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Abstract mMotivated by Lipschitz ideals in the conventional (crisp) theory, we are constructing a new
Lipschitz ideal in fuzzy theory. We introduce the notion of fuzzy Lipschitz ideals and give some
elementary illustrations. The class of absolutely fuzzy Lipschitz p-summing maps (1 < p < «) between
arbitrary fuzzy pointed metric spaces is a significant category of fuzzy Lipschitz ideals. It is a logical
extension of the concept of absolutely (crisp) Lipschitz p-summing maps between arbitrary pointed
metric spaces, as established by Farmer Jeffrey and William Johnson. We establish that the fuzzy
Lipschitz norm of the previously specified concept is a fuzzy real number. We demonstrate that a
complete fuzzy normed fuzzy operator ideal is the resulting class of fuzzy Lipschitz operators between
arbitrary fuzzy pointed metric spaces and complete fuzzy normed spaces. Next, we define a basic
characterisation of a Lipschitz p-summing map that is completely fuzzy. By demonstrating a fuzzy
variant of the nonlinear Pietsch Domination Theorem, this is accomplished. Lastly, we bring forth a few
unsolved problems that we find intriguing.

Keywords: Lipschitz ideals, Fuzzy functional analysis, Fuzzy real analysis.

Notations and Preliminaries

It is well-known that the set of all positive real numbers is represented by the symbols R*, while the set
of all real numbers is R, and the set of all positive integers is N. The Banach space is represented by the
order pair (F, ||-|]). The ordered pairs denoting pointed metric spaces are (X,dx, xo) and (Y, dy,y,). If a
non-negative constant C satisfies dy(Sx, Sy) < C dx(x,y) for all x and y in X, then a map S from (X, dx, Xo)
into (Y,dy,y,) is said to be Lipschitz. The Lipschitz constant of S, represented by Lip(S), is the smallest
possible value of C. L(X,Y) represents the class of all Lipschitz maps from (X, dx, xo) into (Y, dy,yo)-

X* is the Banach space of real-valued Lipschitz functions defined on (X, dy, x,) that, with the Lipschitz
norm Lip(-), send the special point x,, into 0. To distinguish between the fuzzy norm of elements in fuzzy
normed spaces and fuzzy Lipschitz maps, we shall use the symbols ||-||. and ||-]|~, respectively.

a € (0,1].

Definition 2 [1] Letn € F. If t < 0, n(t) = 0, then n is called a positive fuzzy real number. The set of all
positive fuzzy real numbers is denoted by F+.

Lemma 3 [2] Letn and & belong to F. and let [n]« = Mz, n&l [6]a = [85, 8&]. Then
M ® 8la = g + 85, ng + 8¢,
MO 8la = Mg — 8% n& — 8,
M © 8]« = N * 8a,n - 8&].for n, 6 € F*.

Definition 4 [2] Let X be a non-void set and dy is a map from X x X to F*. The pair (X, dy) is said to be
a fuzzy metric space with a fuzzy norm dy on X x X if the following conditions are satisfied:

1. dy(x,y)=0ifandonlyifx =y.

2. dy(xy) = dg(v,%),V xy € X.

3. dy(x,y) < dx(x,w) ® dx(w,y),V x,y,and w € X.
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Introduction

Recall the definition of Lipschitz ideal concepts as follows [4]. Consider, for all pair of metric spaces X
and Y, there is a subset WL (X,Y) of L(X,Y). The class
W= Uxy WX Y)
is called a Lipschitz ideal, if the following requirements hold:
1. IfY=F,thenf[ee WLXF)forfeX*ande €F.
2. BTAeWI(X,,Y,) for A€ L(Xy,X), T€ WE(X,Y), and B € L(Y,Y,), where X, and Y, be metric
spaces.

One crucial example of Lipschitz ideal is the class of Lipschitz p-summing maps introduced by Farmer
Jeffrey and William Johnson [5] as follows. A Lipschitz function S from (X, dx, x¢) into (Y, dy,y,) is said to
be Lipschitz p-summing (1 < p < ) if and only if there is a constant C > 0 such that

IZ dY(Sx,.Sy,)p <cC- sup [Z |fx; — fy;| \

for arbitrary sequences (x] (y] |n X, and m € N. The Lipschitz p-summing norm B} (T) is then the
smallest possible constant C

Theorem 5 [5] Let 1 < p < o. For every Lipschitz function S from (X, dx, X,) into (Y, dy,y,) and T = 0,
the following are equivalent:

1. Pk <t

2. There is a probability measure v on By« such that

dy (Sx,5y)P < TP - f I£Gx) — ) IPdv (B).

