
Barja et al. / Malaysian Journal of Fundamental and Applied Sciences Vol.11, No.1 (2015) 24-27 

 
| 24 | 

 
 
 

 
Some fundamental properties for regular element of electroencephalography 
signals semigroup during epileptic seizure 
 
Ameen Omar Ali Barja1, Tahir Ahmad1,*, Faisal Abdurabu Mubarak Binjadhnan2  
 
1Department of Mathematical Science, and Ibnu Sina Institute for Fundamental Science Studies, Nanotechnology Research Alliance, Faculty of 
Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru, Johor, Malaysia. 
2Department of Mathematics, Faculty of science, Hadhramout University, Mukalla 50511, Yemen. 
*Corresponding Author: tahir@ibnusina.utm.my 
 
 
Article history : 
Received 9 September 2014 
Accepted 20 February 2015 
 
GRAPHICAL ABSTRACT 

 

 
ABSTRACT 
 
Electroencephalography (EEG) is a record of electrical activity along the scalp. It is measures voltage 
fluctuations resulting from ionic current flows within the neurons of the brain. EEG is most often used to 
diagnose epilepsy, which causes understandable abnormalities in EEG readings. The mathematical analysis of 
EEG signals assists medical specialists by providing a clarification of the brain activity being observed, so 
increasing the information about the structure and function of the human brain. EEG signals during epileptic 
seizure can be viewed as a semigroup of square matrices under matrix multiplication, and every element in that 
semigroup is shown to be regular. In this paper, we will present some main properties of regular element of EEG 
signals during epileptic seizure. 
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1. INTRODUCTION 
 
Epilepsy is a group of long term neurological 

disorders categorized by seizures. These seizures are 
episodes that can differ from brief and nearly 
undetectable to long periods of strong trembling. In 
epilepsy, seizures tend to recur, and have no direct 
underlying cause while seizures that occur due to an 
exact cause are not deemed to represent epilepsy [1]. It 
is categorized into two major groups, partial and 
generalized. Partial seizures are those in which the 
clinical or electroencephalographic evidence 
recommends that the attacks have a localized onset in 
the brain [2]. This class of seizure affects only a part of 
the cerebral hemisphere at seizure onset and produces 
symptoms in corresponding parts of the body or 
disturbances in some related mental functions. 
Perversely, generalized seizures are said to occur if the 
evidence proposes that the attacks were well spread [3]. 

An instrument that measures electrical potentials 
(brain waves) on the scalp and produces a record of the 
electrical activity of the brain called 
Electroencephalography (EEG). It is a key tool in 
the diagnosis and management of epilepsy and 
further seizure disorders, as well as in the diagnosis of 
brain damage related to trauma and diseases such as 
strokes, tumors, encephalitis, drug, and alcohol 
intoxication. Furthermore, EEG is also useful in control 
brain wave activity and in the brain death determination 
[4].  

The mathematical analysis of EEG signals may 
assist the medical professionals by providing an 
illustration of the brain activity being observed, therefore 
increasing the understanding of the brain function of 

human. Up to the moment, the Fast Fourier Transform 
(FFT) is the most used quantitative technique for EEG 
signals analysis. However, it has some disadvantages 
that limit its applicability. Hence, further methods for 
extracting “hidden” information from the EEG signals 
are required. 

 
2. FLATTENING THE EEG SIGNALS  

 
A new technique to map high dimensional signal, 

namely EEG into low dimensional space had been 
developed by Zakaria and Ahmad in 2007 [5].  The 
procedure of this technique contained three important 
sections. The first one deals with flattening the EEG data 
which essentially entails transformation of three-
dimensional spaces into two-dimensional spaces. This 
procedure contains the position of sensors on the 
patient’s head with EEG signal. The second section 
comprises processing EEG signals via Fuzzy c-Means 
clustering. The last section contains finding the optimal 
number of clusters using cluster validity analysis. 

