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Abstract The extension of parameter estimation from a bivariate linear functional relationship 

model (LFRM) to simultaneous LFRM for linear variables using the maximum likelihood estimation 

(MLE) method is explored in this paper. The covariance matrix of the parameter estimates is 

derived through the Fisher information matrix. A simulation study was done to investigate the 

performance of the parameter estimation. According to the simulation study, the estimated 

parameters have a small bias. The beauty of simultaneous LFRM lies in developing the model to 

study the relationship between more than two linear variables while considering error terms for all 

variables. The applicability of the proposed simultaneous model is demonstrated using wind 

speed, humidity, and temperature data from Butterworth and Melaka during the southwest 

monsoon season of 2020. 
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Introduction 
 

A standard statistical procedure is to discover the relationships between variables. The relationship 
between these variables can be estimated using regression. If these variables have relationships, they 

can be linear or non-linear. The variables are commonly divided into an independent variable, X  and a 

dependent variable, Y . Regression analysis is concerned with expressing the dependent variables as 
functions of the independent variables (Gillard, 2010).  
 

The errors-in-variables model, EIVM is a linear regression model extension in which variables X  and 

Y  are continuously linear and measured with errors (Arif et al., 2020a). Suppose the variables X  and 

Y  are related by Y X = + . There is no statistical problem in obtaining values of   and   if both X

and Y  are correctly observed. When both X  and Y  are subject to error, the EIVM is applied. In practice, 

measurement errors occur when neither variable is precisely recorded (Arif et al., 2019). Measurement 
errors can arise in various fields, including econometrics, environmental sciences, engineering, and 
manufacturing. For example, instrument issues could occur in the industrial sector due to variations in 
the measuring process (Arif et al., 2021). Adcock (1878) investigated the problem of fitting a linear 
relationship when both the dependent and independent variables were subject to error in the late 18 th 
century, leading to the EIVM's development (Arif et al., 2020a; Fah et al., 2010).  
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Error-in-variables problems typically develop when modelling is used to get physical insight into an 
operation (Mokhtar et al., 2021a, 2022b). Because it considers the presence of error across all 
parameters, EIVM is the most statistically relevant tool for predicting reactivity ratios. EIVM is classified 
into three types: functional, structural, and ultrastructural (Ghapor et al., 2014; Jamaliyatul et al., 2023). 

A functional relationship model between X  and Y  is when X  is a mathematical variable or fixed 

constant. Meanwhile, the structural relationship model between X  and Y  is when X  is a random 
variable. An ultrastructural relationship model is when a functional and structural relationship is 

combined. This study will focus on the linear functional relationship model, LFRM, which defines the X  

variable as a mathematical variable or fixed constant.  

 

In the last five decades, researchers have focused on estimating parameters within the bivariate LFRM. 
To the best of the author’s knowledge, the bivariate LFRM model has been extended to the simultaneous 
LFRM to study the relationship between multiple circular variables, representing a novel contribution to 
existing literature (Mokhtar et al., 2015). The existing research uses the bivariate LFRM to study the 
relationship between two linear variables (Arif et al., 2020b; Ghapor et al., 2014). Therefore, this study 
extends the work of Ghapor et al. (2014) by extending the bivariate LFRM to simultaneous LFRM, 
allowing for the statistical examination of relationships among more than two linear variables, while 
considering measurement errors. 

 
Simultaneous Linear Functional Relationship Model 
 

In this study, a simultaneous linear functional relationship model (LFRM) is extended from the bivariate 
LFRM for linear data. This enhancement is done so that the relationship between more than two linear 

variables can be studied statistically. Suppose the variable ( 1,..., ; 1,..., )jiY j q i n= =  and ( 1,..., )iX i n=  

related by simultaneous LFRM of j j jY X = + , where the j  is the y-intercept, j  is the slope of the 

function, n  is the number of observations or data point in dataset and q  is the number of response 

variables. Let the observation be ( , )i jix y , and the observation corresponds to the measurement of the 

true values of ( , )i jiX Y , made with some random error. The random error i  and ji  are assumed to be 

normally distributed with 2(0, )i iN   and ( )20,j jN  , respectively. 2

i  and 2

j  is the error variance. 

The model of simultaneous LFRM can be written as follows: 

j j jY X = +  (1) 

where i jx X = +  and ji j jy Y = +  for 1,..., ; 1,...,j q i n= = . 