By#

More detailed information about Lipschitz ideals can be pointed out in the manuscripts [6, 7, 4, 8].

To describe the content of the manuscript. In the next Section 3, we present a fuzzy Lipschitz map
concept between arbitrary fuzzy pointed metric spaces. We define a fuzzy Lipschitz norm of its and prove
that it is a fuzzy real number. We show that the class of all fuzzy Lipschitz operators between arbitrary
fuzzy pointed metric spaces and complete fuzzy normed spaces is a complete fuzzy normed space. In
Section 4, we construct a fuzzy Lipschitz ideals terminology between arbitrary fuzzy pointed metric
spaces and present some basic examples. The class of absolutely fuzzy Lipschitz p-summing maps
between arbitrary fuzzy pointed metric spaces (1 < p < =) is a significant category of fuzzy Lipschitz
ideals. It naturally expands the absolutely (crisp) Lipschitz p-summing maps between arbitrary metric
spaces that were identified by Farmer Jeffrey and William Johnson. Consequently, the fuzzy Lipschitz
version of Pietsch Domination Theorem is proven, which is the fundamental characterization of
absolutely fuzzy Lipschitz p-summing maps. Finally, we raise some interesting open problems in Section
5.

3 Fuzzy Lipschitz norm of fuzzy Lipschitz maps between fuzzy
pointed metric spaces

We slightly modify Definition 4 to introduce the following terminology.

Definition 6 Let X be a non-empty set and x, be a special point in X and let dy be a function from X x X
into F*. An ordered triple (X, dy, %) is said to be a fuzzy pointed metric space if the requirements
mentioned below are satisfied:

1. oi%£1dX(a’ b)s > 0 whenever a # b.

2. dy(x,y)=0ifandonlyifx =
3. dx(xy) = dx(y,x),V X,y € X
4. dg(xy) < dg(x,w) @ dx(w,y),V x,y,and w € X.

Definition 7 A map S from (X, dx, xo) into (Y, dy, y,) is called fuzzy Lipschitz, if there exists a fuzzy
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number n € F* such that
dy(Sx,Sy) = n O dx(x,y),V x,y €X. (1)

The class of all fuzzy Lipschitz maps from (X, dy, x,) into (Y, dy,y,) that send the special point x, in X into
the special point y, in Y is denoted by FLip(X, Y).

Definition 8 A fuzzy real number-valued function FLip(-)~ on FLip(X, Y) defined by,

[FLip(S)~]« = [FLip(S)q, FLip(S)g], v € (0,1],

where FLip(S)g: = sup sup SOV and FLip(S)¢: = inf{ng: (1) holds}.

<o X#FY dx(x, )_
X,y €X

The special case Y = R of Definition 7 gives the following terminology.

Definition 9 A map f from (X, dy, x,) into (R, |-|..) is said to be a fuzzy Lipschitz map on X, if there is a
fuzzy number 1 € F* such that
Ifx) — f()]- = O dx(xy),V x,y €X. @)

The class of all fuzzy Lipschitz functionals on X that send the special point x, in X into 0 in R is denoted
by FX*. We define the fuzzy real number-valued function FLip(-)~ on FX* by

[FLip(f) "]« = [FLip(Da, FLip()], Va € (0,1],

£ -F)I5
where FLip(D3: = sup sup —2"Wls

B<a X*Y X(XrY)E
Xy €X

and FLip(f}: = inf{nt: (2) holds}.

Theorem 10 If S € FLip(X, Y), then FLip(S)~ € F*.

Proof. First we show that [FLip(S)~] is @ nonempty interval for all « € (0,1]. Leta € (0,1] and let 8 < a

and n satisfy dy(Sx,Sy) <n © dx(xy),V %y € X. ThusM_n vx #y. Since nz <1ng and ng <
dx(x¥)p ¢ ¢

N we obtain
sup su 7dY(SX' SY)[; <nz <nz<nt
pen v dxCoy)y 8= e =N
Xy €X

Therefore
FLip(S)y < inf{nt: (1) holds} =: FLip(S)¢.