The EEG coordinate system (Figure 1(a)) is 
defined by Zakaria and Ahmad in 2007 as follows: 

ாாீܥ ൌ ቄቀሺݔ, ,ݕ ,ሻݖ ݁௣ቁ : ,ݔ ,ݕ ,ݖ ݁௣ ∈ Թ	and 

ଶݔ ൅ ଶݕ ൅ ଶݖ ൌ  is the radius of a patient ݎ ଶቅ whereݎ

head [5]. In addition, a function is defined from ܥாாீ to 
plan as the following: ܵ௧ ܥܯ ∶ 	 ாாீܥ →  Figure 1) ܥܯ

(b)) such that  ܵ௧ ቀሺݔ, ,ݕ ,ሻݖ ݁௣ቁ ൌ ቀ
௥௫ା௜௥௬

௥ା௭
, ݁௣ቁ ൌ

ቀ
௥௫

௥ା௭
,
௥௫

௥ା௭
ቁ
௘೛ሺ௫,௬,௭ሻ

 .   

Both, ܥாாீ and ܥܯ were designed and verified as 
2-manifolds [6]. In this situation, it must be well-known 
that ܵ௧ is an injective mapping of a conformal structure. 
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Therefore, ܵ௧ can preserve information in a particular 
angle and orientation of the surface through the recorded 
EEG signals. In addition, they implemented this method 
followed by clustering on real time EEG data obtained 
from patients who suffer from seizure.   

 

 
 
Figure 1. (a) EEG coordinate system (b) EEG projection 
 

The signals (Figure 2) were digitized at 256 
samples per second using Nicolet One EEG software. 
The average potential difference was calculated from the 
256 samples of raw data at every second. Similarly to 
the location of the electrodes, the EEG signal was 
preserved through this new method. Every single second 
of the particular average potential difference was stored 
in a file which contains the position of the electrode on 
 .plane (Figure 3) ܥܯ
 
 

 
 

Figure 2. Sample of EEG signal 
 

 

 
 

Figure 3. Flat EEG signal 
 

3. SEMIGROUP OF EEG SIGNALS DURING 
EPILEPTIC SEIZURE 

 
Binjadhnan and Ahmad (2010) [7] shown EEG 

signals during epileptic seizure can be composed into a 
set of  ݊ ൈ ݊ square matrices 

 

௡ሺԹሻܥܯ   ൌ ቄൣߚ௜௝ሺݖሻ௧൧௡ൈ௡ ∶ ݅, ݆ ∈ Ժ
ା, ሻ௧ݖ௜௝ሺߚ ∈ Թቅ  

 
where, ߚ௜௝ሺݖሻ௧ is a potential difference reading of EEG 
signals from a particular ݆݅ sensor at time ݐ. In addition, 
they transformed the set ܥܯ௡ሺԹሻ to the set of upper 
triangular matrices denoted by  ܥܯ௡ᇱᇱሺԹሻ using QR-real 
Schur triangularization (Figure 4) as following: 
 

௡ᇱᇱሺԹሻܥܯ ൌ ቄൣߚ௜௝ሺݖሻ௧൧௡ൈ௡ ∶ ሻ௧ݖ௜௝ሺߚ ൌ 0, ∀1 ൑ ݆ ൏ ݅ ൑

݊, ݅, ݆ ∈ Ժା, ሻ௧ݖ௜௝ሺߚ ∈ Թቅ. 
 

 
 

Figure 4. ܥܯ plan transformed into an upper triangular matrix 
 

Furthermore, the set ܥܯ௡ᇱᇱሺԹሻ satisfies all the 
axioms of a semigroup under matrix multiplication. 
Particularly, ܥܯ௡ᇱᇱሺԹሻ are closed and associative under 
matrix multiplication.  
 

 
4. MATERIALS AND METHODS 

 
In this section, some existing definitions and 

results that will be used throughout this paper are 
presented. 

