

The parallelization of the Keller box method on
heterogeneous cluster of workstations

Norhafiza Hamzah*, Norma Alias, Norsarahaida S.Amin

Department of Mathematics, Faculty of Science, Universiti Teknologi Malaysia.
*To whom correspondence should be addressed. E-mail: norhafizahamzah@gmail.com

Received 12 April 2008

ABSTRACT

High performance computing is the branch of parallel computing dealing with very large problems and large parallel
computers that can solve those problems in a reasonable amount of time. This paper will describe the parallelization of
the Keller-box method using the high performance computing on heterogeneous cluster of workstations. The problem
statement is based on the equation of boundary-layer flow due to a moving flat plate. The objective is to develop the
parallel algorithm of the Keller-box method in purpose to solve a large size of matrix. The parallelization is based on the
domain decomposition, where the upper and lower matrices will be splitting into a number of blocks, which then will be
compute concurrently on the parallel computers. The experiment was run using 200, 2000, and 20000 size of matrices
and using 10 number of processors. The comparison was made from the results obtained from that various size of
matrices by doing the analysis based on the performance measurement in terms of time execution, speedup, and
effectiveness.

| Keller-box | Parallel algorithm | Parallel computing |

1.Introduction

The box method reported by Keller (1970) and also known as Keller-box method has become popular for
obtaining nonsimilar solutions for boundary layer problems [1]. Parallel computing is a form of computing in
which many instructions are carried out simultaneously [2]. The problem statement of this paper is based on the
equation of boundary-layer flow due to a moving flat plate. The boundary layer theory is often the case for
streamlined bodies that these layers are extremely thin, so we can neglect them entirely in computing the
irrotational main flow. Once the irrotational flow has been established, we can then compute the boundary layer
thickness and velocity profile in the boundary layer, by first finding the pressure distributions evaluated from
irrotational flow theory. Then, the results can be used to evaluate the boundary layer flow. The parallel algorithm
is implemented to the tridiagonal matrix obtained after the calculation using the Keller-Box method. The parallel
algorithm is based on the block LU decomposition.

A
rticle

Journal of

Fundamental
Sciences

Available online at
http://www.ibnusina.utm.my/jfs

http://dx.doi.org/10.11113/mjfas.v4n1.34

 Norhafiza Hamzah et al. / Journal of Fundamental Sciences 4 (2008) 253-259

254

2. Materials and Methods

The basic idea of the Keller-box method is to write the governing system of equations in the form of a first-order
system [3]. To get finite different equations with a second order truncation error, simple centered-difference
derivatives and average of the midpoints of net rectangles is used. The resulting finite difference equations are
nonlinear algebraic equations. We write the differential equations in finite difference forms first and then
linearize the resulting nonlinear algebraic equations by Newton’s method. Then, a block-tridiagonal factorization
scheme is applied on the coefficient matrix of the finite-difference equations. The governing equations used in
this paper are based on the boundary layer equation. In this paper, we will only focus on the block tridiagonal
matrix. The matrix is obtained after we applied the finite difference scheme and Newton’s method on the
boundary layer equation as below:

2

2

u u uu v v
x y y
∂ ∂ ∂

+ =
∂ ∂ ∂

 (1)

A block tridiagonal matrix is a block matrix, which is having square matrices (blocks) in the lower, main, and
upper diagonal, where all other blocks is a zero matrices. It is basically a tridiagonal matrix but has submatrices
in places of scalars. A block tridiagonal matrix in our case study has the form as follow:

[] []
[] [] []

[] [] []
[] []

[]
[]

[]
[]

[]
[]

[]
[]

1 1

2 2 2 1 1

2 2

1 1

1 1 1

J J

J J J J J

J J

A C
B A C r

r

r
B A C r

B A

δ
δ

δ
δ

− −

− − −

⎡ ⎤
⎢ ⎥ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦
⎢ ⎥⎢ ⎥⎣ ⎦

O

O M M

O

That is : [][] []A rδ = (2)

To solve equation (2), we use LU factorization for decomposing A into a product of a lower triangular matrix, L
and an upper triangular matrix, U as follows,