Now we prove that [FLip(S)~], satisfies the conditions of [9, Lemma 2.9]:
1. Let0 <oy <a, <1.To show that [FLip(5)~]q, < [FLip(S)~]«,. We have

dy(Sx, S dy(Sx,Sy)g
FLip(S)g,: = sup sup 7Y( e < sup su 71(( YEB
B<ay x=y dy(x, Y)B B<a, ¥ dx(x, Y)B
Xy € Xy €X

Since 0 < a; < a, < 1 we obtain g, g ng, and then

=:FLip(S)g,-

FLip(S)&,: = inf{ng,: (1) holds} < inf{ng,: (1) holds} =: FLip(S)¢,.

2. Let (aq)ken be an increasing sequence in (0,1] converging to «. To show that
[llim FLip(S);k,]lim FLip(S)&,] = [FLip(S)a, FLip(S)£]. We have oy < o1 < a and thus

dy(Sx,S dy(Sx,Sy)5
sup sup sup Ly_)ﬁ < sup sup Y("—yf‘*. 3)
Kk B<ai **=Y dx(XY)p B<a X*Y dx(X‘Y)B
Xy €X X,y €X
Suppose that € > 0 and B, < a then
sup sup —dY(SX’ ) —e< sup —dY(SX' 56y
B<ax,);$éx dx(x, Y)E x,);éx dx(X.Y)EO
sup dy(Sx, Sy)g, < sup sup dy(Sx, Sy)g < supsup sup dy(Sx,Sy)g
oo AxCop, T Beag Y xGY)g T pea Y dx(®Y)g
Therefore
10.11113/mijfas.v20n3.3398 693
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sup sup YEVE o — cinsup sup XEVe
ban 390 TdxGy)p W o e dxGy)
X,y €X X,y €X
As e — 0, we have
dy(Sx,Sy)5 dy(Sx,Sy)5
sup sup M < supsup sup M 4
B<a X=Y dx(XrY)B kK B<ay **Y dx(X‘Y)B
Xy €X X,y €X
We obtain
dy(Sx, Sy)g dy(Sx, Sy)g dy(Sx, Sy)g
lim sup sup ————— = supsup sup ————— = sup sup ———— = FLip(S);.
k—oogeq, x2y dx(X:Y)g k B<oy X*V dx(xr}’)p B<a XY dx(XvY)B “
X,y €X X,y €X X,y €X

Therefore
Jim inf{n, : (1) holds} = irlzfinf{ngk: (1) holds} = inf{n&: (1) holds}.
3. To show that —oo < FLip(S)y < FLip(S)¥ < oo, for all a € (0,1]. Since 0 < d;(s(};%
x(x¥)g
and all B € (0,1]. Then 0 < FLip(S)g. Letn € F such that (1) holds for all x and y in X . It follows that
N < oo for all « € (0,1]. Hence FLip(S)# < . Thus we obtain FLip(S)~ is a fuzzy real number.

for all x #y € X

Proposition 11 If S € FLip(X, Y), then dy(Sx, Sy) < FLip(S)~ © dx(x,¥), Vx,y € X.

Proof. If x = y the statement is obvious. When x # y. Suppose that (Bx)keny b€ an increasing sequence
in (0,1] converging to a € (0,1]. Since
dy(Sx,Sy)g dy(Sx,Sy)g
———— < sup ————
dx(xy)p = g
Then dy(Sx, Sy)g < FLip(S)g - dx(x,y)g- Since By 7 a, it follows from [9, Lemma 2.9 (b)] that
dy(Sx,Sy)g = lim dv(Sx,Sy)j, < FLip(S)g - limdx(x,y)j, < FLIp(S)g - dx (%, )z

< FLip(S)z.

Hence

dy(Sx,Sy)« < FLip(S)q - dx(%,y)q- ®)
From our hypothesis we have dy(Sx, Sy)& < nd - dx(x,y)&. Then

dy(Sx, Sy) < inffng: (1) holds} - dx(x y)3- (6)

From Inequalities (5) and (6), we fulfill the requirement.
Proposition 12 If S: (X, dy, x,) — (Y,dy,y,) be a fuzzy Lipschitz map satisfies (1), then FLip(S)~ < 1.

