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ABSTRACT 
 
High performance computing is the branch of parallel computing dealing with very large problems and large parallel 
computers that can solve those problems in a reasonable amount of time. This paper will describe the parallelization of 
the Keller-box method using the high performance computing on heterogeneous cluster of workstations. The problem 
statement is based on the equation of boundary-layer flow due to a moving flat plate. The objective is to develop the 
parallel algorithm of the Keller-box method in purpose to solve a large size of matrix. The parallelization is based on the 
domain decomposition, where the upper and lower matrices will be splitting into a number of blocks, which then will be 
compute concurrently on the parallel computers. The experiment was run using 200, 2000, and 20000 size of matrices 
and using 10 number of processors. The comparison was made from the results obtained from that various size of 
matrices by doing the analysis based on the performance measurement in terms of time execution, speedup, and 
effectiveness.  
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1.Introduction 
 
The box method reported by Keller (1970) and also known as Keller-box method has become popular for 
obtaining nonsimilar solutions for boundary layer problems [1]. Parallel computing is a form of computing in 
which many instructions are carried out simultaneously [2]. The problem statement of this paper is based on the 
equation of boundary-layer flow due to a moving flat plate. The boundary layer theory is often the case for 
streamlined bodies that these layers are extremely thin, so we can neglect them entirely in computing the 
irrotational main flow. Once the irrotational flow has been established, we can then compute the boundary layer 
thickness and velocity profile in the boundary layer, by first finding the pressure distributions evaluated from 
irrotational flow theory. Then, the results can be used to evaluate the boundary layer flow. The parallel algorithm 
is implemented to the tridiagonal matrix obtained after the calculation using the Keller-Box method. The parallel 
algorithm is based on the block LU decomposition. 
 
 
 
 

A
rticle 

 
Journal of 

Fundamental 
Sciences

Available online at 
http://www.ibnusina.utm.my/jfs 

http://dx.doi.org/10.11113/mjfas.v4n1.34



 Norhafiza Hamzah et al. / Journal of Fundamental Sciences 4 (2008) 253-259 
 
 

254

 
2. Materials and Methods 
 
The basic idea of the Keller-box method is to write the governing system of equations in the form of a first-order 
system [3]. To get finite different equations with a second order truncation error, simple centered-difference 
derivatives and average of the midpoints of net rectangles is used. The resulting finite difference equations are 
nonlinear algebraic equations. We write the differential equations in finite difference forms first and then 
linearize the resulting nonlinear algebraic equations by Newton’s method. Then, a block-tridiagonal factorization 
scheme is applied on the coefficient matrix of the finite-difference equations. The governing equations used in 
this paper are based on the boundary layer equation. In this paper, we will only focus on the block tridiagonal 
matrix. The matrix is obtained after we applied the finite difference scheme and Newton’s method on the 
boundary layer equation as below: 
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A block tridiagonal matrix is a block matrix, which is having square matrices (blocks) in the lower, main, and 
upper diagonal, where all other blocks is a zero matrices. It is basically a tridiagonal matrix but has submatrices 
in places of scalars. A block tridiagonal matrix in our case study has the form as follow: 
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That is : [ ][ ] [ ]A rδ =        (2) 
 
To solve equation (2), we use LU factorization for decomposing A into a product of a lower triangular matrix, L 
and an upper triangular matrix, U as follows, 
 
[ ] [ ][ ]A L U=         (3) 
 
where 
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[ ]I  is the identity matrix of order 3 and [ ]iα , and [ ]1Γ  are 3x3 matrices which elements are determined by the 
following equations: 
 
[ ] [ ]1 1 ,Aα =         (4) 

[ ][ ] [ ]1 1 1A CΓ =        (5) 

1j j j jA Bα −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − Γ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ,  j=2,3,…,J   (6) 

j j jCα⎡ ⎤ ⎡ ⎤ ⎡ ⎤Γ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ,   j=2,3,…,J-1.   (7) 

 
Equation (3) can now be substituted into equation (2), and so we get 
 

[ ][ ][ ] [ ]L U rδ = .  (8) 

If we define    [ ][ ] [ ]U Wδ = ,   (9) 

Then equation (8) becomes  [ ][ ] [ ]L W r= ,    (10) 
 
The elements [W] can be solved from equation (9) 
 
[ ][ ] [ ]1 1 1W rα = ,       (11) 

1j j j j jW r B Wα −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ,  2 j J≤ ≤ .  (12) 

 
The step in which jΓ , jα  and jW  are calculated is usually referred to as the forward sweep. Once the elements 

of W are found, equation (8) then gives the solution δ  in the so-called backward sweep. Once the elements of δ  
are found, Newton’s method can be used to find the (i+1)th iteration. These calculations are repeated until some 
convergence criterion is satisfied and calculations are stopped when ( )

0 1
ivδ ε<  where 1ε  is a small prescribed 

value. In this paper, the value of 1ε  is 0.003. 
The parallel implementation is focused on the data decomposition for the equation (3). The data decomposition 
was design as Figure 1. 
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Fig. 1  Data decomposition for calculating L and U matrices. 

