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Abstract Air quality forecast is essential in alerting the public, especially those who have respiratory 
diseases, to take necessary precautions beforehand. The public can be forewarned of any worsening 
of air quality and be aware of the importance of reducing air pollution. In recent years, forecasting 
techniques based on deep learning algorithms such as recurrent neural network (RNN) have seen 
improvements in both accuracy and execution speed. Long short-term memory (LSTM) network and 
gated recurrent unit (GRU) are among the most popular variants of RNN. In this study, the hourly PM2.5 
concentrations at five selected air quality monitoring stations, provided by the Department of 
Environment Malaysia, are forecasted using LSTM, GRU and vector autoregressive integrated moving 
average (VARIMA) models respectively. Data containing missing, negative and zero values are pre-
processed using an interpolation technique before being split into training and test sets on an 80:20 
ratio basis. Optimal combinations of hyperparameter values are selected via manual tuning based on 
the 10-fold growing window cross-validation results. The model performance is evaluated based on 
RMSE, MAE and MAPE. The results demonstrate that neural network models significantly outperform 
the multivariate time series model in which the LSTM and GRU models have comparable performance 
in forecasting the hourly PM2.5 concentration, with a slightly better prediction in the west coast region 
for LSTM and the east coast region for GRU. However, due to the complex architecture of neural 
networks, the computational time to train both LSTM and GRU models is three times longer than that 
for VARIMA. Additionally, it is observed that a higher percentage of interpolated values leads to lower 
prediction errors. 
Keywords: Air quality, long short-term memory (LSTM), gated recurrent unit (GRU), vector 
autoregressive integrated moving average (VARIMA), forecasting. 

 

 
Introduction 
 
In recent years, air quality has become a critical issue concerning people around the world due to the 
massive increase in air pollutants caused by rapid urbanisation and industrialisation. Numerous studies 
have revealed that air pollutants such as ozone and particulate matter could be hazardous to human 
health, causing chronic illnesses including lung cancer as well as respiratory and cardiovascular 
diseases [1]. Generally, air pollution can be defined as contamination of the environment by any 
chemical, physical or biological agent that changes the natural characteristics of the atmosphere [1]. 
According to the data released by the World Health Organization (WHO), nine out of ten people breathe 
in polluted air, thus leading to 7 million people being killed annually [2]. 
 
In Malaysia, poor air quality is mainly contributed by gas exhaustion from vehicle emissions, haze caused 
by weather and forest fires in the neighbouring country and air pollutants released by industrial activities 
[3]. Acknowledging the harmful impacts of air pollution, the Department of Environment Malaysia 
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established the Ambient Air Quality Standard with amended limits for six air pollutants including the 
particulate matter of 2.5 micrometres or less in diameter which is commonly known as PM2.5. Starting 
from the year 2020 onwards, the average concentration of PM2.5 is strictly limited to 15 𝜇𝜇g/m3 each year 
[4]. 
 
The tiny PM2.5 particles are most likely to be elevated on windless days [5]. These fine particles can 
easily penetrate deeply into the lung, causing lung irritation, coughing and shortness of breath, 
consequently impairing lung function [5,6]. Xing et al. [6] have proven that PM2.5 can damage the human 
respiratory system through a few mechanisms such as injury from free radical peroxidation, imbalanced 
intracellular calcium homeostasis and inflammatory injury. 
 
An accurate air quality forecast that revolves around the level of PM2.5 is essential in alerting the public, 
especially those with compromised health. Those who are vulnerable to poor air quality could take 
necessary precautions beforehand, such as wearing a face mask and avoiding outdoor activities. 
Forecasting is also deemed important for the government and relevant authorities to be forewarned of 
any worsening of air quality so as to implement effective measures in controlling the emission of air 
pollutants. 
 
In recent decades, various forecasting techniques have been adopted to predict air quality. Some studies 
were done by using conventional statistical methods including regression model and autoregressive 
integrated moving average (ARIMA) model, while some researchers proposed deep learning algorithms 
such as recurrent neural network (RNN) and long short-term memory (LSTM) network to obtain a more 
precise prediction [7]. Due to the unexpected frequent changes in PM2.5 level, Caraka et al. [8] used 
state Markov chain stochastic process to determine the spreading pattern of PM2.5 in Pingtung and 
Chaozhou. Having classified the PM2.5 transition into three risk categories, the Markov chain was used 
to calculate the probability of changes among the three categories for the upcoming month. A hybrid 
vector autoregressive, neural network and particle swarm optimisation model (VAR-NN-PSO) was then 
used to forecast the PM2.5 for the next 180 days. On the other hand, Zhou et al. [9] forecasted PM2.5 
concentration in Beijing during the four seasons using GRU. Having seven input variables with optimal 
hyperparameter values, the model was proved to be effective in forecasting the PM2.5 accurately for 
readings below 600 𝜇𝜇g/m3. 
 