Proof. Suppose that n satisfy dy(Sx,Sy) <n O dx(xy),V x,y €X. Let a € (0,1] and B < a we have
dy(S%5y)5 dy(SxSy)s . _

s <mng, Vxy € Xwithx #y. Then sup EeT <ng <ng VB < a. Therefore
X,y €X
dy(SxSY)5 _ __

o x=y  dxGy)g T
Xy €X

Since FLip(S)&: = inf{n}: (1) holds} < n}. Thus, we conclude that FLip(S)~ < n.

FLip(S)4: = sup sup
B<

Theorem 13 The ordered pair (FLip(X, F), FLip(-)™) is a fuzzy normed space.

Proof. It is obvious that FLip(X, F) be a linear space. To prove Condition (FNg). Let 0 # T € FLip(X, F).
Then there is a point 0 # ¢ € X such that T(Q) # 0. Suppose that sup dx({,y)qg < o,V y € Y. We have
0

<a=<1

o0E IT®) = Tl < IT@) = Tz < FLip(Mz - dx(§y)a < FLip(D - sup dx(Gy)a, Ve € (0.1,
= as
Hence inf [IT@Q) —TM)llg < sup dx({y)y - inf FLip(T)y. Since T({) #0, it follows that 0 <
0<pB=1 o<as<1 0<as1
0<inf1||T(Z) —T)|lz- Thus 0 < 0<inleLip(T);. To show Condition (FN;). When T = 0 the statement is
as as

true. Conversely, let FLip(T)~ = 0. Since [ITx)—TIl. <0 O dxy(xy),V xy€X, it follows that
ITx) = T)Il. =0,V x,y €X. Hence T(x)=T(y),V x,y€X we conclude that T(x) =0,V x € X,
therefore T = 0. To show Condition (FN,). Letr € Rand T € FLip(X, F) and let a« € (0,1]. When r = 0 the
statement is obvious. If r # 0 we have

T —rT 3 ~
[PLipT) e = sup sup T o0 OB ittt ey — T < 1 © )
Bea x(%¥)g

Tx) - TWll5 1 ~
meo ~ Tl inf{n;: TG0 — T < = O 1 © dx(x, y)}

= [|r|sup sup =T

X% d ) o
B<ax,y é’x X (X Y) B
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ITC) — TWlg
Bea = dx(x,¥)g
ITC) —TWlg | .
— Y, Irli
Bea = dx (% ¥)g
Thus FLip(rT)~ = |r|. ® FLip(T)~. To show Condition (FN3). Let T and S in FLip(X, F) we have
(T +S)(x) — (T+SWlg

Jnf{lr] - yEITE) = T 2 v © dx(xy)}

nffy&: ITx) — T~ v © dx(x y)}| = [Irl~ © FLip(T)~ ¢

FLip(T + S): = sup su —
p(T + S)x Sob Sap x5
X,y €X
< sup sup (IIT(X)—T(y)Ilé IIS(X)—S(y)II§>
< sup su — =
p<a v\ dx(x¥)p dx (%, ¥)g
< supsup IO =T ISe) — sz
<supsup —————+supsup ————
B<a **Y dx(x, Y)g B<a X*Y dx(x, Y)B
xy €X Xy €X
=:FLip(T)y + FLip(S)g- @)

Also, we have
IT+9)E) = (T+SWI- 2 NTE) — T~ S IS —SWIl~
= FLip(T)~ O dx(x,y) @ FLip(5)~ O dx(x,y)
= (FLip(T)~ @ FLip($)™) O dx(x,y).
Therefore
inf{ng: 1T+ ) = (T + W~ <1 O dx(x,y)} < FLip(T)§ + FLip(S){-
Hence
FLip(T + S)} < FLip(T){ + FLip(S). (8)
From Inequalities (7) and (8), we fulfill the requirement.