 
Definition1 [8]: A subset ߙ ⊆ ሼ1,2, …… , ݊ሽ with the 
property that for any ݅ ൑ ݆ ൑ ݇ ∈ ሼ1,2, …… , ݊ሽ with 
݅, ݇ ∈ ݆ with ߙ ∈ ݊ is called ߙ െ ݊ be ܣ Let .݈ܽݒݎ݁ݐ݊݅ ൈ
݊ matrix over a field ܨ and ߙ an ݊ െ  the ݈ܽݒݎ݁ݐ݊݅
restriction ܣ|ఈ is the matrix ൫ܣ௜௝൯௜,௝∈ఈ with rows and 

columns indexed by ߙ. Two matrices ܣ and ܤ agree on 
௜௝ܣ if ߙ ൌ ,݅ ௜௝ for allܤ ݆ ∈  are ܤ and ܣ We say that .ߙ
scalar multiples on ߙ if there exists a non-zero field 
element ߣ ∈ ௜௝ܣ such that ܨ ൌ ,݅ ௜௝ for allܤߣ ݆ ∈  such ,ߙ
that ܣ and ܤߣ agree on ߙ. 
 
Definition2 [9]: Let ܵሺ݊, ݊ ሻ be a semigroup of allܨ ൈ ݊ 
upper triangular matrices with entries drawn from field 
ܣ with usual operation (matrix multiplication). Let ,ܨ ∈
ܵሺ݊, ሻܣሺ݁݌݄ܽݏ is the set ܣ ሻ, the diagonal shape ofܨ ൌ
ሼ݅ ∈ ܼ|	1 ൑ ݅ ൑ ݊			, ܽ௜௜ ് 0ሽ. Note that two matrices 
have the same diagonal shape if they have zeros in 
exactly the same positions on the main diagonal. 
 

















nn

n

,

,11,1

10

11













Barja et al. / Malaysian Journal of Fundamental and Applied Sciences Vol.11, No.1 (2015) 24-27 

 
| 26 | 

Theorem1 [10]: If ܣ,  .are upper triangular matrices ܤ
Then ݁݌݄ܽݏሺܤܣሻ ൌ ሻܣሺ݁݌݄ܽݏ ∩    .ሻܤሺ݁݌݄ܽݏ
 

Let ܣ௧, ௧ two matrices in MC௡ܤ
" ሺԹሻ and we define 

a relation ߗ on a semigroups MC௡
" ሺԹሻ by ܣ௧ܤߗ௧ if and 

only if ܣ௧ ൌ  A .ߣ ௧ for some non-zero field elementܤߣ
relation ߗ on the MC௡

" ሺԹሻ is called left compatible if 
,௧ܣ∀ ,௧ܤ ௧ܥ ∈ MC௡

" ሺԹሻ	, ௧ܤߗ௧ܣ ⇒  ௧ and rightܤ௧ܥߗ௧ܣ௧ܥ
compatible if ∀ܣ௧, ,௧ܤ ௧ܥ ∈ MC௡

" ሺԹሻ	, ௧ܤߗ௧ܣ ⇒
 ௧ and it is called compatible ifܥ௧ܤߗ௧ܥ௧ܣ
,௧ܣ∀ ,௧ܤ ௧ᇱܣ , ௧ᇱܤ ∈ MC௡

" ሺԹሻ, ௧ᇱܣߗ௧ܣ  and ܤ௧ܤߗ௧ᇱ ⇒
 ௧ᇱ. A left (right) compatible equivalenceܤ௧ᇱܣߗ௧ܤ௧ܣ
relation is called a left (right) congruence. A compatible 
equivalence relation is called congruence.   
 
Definition3 [11]: A row operation on an upper 
triangular matrix is said to be invertible if we can add a 
multiple of one row to a row above or scaling a row by 
non-zero field element. 
Remark 1: Column operations are defined analogously. 
 

Let ܣ௧, ௧ܤ ∈ MC௡
" ሺԹሻ. It is easy to see that ܤ௧ܣ௧ 

can be obtained from ܣ௧ by a certain sequence of row 
operation determined by the matrix ܣ௧. Conversely, 
every row operation can be represented as left- 
multiplication by a certain triangular matrix. There is an 
analogous relationship between right-multiplication and 
column operations.  

A direct consequence of these explanations is the 
following characterization of Green’s relations ࣦ,Ը and 
ࣤ on the semigroups MC௡

" ሺԹሻ. 
In 1951 James Alexander Green introduced five 

equivalence relations that characterize the elements of a 
semigroup in terms of the principal ideals. These 
relations are useful for understanding the nature of 
divisibility in semigroup [The prime decomposition 
theorem Krohn-Rhodes 1965]  . Moreover, Green 
relations are particularly significant in the study of 
regular semigroup. 
 