[] [][]A L U= (3)

where

 Norhafiza Hamzah et al. / Journal of Fundamental Sciences 4 (2008) 253-259

255

[]

[]
[] []

[]
[] []

1

2 2

1J

J J

B
L

B

α
α

α
α

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

O

O

 and []

[] []
[] []

[] []
[]

1

2

1J

I
I

U
I

I
−

⎡ ⎤Γ
⎢ ⎥Γ⎢ ⎥
⎢ ⎥=
⎢ ⎥

Γ⎢ ⎥
⎢ ⎥⎣ ⎦

O O ,

[]I is the identity matrix of order 3 and []iα , and []1Γ are 3x3 matrices which elements are determined by the
following equations:

[] []1 1 ,Aα = (4)

[][] []1 1 1A CΓ = (5)

1j j j jA Bα −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − Γ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , j=2,3,…,J (6)

j j jCα⎡ ⎤ ⎡ ⎤ ⎡ ⎤Γ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , j=2,3,…,J-1. (7)

Equation (3) can now be substituted into equation (2), and so we get

[][][] []L U rδ = . (8)

If we define [][] []U Wδ = , (9)

Then equation (8) becomes [][] []L W r= , (10)

The elements [W] can be solved from equation (9)

[][] []1 1 1W rα = , (11)

1j j j j jW r B Wα −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , 2 j J≤ ≤ . (12)

The step in which jΓ , jα and jW are calculated is usually referred to as the forward sweep. Once the elements

of W are found, equation (8) then gives the solution δ in the so-called backward sweep. Once the elements of δ
are found, Newton’s method can be used to find the (i+1)th iteration. These calculations are repeated until some
convergence criterion is satisfied and calculations are stopped when ()

0 1
ivδ ε< where 1ε is a small prescribed

value. In this paper, the value of 1ε is 0.003.
The parallel implementation is focused on the data decomposition for the equation (3). The data decomposition
was design as Figure 1.

 Norhafiza Hamzah et al. / Journal of Fundamental Sciences 4 (2008) 253-259

256

Fig. 1 Data decomposition for calculating L and U matrices.

The data is divided by rows. The P1 to Pp are the processes involved in the parallel implementation where P1
will be calculated by the processor 1 (Proc.1) and after the result of [W1] from the equation (11) is obtained, it
will pass the result to the next processors (Proc.2,…,Proc.n). P2 is solved by the Proc.2 and after it get the result,
it will pass the result to the next processors (Proc.3,…,Proc.n) and the last processor, Proc.n will get the final
result which then will be used to calculate the equation (9) using the backward sweep.
The computation in the parallel environment can be described as Figure 2 below.

Fig. 2 Data parallelism pseudocode

Figure 2 shows the pseudocode on how the data is divided to each processor. The pseudocode shows in case if we
have two processors, ‘a’ and ‘b’. The difference between low_limit and upper_limit is the sum of data given to
that processor, as in this case a 100 of data is divided by two, so each processor performs the same task on

program:
...
data = data_sum/no_proc
if CPU="a" then
low_limit=1
upper_limit=50
else if CPU="b" then
low_limit=51
upper_limit=100
end if
do i = low_limit ,
upper_limit
Task on d(i)
end do
...
end program

P

P1

P1

P2

P2

P3 Pp-1

P3 P2 P1 Pp-1 Pp

P1 P2

P2

P3

P3

Pp-1

Pp-1

Pp-1

Pp

Pp

Pp

Pp

Proc. 1 Proc. 1

Proc. 2

.

.

.

Proc. n-1

Proc. n

Proc. 2

Proc. n-1

Proc. n

.

.

.

[L] [U]

 Norhafiza Hamzah et al. / Journal of Fundamental Sciences 4 (2008) 253-259

257

different pieces of distributed data [4]. Basically the data given to each processor will be calculated by the master
processor. The master will divide the data equally and send the data to each worker processor. As in this paper,
we study on 200, 2000, and 20000 size of matrix. So to get the size of the data given to each processor, the size of
matrix will be divided by 1,2,…,10 number of processors.