4 Fuzzy Lipschitz ideals between fuzzy pointed metric spaces

Before introducing the nonlinear theory of fuzzy Lipschitz ideals between arbitrary fuzzy pointed metric
spaces the reader can be aware of the nonlinear theory of fuzzy Lipschitz ideals between arbitrary fuzzy
pointed metric spaces and fuzzy normed spaces in [3] and the linear theory of fuzzy operator ideals
between arbitrary fuzzy normed spaces in [10]. Now we construct the terminology of fuzzy Lipschitz
ideals between fuzzy pointed metric spaces as follows.

Definition 14 Assume that, for all fuzzy pointed metric spaces X and Y, a subset F®3“(X, Y) of
FLip(X,Y). The class
FOL: = U FIL(X,Y)
XY
is called a fuzzy Lipschitz ideal if the following requirements hold:

1. If Y=F,then f[ e € FIB:(X,F) with WL (f[ e)~ < |lel|. for f € Bpy+ and e € F.

2. AT € FIBL(X, Z) with WL (AT)~ < FLip(A)~ © W(T)~ for T € F®*(X,Y) and A € FLip(Y, Z),
where W is a function from F2BL into F*and By stands for the unit ball of all fuzzy-real
valued fuzzy Lipschitz maps defined on fuzzy pointed metric space X.

Essential Example of Fuzzy Lipschitz Ideals

Absolutely fuzzy Lipschitz p-summing maps
Definition 15 Let1 < p < oo. A fuzzy Lipschitz map S: (X, dx, xo) — (Y, dy,y,) is said to be absolutely
fuzzy Lipschitz p-summing if there is a fuzzy real number { € F* such that for all (X2, (pjL, inX

and m € N,
m m %
dy(Sx;, SypP| <3O sup Z |fx; —fyjd (9)
= FLip(D=T |4
holds. The symbol F‘Bb (X,Y) is designated by the class of all absolutely fuzzy Lipschitz p-summing maps
from (X, dy,%,) to (Y, dy,yo). The absolutely fuzzy Lipschitz p-summing norm FPpL(S)~ of S is defined by,
[FPy(S)~ 1« = [FPy(S)a, FPy(S)&] for all a € (0,1], where
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1
L [Zj":11 dY(SXj;SYj)E'_]p
FPy(S)g: = sup sup T
B<oXjyi€X m p— E
X#yj  sup ~[Z]-=1 |fx; _ijlﬁ ]
FLip(H)<1

and
FPy(S)&: = inf{ng: (9) holds}.

Proposition 16 Let1 < p < co. If S € FBL(X,Y), then FPy(S)~ € F.

Proof. To show that [FP}(S)~], be non-void interval for all a € (0,1]. Let a € (0,1] and B < «a and let
(x)i21, (7Pj2; in X and m € N. From our assumptions
1
[Zm, dy(sx;, sypp P i
T <ng. (10)
R
sup ~[Zj";1 |fx; — fyj|B ]p
FLip(f)<T1

1
[Z2. dv(sx;sypp [P

and ng <. Since ng <ng we get r < nd. Therefore

m e o [PT]P
FLiSr:L}lI‘))sI[Zkll % fy]|3 ]
1

[z, dy(sx;, SypR [P

FPy(S)g: = sup sup T < inf{ng: (9) holds} =: FPy ().
B<axjyjex

X#yj  SU m |k — fy: |27 [P
i FLip(gsi [Z]_1| ) y"B ]
To establish that [FPy(S)~], fulfills the requirements of [9, Lemma 2.9]:
1. Let0 <oy <ap < 1. To show that [FPy(S)~1q, € [FPy(S) 1q,. Then

1
o [, dy(sx;, SypR P
FP;(S)g,: = sup sup T

B<ayXjyjeX

Xj#Yj sup _ [Z]rgl |fXJ - fyjlg'_:lB
1

FLip()=<T

[z, dy(sx;sy05 [P

< sup sup T = FPY(S)a,-
Baz¥j¥i m (g — o |P]P
Xj#y; sup Zj=1 | Xj yllB
FLip(H<T

Since 0 < oy < a, < 1 we obtain g, <n¢ and then

FPY(S)&,: = inf{ng,: (9) holds} < inf{ng,: (9) holds} =: FRL(S)E,.
2. Let (ax)ken be an increasing sequence in (0,1] converging to a. To show that
[Jim FPY(S) g Jim FPY(S)&,] = [FPy(S)a, FRY(S)4]. We have ay < ay,q < aand thus