Definition4 [13]: An element ݏ of a semigroup ܵ is 
called a regular element of ܵ if there is an element ݐ of ܵ 
such that ݏ ൌ  and ܵ is said to be a regular semigroup ݏݐݏ
if every element of ܵ is regular. Note that the regular 
elements of semigroup of upper triangular matrices are 
characterized as those matrices whose rank is equal to 
the number of their non-zero diagonal entries.   

If ܣ௧ is an element of a semigroup MC௡
" ሺԹሻ, the 

smallest left ideal contain ܣ௧ is MC௡
" ሺԹሻܣ௧ ∪ ሼܣ௧ሽ, 

which may conveniently write as MC௡
" ∖ሺԹሻܣ௧, and 

called it the principal left ideal generated by ܣ௧. An 
equivalence relation ࣦ on MC௡

" ሺԹሻ is defined by the rule 
that ܣ௧	ࣦ	ܤ௧ if and only if ܣ௧ and ܤ௧generate the same 

principal left ideal, in other words, MC௡
" ∖ሺԹሻܣ௧ ൌ

MC௡
" ∖ሺԹሻܤ௧. Similarly, define Ը by the rule that 

 ௧ generate the sameܤ	௧ andܣ ௧ if and only ifܤ	Ը	௧ܣ

principle right ideal, in other words, ܣ௧MC௡
" ∖ሺԹሻ ൌ

௧MC௡ܤ
" ∖ሺԹሻ. Furthermore, define ࣤ by the rule that  

௧ if and only MC௡ܤ	ࣤ	௧ܣ
" ∖ሺԹሻܣ௧MC௡

" ∖ሺԹሻ ൌ

MC௡
" ∖ሺԹሻܤ௧MC௡

" ∖ሺԹሻ.  
 
Definition5 [14]: The elementary EEG signals is a 
square matrix of EEG signals reading at time ݐ in terms 
of one of the following types: 

(i) Diagonal matrix (special case sub-identity matrix). 
(ii) Unipotent matrix. 
(iii) Permutation. 

 
Proposition1 [15]: Let ܵሺ݊,  ሻ be a semigroup of allܨ
݊ ൈ ݊ upper triangular matrices with entries drawn from 
field ܨ. Let ܣଵ, ଶܣ ∈ ܵሺ݊,   :ሻ thenܨ

(i) ܣଵ, ࣦ ଶ areܣ െ  precisely if each can be ݀݁ݐ݈ܽ݁ݎ
acquired from the other by row operation. 

(ii) ܣଵ, ଶ are Ըെܣ  precisely if each can be ݀݁ݐ݈ܽ݁ݎ
acquired from the other by column operation. 

(iii) ܣଵ, ࣤ ଶ areܣ െ  precisely if each can be ݀݁ݐ݈ܽ݁ݎ
acquired from the other by row and column 
operation. 
 

Theorem2 [16]: Assume that ܣ௧ is an upper triangular 

matrix of EEG signals during epileptic seizure ቀܣ௧ ∈

MC௡
" ሺԹሻቁ. Then the following are equivalent: 

(i) ܣ௧ is regular; 
(ii) Every row (column) in ܣ௧ is a linear combination 

of rows (columns) in ܣ௧ with non-zero diagonal 
entries; 

(iii) ܣ௧ is ࣤ െ  .to sub-identity ݀݁ݐ݈ܽ݁ݎ
 
5. CHARACTERIZATION OF REGULAR 

ELEMENTS OF SEMIGROUP OF EEG 
SIGNALS DURING EPILEPTIC SEIZURE 

 
The following is a corollary of Theorem 1 which 

characterize the ࣤ െ  of regular elements of ݀݁ݐ݈ܽ݁ݎ
MC௡

" ሺԹሻ in terms of diagonal shape of EEG signals 
matrix. 