In addition, LSTM which is capable of learning long-term dependencies, often gives better accuracy in 
forecasting time series data than the conventional statistical models [10]. Such strength encourages the 
researchers to use it in various areas of study including meteorology, economy and disease prediction. 
Uh and Majid [11] found that LSTM outperformed ARIMA in forecasting the daily gold prices. Similarly, 
in a comparison of influenza-like illness (ILI) and respiratory disease prediction using LSTM and ARIMA 
done by Tsan et al. [12], the results showed that ARIMA predicted more accurately for the five-year 
dataset whereas LSTM performed better on average for a longer historical timeframe of ten years. 
Generally, LSTM outperformed the ARIMA model up to seven times in terms of model performance, 
proving its strength in learning long-term patterns. 
 
The application of deep learning algorithms can be extended to the field of ionosphere monitoring. By 
using vertical total electron content (VTEC) data recorded by the Global Positioning System (GPS), 
research done by Tan et al. [13] showed that LSTM could model the time series more accurately than 
GRU. Seeing the potential of neural networks in overcoming the drawbacks of traditional time series 
models, Mateus et al. [14] modelled the daily pulp paper press time series which has six monitored 
variables and predicted the future sensor values in 30 days using LSTM and GRU. Splitting the dataset 
into training and test sets based on a 70:30 ratio, the researchers carried out experiments to determine 
the best combination of hyperparameter values by using different window sizes, resampling rates, layer 
sizes and activation functions. From the thorough comparative analysis, GRU performed better than 
LSTM. 
 
While complex deep learning models often achieve superior forecasting performance, simple statistical 
models can be a valuable starting point due to their ability to provide interpretable and satisfying 
predictions in certain circumstances. For instance, ArunKumar et al. [15] optimised the parameters of 
ARIMA, seasonal autoregressive integrated moving average (SARIMA), LSTM and GRU using an 
automated function during the forecasting of the country-wise COVID-19 trends in cumulative confirmed, 
recovered and deaths. Although the deep learning-based models outperformed the statistical ARIMA 
and SARIMA models for most of the time series, the classical models did perform better in some 
countries. VARIMA, being the vector form of the ARIMA, achieves forecasting of higher accuracy by 
considering the influence of other variables [16]. Setiawan et al. [17] used VARIMA and generalised 
space-time autoregressive integrated moving average (GSTARIMA) to forecast monthly inflation at six 
capitals in Java Island. Training with data from all six locations simultaneously, the study found that the 
best VARIMA model was VAR (1) with dummy variables added to handle the overfitting issue. 
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Aiming to build a time series forecasting model that can achieve high precision in predicting the hourly 
PM2.5 concentration for selected stations in Malaysia, a comparison of the model performance between 
LSTM, GRU and VARIMA has been carried out based on the accuracy metrics, namely root mean square 
error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE). In order to 
achieve higher accuracy, 10-fold growing window cross-validation technique is adopted in this study. 
 
Materials and Methods 
 
Data 
In this study, the dataset provided by the Department of Environment Malaysia consists of 13080 rows 
of hourly PM2.5 concentration data that were recorded by five air quality monitoring stations located at 
either industrial or urban areas in Malaysia, starting from 5 July 2017 to 31 December 2018. 
 
The data contains missing, negative and zero values, of which should not exist in principle. Machine 
defects and human errors may result in missing values in air quality data [18]. Negative values in PM2.5 
concentration, which are infrequently recorded by PM2.5 instruments, could be due to instrument flaws 
and technological limitations, as the PM2.5 concentration of urban cities are in general above zero level 
[19]. Of various interpolation techniques, the monotonic piecewise cubic Hermite interpolating polynomial 
(PCHIP) is chosen to approximate these values. Gariazzo et al. [20] used this method to parameterise 
the primordial power spectrum as it can avoid spurious oscillations of the interpolated function between 
the nodes, unlike the spline interpolations. 
 
The missing and negative values are first replaced by zeros. Then, PCHIP is used to interpolate and 
replace those zeros to ensure the non-zeroness and nonnegativity of the data. The effectiveness of 
PCHIP in handling successive zeros is shown in Figure 1 by using part of the data extracted from the 
Kulim Hi-Tech station, in which the zeros are now being approximated based on the neighbouring values. 
 