1 1
j=1 dy(Sx;, Syjg™ j=1 dy(Sx;, Syjg™
2, dy(Sx;, Sy | i, dy(Sx;, Sypp |
B B
s?(pﬁsgp s;qe)x 1< sél.<1p s;ué)x I a1
) p—1p Gl p-1p
Xj#yj  SU ym o (fx; — fy; Xj#yj  SU ym o |(fx; — fy;
i ’FLip(gﬁ[ g [o fy]|B ] i ]FLip(gﬁ[ 2yt fy]'[g ]
Let € > 0. Then there exist By < a such that
1 1
|2, dy(sx; 5yf [P [Zm, dy(sx;, Sypl P
s SUp T s, T
: P . -
X#y;  sup ~[Z]-“=‘1 |ij —fy]-|B ]p X%y _sup ~[Zj";1 |ij —fy]-|B ]p
FLip(f)<1 FLip(f)<1 0
Thus
1 1
[21"21 dy(Sx;, SYj)g'o_]p [Zjn;l dY(SXj.SYj)g'_]p
Sup, TS Sup Sup, 1
Xj¥j p-To Ay *jYj p-1p
X#y; sup ~[Z,-“z‘l |fx; —fy,-|B ]p *x%y; _sup ~[Zjn;1 |fx; —fy]-|B ]p
FLip(f)<1 0 FLip(f)<1

1
[Zim, dv(sx, Syb ]

<
< SUpSuP Sup, -
Xj#y;  sup ~[Zi“=‘1 |fx; —fy]-|B ]p
FLip(D<T1
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Therefore
1 1
sup sup [Zjnz‘ldY(SXjrsy].)g'_]p — € < supsup sup [EjrgldY(sxjysyj)g’_]p
1 1-
B<axj¥jex m (g [P]P K B<ogXjvieX m (e [P]P
’gj*]Yi FLisl::gsi[ZFllfxl fy]|3 ] kxlj*]}’i FLisxll(gsi[ZFfol fy]|B ]
As € — 0, we have
1 1
[Zm, dy(sx;, Sy [P [Zm, dy(sx; sypp P
sup sup T < supsup sup T (12)
B<axjyjex p-1p k B<agXjyj€X p-1p
xzy; sup (XM |fx — fyy| ) P x2y; sup (XM |fx; — fy;
] ]FLip(QST[ o 1B ]|B ] ] ]FLip(f)SI[ a1 ]lﬁ ]
From Inequalities (11) and (12), we obtain
1 1
, |2, dy(x;5y8 [P [, dy(sx;, Sy P
}11m sup sup T = Supsup sup T
—>ooB<akx]-,y]-sx O k B<akx]-,y]-ex p—-Tp
X#yj  sup ~[Z]-“;1 |fx]- —fy]-ll3 ]p %#yj  sup ~[Zj“;1 |ij —fy]-lB ]p
FLip(H)=<1 FLip(f)<1

1
[Zm, dy(sxg sy P

"
Xj#y;  sup _ [Z]ﬂ;l |fXJ - fy]lB ]p
FLip(f)<1

lim inf{ng, : (9) holds} = i{(lfinf{n;k: (9) holds} = inf{n: (9) holds}.

1
[Z2, dv(sx;sypp [P

3. To show that —co < FPy(S)g < FPY(S)& < oo, for all a € (0,1]. Since 0 < 7 for all

b P sl
x; # y; € Xand all B € (0,1]. Then 0 < FPY(S);. Letn € F such that for all (x)i2;, (y)i2, inXand m €
N, (9) holds. It follows that ng < oo, for all a € (0,1]. Hence FPy(S){ < co. Thus FRy(S)™ is a fuzzy real

number.
Proposition 17 Let1 < p < co. If S € FB5(X,Y), then
1 1
m P m D
Z dy(Sx;,Sy;)P| <FPy(S)~©® sup B Z |ij - fyj|1[~J
=1 FLip(D=T |

for all (x;);Z,, (ypj2; inX and m € N.