 
Parameter Estimation using Maximum Likelihood 
Estimation for Simultaneous LFRM 
 

In this study, we consider the case when the ratio of error variances,   is known where 

2

2

j

i





=  for all 

observations on both variables. Thus, there are ( )1n q+ +  parameters to be estimated which 1,..., q  , 

1,..., q  , 2 2,...,i n   and ,...,i nX X  by using the maximum likelihood estimation (MLE) method. The log-

likelihood function of the model is given by 

2

2

12

2

1 1

( )
1

log log(2 ) log log
2 2 1

( )

n

i i
i

i q n
i

ji j j i
j i

x X
n

L n n

y X

  


 


=

= =

 
− + 

 
= − − − −  

 − −
  




 (2) 

a) Maximum Likelihood Estimation of j  

 
Differentiating equation (2) with respect to j : 

22

2
1 1 1

1 1
(log  ) ( ) ( )

2

p q n

i i ji j j i

i j ij i j

L x X y X
 

 
   = = =

 
= − − + − − 

 
 
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First, let's focus on the second summation term with respect to j : 

2

( ) 2( )ji j j i ji j j i

j

y X y X


   


− − = − − −

 
Now, substitute this back into the expression: 

2
1

1
(log ) ( )

n

ji j j i

ij i

L y X


 
  =

= − −
 

By setting (log  ) 0
j

L



=  

2
1

1
( ) 0

n

ji j j i

ii

y X 
 =

− − =
 

Now, let's isolate j  by multiplying both sides by 2

i : 

1

( ) 0
n

ji j j i

i

y X 
=

− − =
 

Now, let’s rearrange the terms: 

1 1 1

0
n n n

ji j j i

i i i

y X 
= = =

− − =  
     

Combine the summations: 

1 1

0
n n

ji j j i

i i

y n X 
= =

− − = 
 

Now, solve for j  

1 1

1 n n

j ji j i

i i

y X
n

 
= =

 
= − 

 
 

 
Simplify then we get 

ˆˆ
j j jy B x = −  (3) 

where 
1

1
y =

n

j ji

i

y
n =

  and 
1

1
 =

n

i

i

x x
n =

  

 

b) Maximum Likelihood Estimation of iX  

Differentiating equation (2) with respect to iX : 

 

22

2
1 1 1

1 1
(log  ) ( ) ( )

2

qn n

i i ji j j i

i j ii i i

L x X y X
X X

 
 

   = = =

 
= − − + − − 

 
 

 

First, differentiate the first summation term with respect to iX  

2

( ) 2( )i i i i

i

x X x X
X




− = − −

 

Second, differentiate the first summation term with respect to iX  

2

( ) 2 ( )ji j j i j ji j j i

i

y X y X
X


    


− − = − − −

 
Now, substitute this back into the expression: 

( )2 2
1 1 1

1 1
(log  ) ( )

qn n

i i j ji j j i

i j ii i i

L x X y X
X


  

  = = =

= − − − − −  
 

By setting (log  ) 0
i

L
X




=  

( )2 2
1 1 1

1 1
( ) 0

qn n

i i j ji j j i

i j ii i

x X y X  
 = = =

− − − − − =  
 

Next, isolate the term involving iX  : 

( )2 2
1 1 1

1 1
( )

qn n

i i j ji j j i

i j ii i

x X y X  
 = = =

− − = − −  
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Now, multiply both sides by 2

i  to simplify: 

( )
1 1 1

1
( )

qn n

i i j ji j j i

i j i

x X y X  
= = =

− − = − −  
 

Expand the summation terms: 

2

1 1 1 1 1 1 1 1

1 1 1q q qn n n n n

i i j ji j j j i

i i j i j i j i

x X y X   
  = = = = = = = =

− + = − −       
 

Now, isolate the terms involving iX : 

2

1 1 1 1 1 1 1

1 1 1
1

q q qn n n n

j i i j ji j j

j i i j i j i

X x y   
  = = = = = = =

 
+ = + − 

 
      

 

Finally, solve for iX : 

1 1 1 1 1

2

1

1 1

1
1

q qn n n

i j ji j j

i j i j i

i q

j

j

x y

nX

  
 




= = = = =

=

+ −

=

+

    


 

Multiply both the numerator and denominator by   to get rid of the fraction in the denominator: 