 
 

Figure 1. Extracted raw data and interpolated data for Kulim Hi-Tech station 
 
 
Deep Learning 
Deep learning is a subset of the bigger picture, machine learning. The introduction of deep learning by 
Hinton et al. [21] in 2006 has allowed artificial intelligence (AI) to thrive in various fields, such as 
healthcare and natural language processing [22]. 
 
Deep learning can be regarded as the upgraded version of neural networks. Both deep learning and 
neural networks consist of input and output layers, with the core difference of deep learning having one 
or more hidden layers. Hidden layers consist of artificial neurons that receive inputs (𝑥𝑥𝑛𝑛) from the 
previous layer, assigning different weights (𝑤𝑤) to each corresponding input and summing (Σ) all the 
values before passing the sum through the activation function (𝑓𝑓) to obtain an output (𝑦𝑦). There are a lot 
of activation functions available with rectified linear unit (ReLU) function being the primary choice [23]. 
Such a process is called forward propagation and is repeated 𝑛𝑛 times for 𝑛𝑛 number of hidden layers in 
the network. To optimise the network for better accuracy in outputs, backward propagation is carried out 
based on a cost function. Backward propagation makes use of chain rule differentiation and optimisation 
in calculus to optimise the network and reassign new weights for neurons in each hidden layer [24]. 
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Figure 2 shows the architecture of an artificial neuron. 
 

 
 

Figure 2. Architecture of an artificial neuron 
 
 
It could be computationally complex and intensive to have a large number of artificial neurons in multiple 
hidden layers of a network. However, a model with higher accuracy and shorter running time on test data 
may be generated as it makes use of multiple levels of abstraction to represent data [25]. 
 
LSTM 
A sequential artificial neural network known as LSTM was developed in 1997 by Hochreiter and 
Schmidhuber [26]. As an extension of RNN, LSTM has outperformed it by successfully overcoming 
several shortcomings of RNN. Since the introduction of LSTM, it has been extensively applied in various 
fields such as speech recognition, protein homology detection and time series prediction, which is the 
centre of attention in this research. 
 
A model that is capable of capturing long-term temporal dependencies can produce desired predicted 
outputs with higher accuracy. This feature has a significant impact on forecasting of time series and 
sequential data, which is highly dependent on previously received inputs over a long period of time. 
However, RNN is unable to remember and relate distant data at a time far in the past to the current state 
in order to predict values of 𝑘𝑘 steps ahead into the future. Such a drawback occurs due to the vanishing 
and exploding gradient problems that arise during the backpropagation through time (BPTT) training 
process [27]. When the backpropagated error decreases extremely fast approaching zero, the gradient 
is said to vanish and become insignificant. Exploding gradients are expected to take place when the 
backpropagated error increases exponentially to infinitely large weight updates. These problematic 
complications make it a challenging task to train a RNN model and so to learn effectively. 
 
LSTM, however, having the capability to bridge long time lags, is capable of learning long-term 
dependencies [27]. Such an amazing improvement could be achieved by altering some features in the 
RNN architecture. RNN consists of a chain of repeating neural network cells that only has a single 
hyperbolic tangent (tanh) function within each block. LSTM remains the same chain-like structure but 
comprises two non-linear activation functions to scale or normalise data, which are sigmoid and tanh 
functions. In addition, there are three gates in LSTM, namely the forget gate, input gate and output gate, 
which play distinct roles in controlling the information flow inside the memory cell. In the equations 
presented later, we will find that there are four kernel weights 𝑊𝑊ℎ associated with the hidden state, four 
recurrent kernel weights 𝑊𝑊𝑥𝑥 associated with the input vector and four bias vectors 𝑏𝑏. 
 
The architecture of LSTM is illustrated in Figure 3 as follows. 
 

 
 

Figure 3. Architecture of LSTM 
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Basically, the LSTM working mechanism begins with a forget gate. This gate decides what kind of 
information is to be removed from the cell state [28]. The sigmoid function is applied to the inputs which 
converts them into values of interval [0, 1]. The information should be discarded when the values are 
close to 0 whereas values approaching 1 signify that the information should be preserved within the cell 
state. Next, the inputs are sent to the input gate that decides which portion of the latest information 
should be acquired in updating the cell state [28]. There are two different types of activation functions in 
the input gate, which are sigmoid and tanh functions. The updated information is stored in the current 
cell state 𝐶𝐶𝑡𝑡. Lastly, the output gate plays a vital role in determining the output information based on both 
input and cell state memory [28]. When the desired final current output is obtained, a copy of the output 
will be incorporated into the cell state, 𝐶𝐶𝑡𝑡 whereas another copy of it will form an output hidden state, ℎ𝑡𝑡 
that will flow into the next LSTM block or be used for prediction. The processes taking place in each gate 
are shown in the equations below. 
 