 
The data is divided by rows. The P1 to Pp are the processes involved in the parallel implementation where P1 
will be calculated by the processor 1 (Proc.1) and after the result of [W1] from the equation (11) is obtained, it 
will pass the result to the next processors (Proc.2,…,Proc.n). P2 is solved by the Proc.2 and after it get the result, 
it will pass the result to the next processors (Proc.3,…,Proc.n) and the last processor, Proc.n will get the final 
result which then will be used to calculate the equation (9) using the backward sweep.  
The computation in the parallel environment can be described as Figure 2 below. 
 

 
Fig. 2  Data parallelism pseudocode

 
Figure 2 shows the pseudocode on how the data is divided to each processor. The pseudocode shows in case if we 
have two processors, ‘a’ and ‘b’. The difference between low_limit and upper_limit is the sum of data given to 
that processor, as in this case a 100 of data is divided by two, so each processor performs the same task on 

program: 
... 
data = data_sum/no_proc 
if CPU="a" then 
low_limit=1 
upper_limit=50 
else if CPU="b" then 
low_limit=51 
upper_limit=100 
end if 
do i = low_limit , 
upper_limit 
Task on d(i) 
end do 
... 
end program
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different pieces of distributed data [4]. Basically the data given to each processor will be calculated by the master 
processor. The master will divide the data equally and send the data to each worker processor. As in this paper, 
we study on 200, 2000, and 20000 size of matrix. So to get the size of the data given to each processor, the size of 
matrix will be divided by 1,2,…,10 number of processors.  
 
 
 
3. Results and Discussion 

 

The parallel performance analysis is used to prove parallel algorithm is significantly better than the sequential 
algorithms. The measurement is done in terms of execution time, speedup, and effectiveness.  
 
The execution time is basically the CPU running time during the calculation of the program in micro second. The 
bigger size of matrices lead to higher calculation complexity that implies the longer time it takes to execute the 
process. 
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Fig. 3 The execution time vs number of processors 
 

The graph in Figure 3 shows the execution time decreases as the number of processors increases for all size of 
matrices. The improvement of the performance using the bigger cluster of workstations can clearly be seen in 
terms of speedup. The execution time graph shows is in micro second. 
 
3.2 Speedup 
The Amdahl's law state that the speed of a program is the time to execute the program while speedup is defined 
as the time it takes a program to execute in serial (with one processor) divided by the time it takes to execute in 
parallel (with many processors) [5]. The formula of speedup for a parallel application is given as 
 

)(
)1()(

pTime
Timepspeedup = , 

 
where  )1(Time  = execution time for a single processor and 

)( pTime = execution time using p parallel processors. 
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Fig. 4 The speedup vs number of processors 

 
Figure 4 show the speedup for the parallel algorithm. The speedup graph is increasing as the number of 
processors, p increase. It is because the distributed memory hierarchy reduces the time consuming access to a 
cluster of workstations.  According to Amdahl's Law, the speedup increases with the number of processors 
increase up to the certain level. From the graph, the speedup with 1 to 5 number of processors increase slower 
than the speedup of higher number of processors. This is because the more processors we use in the systems, 
involves more communication and idle time in the process. However, the parallel computing is proved to be most 
suitable for large sparse matrix problem, since the speedup is at the highest rate for matrix m = 20000. 
 
Effectiveness is used to calculate the speedup and the efficiency. The effectiveness is 

)(tpTime
SpeedupessEffectiven = ,    

where 
 
 p = number of processors. 
Time(t) = execution time using p parallel processors. 
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Fig. 5 The effectiveness vs number of processors 
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Figure 5 shows that the effectiveness increase when the number of processors increasing. The formula of the 
effectiveness is depends on the speedup, where the speedup increases, the effectiveness will be also increase. 
 
 
4. Conclusion 
 
Based on the parallel performance analysis, we can see when the number of processors increase the speedup and 
effectiveness will also be increase, while the execution time is decrease. We can also conclude that 
communication and computing times is always affected the speedup, and the effectiveness. 
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