 
Corollary 1: Let ܣ௧,  ௧ are upper triangular matrices ofܤ

EEG signals during epileptic seizure ቀܣ௧, ௧ܤ ∈

MC௡
" ሺԹሻቁ with ܣ௧, ,௧ܣ ௧ regulars. Bothܤ ࣤ ௧ areܤ െ

 if and only if they have the same diagonal ݀݁ݐ݈ܽ݁ݎ
shape. 
 
Proof. 
 
Let ܣ௧, ௧ܤ ∈ MC௡

" ሺԹሻand ܣ௧,    . ݀݁ݐ݈ܽ݁ݎ௧ are െܤ
Since the diagonal shape is preserved by invertible row 
and column operation, and if ܣ௧,  ௧ have zeros in exactlyܤ
the same positions on the main diagonal, then 	ࣤ െ
 (௧ܤ ௧ andܣ) for both EEG signals matrices ݀݁ݐ݈ܽ݁ݎ
needed to have the same diagonal shape (by Proposition 
1). Conversely, let ܣ௧ and ܤ௧ are regular elements and 
have the same diagonal shape, then ܣ௧ and ܤ௧ are ࣤ െ
 to the unique sub-identity EEG signals matrices ݀݁ݐ݈ܽ݁ݎ
with that diagonal shape (by theorem 2). Thus, they are 
ࣤ െ  □ .to each other ݀݁ݐ݈ܽ݁ݎ
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Theorem 3: Assume that ܣ௧,  ௧ are upper triangularܤ
matrices of EEG signals during epileptic seizure 

ቀܣ௧, ௧ܤ ∈ MC௡
" ሺԹሻቁ with ܣ௧	regular. Then the following 

are equivalent: 
(i) ݁݌݄ܽݏሺܣ௧ሻ ⊆  ;௧ሻܤሺ݁݌݄ܽݏ
(ii) ܣ௧ܤ௧	Ը	ܣ௧; 
(iii) ܣ௧ܤ௧	ࣤ	ܣ௧ 

 
Proof. 
 
(i)⇒(ii)  
 
Let ݁݌݄ܽݏሺܣ௧ሻ ⊆ ,௧ܣ ௧ሻ whereܤሺ݁݌݄ܽݏ ௧ܤ ∈ MC௡

" ሺԹሻ. 
By applying column operation (Definition 3) for ܣ௧ we 
have ܣ௧ܤ௧ can be acquired from ܣ௧. Therefore, every 
column of ܣ௧ is a linear combination of columns with 
nonzero diagonal entries (by theorem 2). But since 
௧ሻܣሺ݁݌݄ܽݏ ⊆  ௧ willܣ ௧ሻ, then every column ofܤሺ݁݌݄ܽݏ
be a combination of columns of ܣ௧ܤ௧ with nonzero 
diagonal entries. Thus, ܣ௧ܤ௧ܥ௧ ൌ  ௧, whichܥ ௧ for someܣ
mean ܣ௧ܤ௧	Ը	ܣ௧ (definition of Ըെ   .(݊݋݅ݐ݈ܽ݁ݎ
 
(ii)⇒(iii)  
 
If ܣ௧ and ܤ௧ are regular elements and ࣤ െ  then ,݀݁ݐ݈ܽ݁ݎ
௧ሻܣሺ݁݌݄ܽݏ ൌ  ௧ܣ	ࣤ	௧ܤ௧ܣ  ௧ሻ which implies toܤሺ݁݌݄ܽݏ
(by Corollary 1).  
 
(iii)⇒(i)  
 
Let ܣ௧ܤ௧	ࣤ	ܣ௧, then 
௧ሻܣሺ݁݌݄ܽݏ	 ൌ  ௧ሻ (by Proposition 1)ܤ௧ܣሺ݁݌݄ܽݏ
                    ൌ    ௧ሻ  (by theorem 1)ܤሺ݁݌݄ܽݏ⋂௧ሻܣሺ݁݌݄ܽݏ
Hence, ݁݌݄ܽݏሺܣ௧ሻ ⊆  □ .௧ሻܤሺ݁݌݄ܽݏ
 
6. CONCLUSION                                                 
 

The paper presented the use of Green's relations 
to characterize the regularity of semigroup elements of 
EEG signals during epileptic seizure. 
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