Forget gate:  𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊ℎ𝑓𝑓 ℎ𝑡𝑡−1 + 𝑊𝑊𝑥𝑥𝑓𝑓 𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑓𝑓�     (1) 
 
Input gate:   𝑢𝑢𝑡𝑡 = 𝜎𝜎(𝑊𝑊ℎ𝑢𝑢 ℎ𝑡𝑡−1 + 𝑊𝑊𝑥𝑥𝑢𝑢 𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑢𝑢)          (2) 
   �̃�𝐶𝑡𝑡 = tanh(𝑊𝑊ℎ𝐶𝐶  ℎ𝑡𝑡−1 + 𝑊𝑊𝑥𝑥𝐶𝐶  𝑥𝑥𝑡𝑡 + 𝑏𝑏𝐶𝐶)     (3) 
   𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∙ 𝐶𝐶𝑡𝑡−1 + 𝑢𝑢𝑡𝑡 ∙ �̃�𝐶𝑡𝑡      (4) 
 
Output gate:  𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊ℎ𝑜𝑜 ℎ𝑡𝑡−1 + 𝑊𝑊𝑥𝑥𝑜𝑜  𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑜𝑜)         (5) 
   ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∙ tanh(𝐶𝐶𝑡𝑡)                (6) 
 
GRU 
GRU is an improved version of standard RNN introduced in 2014 by Cho et al. [29] which aims to solve 
the vanishing gradient problem. The key distinction is RNN’s support on gating of the hidden state: a 
mechanism for when a hidden state should be updated and reset. GRU can also be considered as a 
variation of LSTM since both are designed similarly with excellent predictions. Compared to the three 
gates in LSTM architecture, there are only two gates involved in each time step, which are reset gate 
and update gate. Thus, GRU is said to be simpler than LSTM [14]. 
 
Figure 4 below illustrates the architecture of GRU. 
 

 
 

Figure 4 Architecture of GRU 
 
 
Similar to LSTM, the reset gate is used to decide how much past information is to forget whereas the 
update gate combines the roles of forget gate and input gate of LSTM. Based on Figure 4, the inputs 
include the current time step and the hidden state of previous time step. Outputs of the two gates are 
given by two fully connected layers with a sigmoid activation function which converts the inputs to values 
of interval [0, 1]. 
 
Mathematically, for a given time step 𝑡𝑡, suppose there exist an input 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛×𝑑𝑑 and the hidden state from 
previous time step, denoted as ℎ𝑡𝑡 ∈ ℝ𝑛𝑛×ℎ, where 𝑛𝑛 is the number of samples, 𝑑𝑑 is the number of inputs 
and ℎ is the number of hidden units. Thus, 
 
Reset gate:  𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑥𝑥𝑡𝑡  𝑊𝑊𝑥𝑥𝑥𝑥 + ℎ𝑡𝑡−1 𝑊𝑊ℎ𝑥𝑥 + 𝑏𝑏𝑥𝑥)     (7) 
Update gate:  𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑥𝑥𝑡𝑡  𝑊𝑊𝑥𝑥𝑥𝑥 + ℎ𝑡𝑡−1 𝑊𝑊ℎ𝑥𝑥 + 𝑏𝑏𝑥𝑥)     (8) 
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where 𝑊𝑊𝑥𝑥𝑥𝑥 ,𝑊𝑊𝑥𝑥𝑥𝑥  ∈  ℝ𝑑𝑑×ℎ and 𝑊𝑊ℎ𝑥𝑥 ,𝑊𝑊ℎ𝑥𝑥  ∈  ℝℎ×ℎ are weight parameters, 𝑏𝑏𝑥𝑥 , 𝑏𝑏𝑥𝑥  ∈  ℝ1×ℎ are biases while 𝜎𝜎 
is sigmoid activation function. 
 