Proof. Suppose that (Byx)ken be an increasing sequence in (0,1] converging to a € (0,1]. Since
1 1

(2, dy(sx;, SypR [P [Zm, dy(sx; Sypp [P

- < sup T < FPY(S)a-
[ | |p_]6 Xj,yj€X [ | |P_]E
sup |2, |fx; — fy; | xzy;  sup (X, |fx — fy;|
FLiph=it 0 B B % L A

1

1
Then [E2, dy(Sx;, Sypho | < FRE(S)z -
Lemma 2.9 (b)] that

sup N[Zjnz‘l |fx; —fyj|g'_]5. Since By 7 a, it follows from [9,
FLip(H=<1 k

1
p

m m m

= ; = - . p.—
D dv(,syh 7| = lim > dy(S, 58| < ROz lim sup | |6yt
j=1 =1 FLip(f)=<1 =1

m
- b=
<FRL(S)z - sup lz s — fy; ”
=

FLip(H)=<1
Then
1
m 5 m P
)~ — p—
Z dy(Sx;, Sy | <FP¥(S)z- sup _ Z |fx — £yl | - (13)
=1 FLip(D=T |

From our hypothesis we have
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1 1

[ m T m P
B p.+
Z dy(Sx;, SyDe™| <m&- sup Z |fx; — fyl
- FLip(H)=<1 | &
j=1 ] j=1
Then

[ m Tp m )
Z dy(Sx;, Syp2*| < infing: (9holds} - sup Z I —fy> . e
=1 FLip(D=T [{=

From Inequalities (13) and (14), We meet the requirements.
Proposition 18 Let 1 < p < co. If S € FBS(X,Y), then FPy(S)™ < n, where n defined in (9).

Proof. From (10) we obtain
1

[Zm, dy(sx;, Sy P
FP}(S)&: = sup sup n
B<axjyjex m p-1p
Xj#yj  Sup ~[Zj=1 |ij —fyj|B ]
FLip(f)<1
Since FPy(S)%: = inf{n&: (9) holds} < nf, then FPy(S)4 < ng. Thus, we conclude that FPy(S)~ < n.

< MNa-

Proposition 19 If 1 < p < oo, then [FBL, FPY(-)~] be a fuzzy Lipschitz ideal.

Proof. To prove that the conditions of Definition 14. First to show that Condition (I,). Let f € B+ and
e € F we get

m p

1 1
m p m p
IZ ||f|3e(x,->—fme(yj)||f] =[Z ||f(x,-)~e—f(y]->-e||?\ =llel-© | )" Ife) - fpl”
j=1 j=1

j=1

1
m p
<lell.® sup le |£x; —fy,-|‘j] . (15)
11+

FLip(0<
with FP}(fe)~ < [le|l.. To prove that Condition (I;). Let S € FB5(X,Y) and A € FLip(Y,Z) we have
1 1
m P m P
d,(ASx;, ASy;)P| =< FLip(8) © Z dy(sx;, Sy;)P
=1 j=1

)

n >
< FLip(A) O FRY™(S) O sup z |fx; — fy]'|f]

FLip(H=<T =
with FP}(AS)™ < FLip(A)~ © FPy(S)™.
Theorem 20 Let1 < p < oo. A fuzzy Lipschitz function S € FSB{;(X, Y) if and only if there exist a fuzzy
real number n € F* and a regular probability measure v defined on B4+ such that
1
p
dysxs) <O [ 15— fyizaven |

Bexh

Vxandy € X.
Proof. Let x4, ..., Xm, Y1, -, Ym IN X, m € N, and o € (0,1],
m m

-~ b~ P
Z dy(Sx;, Sy)k ™~ < nk Z f |in - ijla dv(f)
=1

J=1 Brys
m
= p=
<P f D 1t — fy 2wy
By 11
m
)= p=
Sng - osup |ij —fyila (16)
FLip(D=T 4=
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In the same way of Inequality (16), we have
m

m
B B p+
dy(Sx;, Syt <nP* - sup ~Z |fx; — fy; | %)
=1 FLip(f)<1 = o
From Inequalities (16) and (17), we obtain S € FEB'};(X, Y) with FPpL(S)~ < 1. Conversely, suppose that S €
FBL(X,Y). Each finite subset Q of X x X we define a map o on Byy+ as follows

a®7= Y (FRYSP™ O I() — ()12 © &y(Sx,5y)P).

