
=[02,0.2,0.3,0.3]
,'g g2, HGBat Function f,
-g Hybrid 4 (N=4) 2> Discus Function f3 2000
T g23: Expanded Griewank’s plus Rosenbrock’s Function /13
gs: Rastrigin’s Function f3
p=1[0.1,0.2,02,0.2,0.3]
21 Scaffer’s F6 Function;fis
. _ 2>: HGBat Function fi»
Hybrid 5 (N=5) 23: Rosenbrock’s Function f3 2100
24 Modified Schwefel’s Function fo
2s: High Conditioned Elliptic Function f,
=[0.1,0.2,0.2,0.2,0.3]
21: Katsuura Function fio
i _ g2>: HappyCat Function f1,
Hybrid 6 (N=5) g23: Expanded Griewank’s plus Rosenbrock’s Function fi3 2200
g4: Moditied Schwefel’s Function fo
gs: Ackley’s Function f5

[15]




Aliman et al. / Malaysian Journal of Fundamental and Applied Sciences Vol.11, No.1 (2015) 10-20

®10% x107
450 300
400 250
250 H
= 200
300 <
=
250 goo 40— — BH
-3 — G54
200 E 100
g - PSO
150 <
o == L B :
50 | 0
T T T Ao Mm@ oo SmonmEaom
2 CEERARRSSRREEREREER
BH I GSA ‘ PsO I Iteration
Figure 4 Rotated High Conditioned Elliptic function
*107 109
200 120
800 100
700 H
= 80
600 <
z BH
€ ¥ .
500 go . -
- R
400 € 40\
[ £ 0 V= e
e -
300 < 5 e
200 : RRETTTIN =
‘ o B 77 LL T PR TP
100 RO Moo N Do TR oMb oo m
o —_—l I FESERERRCCRECREEERZY
BH I asa ‘ Ps0 I Iteration
Figure 5 Rotated Bent Cigar function
% 10° w10
100 70
20 50
& Iil : 50
o=
70 =
T =
= 40
60 E ...... BH
50 T g 30 —a
£
40 2 20 - PSO
[ — H
30 10
20
— 0 -
10 ) AynomMEoNUBagRomEonn
a — — CEERERRYSDREBRERERER
BH I GsA ‘ CE) I Iteration
Figure 6: Rotated Discuss function
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Figure 7 Shifted and rotated Rosenbrock function
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Figure 8 Shifted and rotated Ackley function
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Figure 9 Shifted and rotated Weiestrass function
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Figure 10 Shifted and rotated Griewank function
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Figure 11 Shifted Rastrigin function
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Figure 12 Shifted and rotated Rastrigin function
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Figure 13 Shifted Schwefel function
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Figure 14 Shifted and rotated Schwefel function
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Figure 15 Shifted and rotated Katsuura function
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Figure 16 Shifted and rotated HappyCat function
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Figure 17 Shifted and rotated HgBat function
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Figure 18 Shifted and rotated Expanded Scaffer F6 function
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Figure 19 Hybrid Function 1 (N=3)
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Figure 20 Hybr

id Function 2 (N=3)
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Figure 21 Hybrid Function 3 (N=4)
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Figure 22 Hybrid Function 4 (N=4)
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Figure 23 Hybrid Function 5 (N=5)
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Figure 24 Hybrid Function 6 (N=5)
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