Next, the reset gate, 𝑟𝑟𝑡𝑡, which is integrated as a regular latent state updating mechanism, leads to the 
following: 
 
Candidate hidden state: ℎ�𝑡𝑡 = tanh(𝑥𝑥𝑡𝑡  𝑊𝑊𝑥𝑥ℎ + (𝑟𝑟𝑡𝑡  ⊙ℎ𝑡𝑡−1) 𝑊𝑊ℎℎ + 𝑏𝑏ℎ)   (9) 
 
where 𝑊𝑊𝑥𝑥ℎ  ∈  ℝ𝑑𝑑×ℎ and 𝑊𝑊ℎℎ  ∈  ℝℎ×ℎ are weight parameters and 𝑏𝑏ℎ is bias. 
 
The nonlinear tanh activation function is used to ensure the output, which is a candidate hidden state, 
remains in the interval [−1, 1] [30]. Whenever the entries in the reset gate 𝑟𝑟𝑡𝑡 are close to 1, the candidate 
hidden state is the outcome of tanh of input 𝑥𝑥𝑡𝑡 and elementwise product between 𝑟𝑟𝑡𝑡 and ℎ𝑡𝑡−1. Meanwhile, 
if the entries in the reset gate 𝑟𝑟𝑡𝑡 are close to 0, it means that the reset information has been stopped. 
 
To determine the extent to which the previous hidden state ℎ𝑡𝑡−1 ∈ ℝ𝑛𝑛×ℎ remains and how much the new 
candidate hidden state ℎ�𝑡𝑡 is used, an update gate 𝑧𝑧𝑡𝑡 is incorporated. The process can be written as 
below. 

 
New hidden state: ℎ𝑡𝑡 = 𝑟𝑟𝑡𝑡 ⨀ ℎ𝑡𝑡−1 + (1 − 𝑧𝑧𝑡𝑡) ⨀ ℎ�𝑡𝑡     (10) 
 
If the value of 𝑧𝑧𝑡𝑡 is close to 1, the hidden state ℎ𝑡𝑡 remains the same as the previous hidden state ℎ𝑡𝑡−1, 
indicating that the information from input 𝑥𝑥𝑡𝑡 is essentially ignored. However, if the value of 𝑧𝑧𝑡𝑡 is close to 
0, the new hidden state ℎ𝑡𝑡 approaches the candidate hidden state ℎ�𝑡𝑡. These designs help to cope with 
the vanishing gradient problem in standard RNN and better capture dependencies for sequences with 
large time steps [29,31]. 
 
Modelling Phase 
Aiming to compare the performance of LSTM, GRU and VARIMA models in forecasting the hourly PM2.5 
concentration, the pre-processed data are split into a ratio of 80:20 for both training and test sets 
respectively as shown in Figure 5. The training set is used to supervise the training and learning 
processes of the three models, whereas the test set is used for validation and final evaluation of 
prediction accuracy. 
 

 
 

Figure 5. Splitting of dataset. 
 
 
Having MSE as the loss function and root mean squared propagation (RMSprop) as the optimiser with 
a dropout rate of 0.2, the number of epochs is fixed at 100 for both LSTM and GRU models to avoid 
overfitting [10]. The optimal values of other hyperparameters of LSTM and GRU such as number of 
hidden layers, number of units, batch size and time steps are fine-tuned using manual optimisation 
method. This approach involved selecting the best hyperparameter settings from a range of tested values 
based on cross-validation results. Meanwhile, the optimal orders of autoregressive terms (𝑝𝑝), 
nonseasonal differences (𝑑𝑑) and lagged forecast errors (𝑞𝑞) in VARIMA are also selected from a few 
candidate combinations using the same technique. 
 
In this context, a specialised form of cross-validation known as the 10-fold growing window cross-
validation technique is utilised. Developed as a variant of traditional 𝑘𝑘-fold cross-validation, the size of 
training data gradually expands with each split, in contrast to the standard 𝑘𝑘-fold method where each 
fold of data serves as the training set exactly once [32]. Such a cross-validation procedure has 
demonstrated its efficacy in yielding more accurate estimates compared to conventional out-of-sample 
approaches [33]. 
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Model Evaluation 
As aforementioned, the prediction performance of LSTM, GRU and VARIMA models are evaluated and 
compared based on three accuracy metrics which are defined as follows: 
 

Root mean square error:  RMSE = �1
𝑛𝑛
∑ �𝑌𝑌�𝑡𝑡 − 𝑌𝑌𝑡𝑡�

2𝑛𝑛
𝑡𝑡=1     (11) 