3. Results and Discussion

The parallel performance analysis is used to prove parallel algorithm is significantly better than the sequential
algorithms. The measurement is done in terms of execution time, speedup, and effectiveness.

The execution time is basically the CPU running time during the calculation of the program in micro second. The
bigger size of matrices lead to higher calculation complexity that implies the longer time it takes to execute the
process.

0

5000000

10000000

15000000

20000000

25000000

1 2 3 4 5 6 7 8 9 10

Number of processors

Ex
ec

ut
io

n
tim

e

m=20000
m=2000
m=200

Fig. 3 The execution time vs number of processors

The graph in Figure 3 shows the execution time decreases as the number of processors increases for all size of
matrices. The improvement of the performance using the bigger cluster of workstations can clearly be seen in
terms of speedup. The execution time graph shows is in micro second.

3.2 Speedup
The Amdahl's law state that the speed of a program is the time to execute the program while speedup is defined
as the time it takes a program to execute in serial (with one processor) divided by the time it takes to execute in
parallel (with many processors) [5]. The formula of speedup for a parallel application is given as

)(
)1()(

pTime
Timepspeedup = ,

where)1(Time = execution time for a single processor and

)(pTime = execution time using p parallel processors.

 Norhafiza Hamzah et al. / Journal of Fundamental Sciences 4 (2008) 253-259

258

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

Number of processors

S
pe

ed
up m=20000

m=2000
m=200

Fig. 4 The speedup vs number of processors

Figure 4 show the speedup for the parallel algorithm. The speedup graph is increasing as the number of
processors, p increase. It is because the distributed memory hierarchy reduces the time consuming access to a
cluster of workstations. According to Amdahl's Law, the speedup increases with the number of processors
increase up to the certain level. From the graph, the speedup with 1 to 5 number of processors increase slower
than the speedup of higher number of processors. This is because the more processors we use in the systems,
involves more communication and idle time in the process. However, the parallel computing is proved to be most
suitable for large sparse matrix problem, since the speedup is at the highest rate for matrix m = 20000.

Effectiveness is used to calculate the speedup and the efficiency. The effectiveness is

)(tpTime
SpeedupessEffectiven = ,

where

 p = number of processors.
Time(t) = execution time using p parallel processors.

0

0.0000001

0.0000002

0.0000003

0.0000004

0.0000005

0.0000006

0.0000007

1 2 3 4 5 6 7 8 9 10

Number of processors

E
ffe

ct
iv

en
es

s

m=20000
m=2000
m=200

Fig. 5 The effectiveness vs number of processors

 Norhafiza Hamzah et al. / Journal of Fundamental Sciences 4 (2008) 253-259

259

Figure 5 shows that the effectiveness increase when the number of processors increasing. The formula of the
effectiveness is depends on the speedup, where the speedup increases, the effectiveness will be also increase.

4. Conclusion

Based on the parallel performance analysis, we can see when the number of processors increase the speedup and
effectiveness will also be increase, while the execution time is decrease. We can also conclude that
communication and computing times is always affected the speedup, and the effectiveness.

5. Acknowledgements

The authors acknowledge the Ministry of Science, Technology and Innovation Malaysia for the financial support
through SAGA funding and NSF scholarship.

6. References

[1] E. Jones, Journal of Computational Physics, 40 (1981) 411-429.
[2] G. S. Almasi, and A. Gottlieb, “Highly Parallel Computing”, Benjamin-Cummings publishers, Redwood

city, CA ,1989.
[3] M. Zuki, “Mathematical Models For The Boundary Layer Flow Due To A Moving Flat Plate”,Universiti

Teknologi Malaysia,2004.
[4] W. Hillis, Daniel and Guy L. Steele, “ Data Parallel Algorithms Communications of the ACM”, 1986.
[5] G. Amdahl, Proceedings of the AFIPS Conference, 30 (1967) 483-485.
[6] Norhafiza Hamzah, Norma Alias, Norsarahaida S.Amin, proceedings of the Simposium Kebangsaan

matematik & Masyarakat,(2008).