xYEQ
The fuzzy number o ()~ is defined as follows [ (D~ ]« = [lo(Dg, ta(DE], where
a®a= Y (FREOR -6 — f0)IE™ — dy(Sx 5% "), (18)
xy)eQ
and
a®i= ) (FREOL 1660 — F0)IE" = dy(Sx,SYET). (19)
(xy)eQ

Since for every (x,y) € Q the functions Ry yy: Beg# — R, Ry (0): = If(x) — f(y)|P, are continuous on
By, 0bviously the maps 1o () and o (+)& defined in (18) and (19) belong to C(Bgy+), respectively. Since

SEFPLX,Y) and (Ng < (DE hence sup (g =0 and sup (HE =0. Note that B:=
[Ifl~<T IflI~<1

{tn.:Q c X x X} and Bf: = {1 .: @ © X x X} be the convex subsets of By« for every a € (0,1]. Consider

the open convex subset F: = {l € C(Bpx#): sup () < 0} of C(Bgy#). Since FNoy = ¢ and Fng= ¢
FLip(f)<T
for every a € (0,1], we have

(v, <11 < (v, ua‘a>, V (Lige) EFXag, (20)
and
V<1, <o)V (L) EFXed (21)
Then
0 < (V. typa) = f (FPH(SE™ - 1f(x) — f()IR™ — dy(Sx, Sy)R " )dv(D), V¥ xy € X.
Bt
Since dy(Sx, Sy)2™ < dy(Sx, Sy)2*, v a € (0,1] we obtain
dy(Sx,Sy)e~ < FRy(S)g” f £ — f()lg~dv(H), ¥ xy € X. (22)
B

Also from (21) we have
0 < (v, yypa) = f (FRH(SE™ - 1f(x) — f)IR" — dy(Sx Sy)& ™ )dv(D),V x,y € X.

Bpx#
Since FPL(S)E™ < FRL(S)X™,V « € (0,1] we obtain
dy(Sx, Sy)i" < FRE(SE™ - f If(x) — f)I2Tdv(),V x,y € X. (23)

By

From Inequalities (22) and (23), we get
dy(Sx, Sy)P < FP&(S)"'” O] f |fx — fy[Pdv(f),V x,y € X.

By
From Theorem 20 the following result is satisfied.

Proposition 21 If p; < p,, then [FP% , FPE ()] < [FB5,, FPE ()]

1 2

5 Open Problems

1. LetS be a fuzzy bounded linear operator from X into Y and (1 < p < ). Does the equality
FPy(S)~ = FP,(S)™ correct ?

2. Does the composition formula FPL(T o S)~ < FPE(T)~ © FPL(S)~ correct for arbitrary absolutely
fuzzy Lipschitz a-summing operators T, absolutely fuzzy Lipschitz b-summing operators S and i <

1 1
- o) ?
G+DAL?

3. What is the dual of FB}(X, F), whenever F is a complete fuzzy normed space and X is finite fuzzy
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pointed metric space ?

4. Find an algorithm to calculate the absolutely fuzzy Lipschitz p-summing norm of fuzzy Lipschitz
maps between finite fuzzy pointed metric spaces exactly.

5. What findings about Lipschitz (crisp) ideals have analogs for fuzzy Lipschitz ideals ?

Conclusions

Although the systematic emergence of the theory of fuzzy functional analysis has begun in the past few
years, we have begun to build a new theory of fuzzy Lipschitz ideals between pointed fuzzy metric
spaces. The basic idea of the paper is to connecting both the fuzzy Lipschitz maps and the fuzzy Lipschitz
theories, we study the class of absolutely fuzzy Lipschitz p-summing maps between arbitrary pointed
fuzzy metric spaces. We pay attention to the fuzzyness of nonlinear domination theorem whose proof
uses the abstract fuzzy version of the Pietsch domination theorem. The fruitful development of the theory
of absolute summability for fuzzy Lipschitz operators will produce several generalizations to the nonlinear
context. This is the case of fuzzy Lipschitz ideals, which will quickly attract the interest of many
researchers trying to derive a parallel theory to the fuzzy Lipschitz one such as fuzzy Lipschitz p-integral
operators, fuzzy Lipschitz p-nuclear operators, duality for fuzzy Lipschitz p-summing operators and two-
fuzzy Lipschitz ideals.
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