Mean absolute error:   MAE = 1
𝑛𝑛

 ∑ �𝑌𝑌�𝑡𝑡 − 𝑌𝑌𝑡𝑡�𝑛𝑛
𝑡𝑡=1     (12) 

Mean absolute percentage error: MAPE = 1
𝑛𝑛

 ∑ �𝑌𝑌𝑡𝑡
�−𝑌𝑌𝑡𝑡
𝑌𝑌𝑡𝑡
� × 100𝑛𝑛

𝑡𝑡=1    (13) 
 
where 𝑛𝑛 is the amount of data in the test set, 𝑌𝑌𝑡𝑡 and 𝑌𝑌�𝑡𝑡 are the actual and predicted values at time 𝑡𝑡 
respectively. A lower accuracy metric value indicates the model’s ability in providing more precise 
forecasts by effectively learning the historical data trends. 
 
Results and Discussion 
 
Descriptive Analysis 
Since the five selected air quality monitoring stations are located in different areas and regions, this might 
lead to varying concentrations of PM2.5. Table 1 below demonstrates the distribution of stations by area 
and region, along with their respective average PM2.5 concentration. 

 
Table 1. Distribution of stations by area and region, along with their average PM2.5 concentration (𝜇𝜇g/m3) 

 
Station Area Region Average PM2.5 Concentration (𝜇𝜇g/m3) 

Kulim Hi-Tech Industrial West Coast 16.08 
Shah Alam Urban West Coast 24.42 

Larkin Urban West Coast 20.35 
Balok Baru, Kuantan Industrial East Coast 18.25 
Kuala Terengganu Urban East Coast 16.63 

 
 

Out of these five stations, three are located in urban areas, namely Shah Alam station, Larkin station 
and Kuala Terengganu station. These stations typically exhibit an average PM2.5 concentration higher 
than the others, with Shah Alam station and Larkin station recording average readings exceeding 20 
𝜇𝜇g/m3. This results in an overall average concentration of 20.47 𝜇𝜇g/m3 recorded in urban areas. 
Conversely, the other two stations exhibit relatively lower PM2.5 concentrations, leading to an average 
concentration of 17.17 𝜇𝜇g/m3 in industrial areas. 
 
Such a situation is in accordance with the findings of Abdul Rahman et al. [34], who classified industrial 
areas in Malaysia primarily into Medium Pollution Regions (MPR) and Low Pollution Regions (LPR) 
based on the PM2.5 concentrations, while most of the urban areas are categorised as High Pollution 
Regions (HPR) and MPR. According to the identified clusters, the mean PM2.5 concentrations in HPR, 
MPR and LPR are 23.04 𝜇𝜇g/m3, 16.41 𝜇𝜇g/m3 and 16.18 𝜇𝜇g/m3, respectively. Due to the frequent emission 
of pollutants from human activities and vehicles, urban areas with high population density often 
experience poorer air quality than less developed areas [35]. On the other hand, industrial areas mainly 
experience air pollution from contaminants released by industrial plants, with fewer contributions from 
other human activities. Consequently, particulate matter becomes more concentrated in urban areas, 
resulting in relatively higher PM2.5 concentrations. 
 
The stations centred along the west coast of Peninsular Malaysia are more significantly affected by fine 
particulates as compared to the stations in the east coast region, with overall average PM2.5 
concentrations recorded at 20.28 𝜇𝜇g/m3 and 17.44 𝜇𝜇g/m3 respectively. This can be attributed to the fact 
that the states in the west coast region, having their coastlines along the Straits of Malacca, are more 
developed with higher population density than the east coast region [36], which then causes more 
emissions of air pollutants into the atmosphere. In addition, it is believed that meteorological factors, 
particularly wind direction, play a significant role in the transboundary haze pollution originating from a 
neighbouring country during the northeast monsoon season, subsequently increasing the air pollution 
levels in the west coast region [34]. 
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Comparison of Model Performance 
Selecting suitable hyperparameter values for neural networks is a challenging yet crucial task as it has 
a significant impact on model performance [7]. The optimal neural network hyperparameter values and 
orders of the VARIMA model are presented in Table 2 and Table 3 respectively. 
 

Table 2. Optimal hyperparameter values for LSTM and GRU 
 

Hyperparameter LSTM GRU 
Loss function MSE MSE 

Activation function Tanh Tanh 
Recurrent activation Sigmoid Sigmoid 

Optimiser RMSprop RMSprop 
Number of hidden layers 1 1 

Number of units 20 20 
Dropout 0.2 0.2 

Number of epochs 100 100 
Batch size 64 64 

Number of time steps 80 80 
 
 
Table 3. Optimal parameter orders for VARIMA model 

 

Parameter Optimal Order 
𝑝𝑝 1 
𝑑𝑑 1 
𝑞𝑞 1 

 
 

Table 4 below demonstrates the model performance based on RMSE, MAE and MAPE values. 
 
Table 4. Model performance 

 
Station Area Region Accuracy Metric LSTM GRU VARIMA 

Kulim Hi-Tech Industrial West Coast 
RMSE 0.2274 0.4459 5.7407 
MAE 0.1934 0.4350 3.8095 

MAPE 3.8282 6.7469 60.2737 

Shah Alam Urban West Coast 
RMSE 0.3457 0.4660 6.5139 
MAE 0.3128 0.4423 4.8979 

MAPE 2.4745 2.1785 31.9425 

Larkin Urban West Coast 
RMSE 0.5829 0.5636 6.8953 
MAE 0.5448 0.5474 4.7658 

MAPE 5.0522 4.6102 36.9937 

Balok Baru, 
Kuantan Industrial East Coast 

RMSE 1.7274 0.9051 6.4796 
MAE 1.5973 0.8320 4.2491 

MAPE 28.7889 14.9920 66.3043 

Kuala 
Terengganu Urban East Coast 

RMSE 1.5371 0.5437 8.8058 
MAE 1.5045 0.5106 4.5163 

MAPE 33.5867 8.8612 81.9289 
 
 
Both LSTM and GRU significantly outperform the VARIMA model with comparable accuracy levels 
between them. On the contrary, the VARIMA model yields exceptionally high prediction errors for all 
stations, indicating a poor goodness-of-fit between the fitted model and observed data. 
 
In detail, GRU has the lowest accuracy metric values at three out of five monitoring stations, primarily 
located in the east coast region. Meanwhile, LSTM, the other variant of neural network model, predictably 
gives a better prediction accuracy than the statistical time series model across all stations with the best 
prediction performance achieved for Kulim Hi-Tech station and Shah Alam station which are situated in 
the west coast region. 
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Looking at the efficacy of the deep learning models by area, it is observed that GRU predicts slightly 
better for urban stations. Nevertheless, there is no definitive evidence to deduce that the area of stations 
significantly influences model performance due to comparable prediction errors between the two models. 
 
In order to better observe the fitting degree of each model at the five stations, comparisons between 
actual data and predictions are visualised in Figure 6. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Continue to next page 
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(d) 

 

 
(e) 

 
Figure 6. Comparisons between actual data and predictions. (a) Kulim Hi-Tech station. (b) Shah Alam station. (c) Larkin station. (d) 
Balok Baru, Kuantan station. (e) Kuala Terengganu station 

 
 
As depicted in Figure 6, the predictions made by LSTM and GRU exhibit an 80-data-point lag as 
compared to the VARIMA model which does not consider time step. This is due to the incorporation of 
time steps into both LSTM and GRU models. Taking time steps into account allows the deep learning 
models to study the historical data patterns, subsequently producing more accurate predictions. 
 
Consistent with the model performance tabulated in Table 4, both LSTM and GRU are able to fit the 
actual data much better as compared to the VARIMA model across all stations. They can predict the 
high spikes most of the time but occasionally fail to capture the magnitude of sudden dips in the dataset. 
In particular, the GRU predictions are closer to the actual data compared to LSTM for Larkin station, 
Balok Baru, Kuantan station and Kuala Terengganu station, aligning with the insights gained from the 
model evaluation. 
 
While these two models demonstrate strong abilities to capture the patterns of the actual time series, the 
multivariate VARIMA model gives poorer predictions with a more conservative magnitude. Such a 
situation could be due to the influence of other meteorological factors at each station on the PM2.5 
concentration [37]. As all five stations are located in different regions and areas, they might have 
encountered different atmospheric conditions including wind speeds, temperature and relative humidity. 
Consequently, this contributes to the much higher prediction errors in the VARIMA model when 
considering the PM2.5 concentration at other stations. 
 
These findings prove the capability of novel neural networks in time series forecasting due to their 
continuous evolution of calculation power, causing them to gain increasing popularity in recent decades 
[14]. Specifically, LSTM and GRU models have showcased superior performance in accurately predicting 
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sequential time series data [38]. Research by Mitrea et al. [39] revealed that the predictive capability of 
neural network models is much better in comparison with traditional forecasting methods such as ARIMA 
in forecasting the inventory level. Additionally, the LSTM model also performed significantly better than 
the ARIMA model in predicting PM10 concentrations in Peninsular Malaysia [10]. 
 
The limitations of conventional statistical models such as ARIMA and VARIMA in capturing the stochastic 
nature of the data are made apparent by the high accuracy metric values obtained [14]. Consequently, 
neural network models are often found to be efficient in dealing with complex modelling of time series 
data, especially in the realm of environmental forecasting [40]. 
 
Apart from prediction accuracy, computational time could also be taken into account when selecting the 
most suitable model for forecasting, especially when weighing the trade-off between these two factors. 
Due to the complex architecture of neural networks, these deep learning approaches often come with 
the drawback of being computationally expensive as compared to classical statistical algorithms [41]. 
This is proven when both LSTM and GRU require about three times the computational time taken to train 
the traditional VARIMA model as shown in Table 5. 
 

Table 5. Computational time (seconds) 
 

Station LSTM GRU VARIMA 
Kulim Hi-Tech 342.6219 358.4327 142.3039 

Shah Alam 355.3194 381.5150 142.3039 
Larkin 320.7117 355.3540 142.3039 

Balok Baru, Kuantan 334.9806 373.7051 142.3039 
Kuala Terengganu 359.7846 394.8448 142.3039 

 
 

Beyond the preceding analysis, it is noteworthy to emphasise the implication of employing PCHIP on 
prediction performance, as demonstrated in Table 6. 
 

Table 6. Number of interpolated values and the best model prediction accuracy 
 

Station Total Number of Interpolated Values Best Model RMSE MAE MAPE 
Kulim Hi-Tech 775 (5.93%) LSTM 0.2274 0.1934 3.8282 

Shah Alam 452 (3.46%) LSTM 0.3457 0.3128 2.4745 
Larkin 257 (1.96%) GRU 0.5636 0.5474 4.6102 

Balok Baru, Kuantan 194 (1.48%) GRU 0.9051 0.8320 14.9920 
Kuala Terengganu 532 (4.07%) GRU 0.5437 0.5106 8.8612 

 
 

As depicted in Table 6, the accuracy metric values are higher for Larkin station and Balok Baru, Kuantan 
station which have the lowest percentages of interpolated values in comparison with other stations. This 
suggests a relatively poorer model performance for these stations. It is observed that, in general, the 
greater the number of interpolated values, the lower the prediction errors tend to be. 
 
Such findings are in accordance with the results obtained by Sobolewski and Miczulski [42] in which they 
applied PCHIP function in preparing data for GMDH-type neural network with one-day interval. As a 
result, the best prediction of local time scales was achieved by using pre-processed time series, as 
evidenced by the comparison of residuals and prediction quality measures. Meanwhile, Jaffar A. et al. 
[43] implemented PCHIP to substitute missing hydrological data, thereby mitigating potential bias in the 
interpretation of conclusive hydrological parameter analysis. Of the three examined interpolation 
methods, PCHIP delivers the most identical interpolated data to the original data. This is mainly due to 
the monotonic nature of PCHIP which minimises the oscillation effects when substituting the data, 
subsequently avoiding overshooting issue when there is an abrupt change in the data pattern. Such a 
smoother curve enhances data fitting and improves prediction accuracy. 
 
 
Conclusions 
 
This study explores the potential use of LSTM, GRU and VARIMA models in predicting the hourly PM2.5 
concentrations. The comparative analysis of prediction accuracy among these models reveals that LSTM 
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and GRU significantly outperform the conventional time series VARIMA model across all five stations in 
terms of prediction accuracy and the ability to capture the actual data patterns. 
 
In addition to proving the strength of deep neural networks in time series forecasting as compared to the 
conventional statistical models, the present study also highlights the effectiveness of PCHIP in 
interpolating data of blank, zero and negative values while ensuring the monotonicity of the interpolated 
values, which may come in handy for future research. 
 
As the air quality may be influenced by other air pollutants not included in this dataset, future research 
may consider investigating the impact of primary air pollutants such as carbon monoxide (CO), nitrogen 
dioxide (NO2) and particulate matter of 10 micrometres or less in diameter (PM10) on air quality. Besides, 
meteorological factors such as air humidity, wind speed and wind direction are also deemed significant 
in causing the fluctuation of PM2.5 concentration. Therefore, future work should incorporate more 
comprehensive data on air pollutants and meteorological conditions to further enhance PM2.5 
concentration predictions, while simultaneously gaining deeper insights into the relationships among 
these factors. 
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