1 1 1 1 1

2

1

q qn n n

i j ji j j

i j i j i

i q

j

j

x y

X

   

 

= = = = =

=

+ −

=

+

    


 

( )
1 1 1

2

1

ˆ

qn n

i j ji j

i j i

i q

j

j

x y

X

  

 

= = =

=

+ −

=

+

  


  (4) 

 

 

c) Maximum Likelihood Estimation of j  

Differentiating equation (2) with respect to j : 

22

2
1 1 1

1 1
(log  ) ( ) ( )

2

qn n

i i ji j j i

i j ij i j

L x X y X
 

 
   = = =

 
= − − + − − 

 
 

 
Now, let's differentiate the second summation term with respect to j : 

2

( ) 2 ( )ji j j i i ji j j i

j

y X X y X


   


− − = − − −

 
Now, substitute this back into the expression: 

2
1

1 ˆ ˆˆˆ(log ) ( )
n

i ji j j i

ij i

L X y X


 
  =

= − −
  

and by setting (log  ) 0
j

L



=  

2
1

1 ˆ ˆˆˆ( ) 0
n

i ji j j i

ii

X y X 
 =

− − =
 

Multiply both sides by 2

i  to simplify: 

1

ˆ ˆˆˆ( ) 0
n

i ji j j i

i

X y X 
=

− − =
 

Now, solve for ˆ
j : 

2

1 1 1

ˆ ˆ ˆˆˆ 0
n n n

i ji i j j i

i i i

X y X X 
= = =

− − =  
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1 1

2

1

ˆ ˆˆ
ˆ

ˆ

n n

i ji j i

i i
j n

i

i

X y X

X



 = =

=

−

=
 


 

Now, substitute this expression for iX  and j  into the equation for ˆ
j  

( ) ( )

( )

1 1 1 1 1 1

2 21 1

1 1

2

1 1 1

21

1

ˆ

ˆ

q qn n n n

i j ji j i j ji jn n
i j i i j i

ji jq q
i i

j j

j j

j
qn n

i j ji jn
i j i

q
i

j

j

x y x y

y

x y

     



   



  

 

= = = = = =

= =

= =

= = =

=

=

   
+ − + −   

   −
   

+ +   
   =

 
+ − 

 
 

+ 
 

     
 

 

  



 

Now, we can simplify this expression by cancelling out some terms: 

2 2 2 3

1 1 1 1

2 2 2 2 2 2 4

1 1 1 1 1

ˆ

2 2

q q q q

j xy j yy j j
j j j j

j q q q qn

i j xy j yy j j

i j j j j

S S nx nx

x S S nx nx

      



      

= = = =

= = = = =

  
+ + + +  

  =

+ + + +

   

    
 

where ( )
2

1

n

xx i

i

S x x
=

= − , ( )
2

1

n

yy ji j

i

S y y
=

= − , and ( ) ( )
1

n

xy i i

i

S x x y y
=

= − − . 

This implies that 

( )2

1 1

ˆ ˆ 0
q q

j xy j xx yy xy

j j

S S S S   
= =

+ − − = 
 

Solving the quadratic equation, where , xya S= , xx yyb S S= − , and xyc S= −  yields 

( ) ( ) ( ) ( )
( )

2

4
ˆ

2

xx yy xx yy xy xy

j

xy

S S S S S S

S

  


− −  − − −
=

 

( ) ( )
2

24
ˆ

2

yy xx xx yy xy

j

xy

S S S S S

S

  


− + − +
=  (5) 

The positive sign is used in equation (5) because it gives a maximum to the likelihood function in equation 
(2) as shown below. From the previous result, we have  

2
1

1 ˆ ˆˆˆ(log ) ( )
n

i ji j j i

ij i

L X y X


 
  =

= − −
 

and the second-order derivative yields 
2

2

2 2
1

1 ˆ(log )
n

i

ij i

L X


  =

= − 
 

Since 2

1

ˆ 0
n

i

i

X
=

 , (practically ˆ 0iX  ) and 0  , this implies that 
2

2
(log  ) 0

j

L



 . The ˆ

j  are local 

maximum points. Now, we let  

( ) ( )
2

24
ˆ

2 2

yy xx xx yy xy

j

xy xy

S S S S S

S S

  


− + − + 
= =

 

It could be shown that ˆ2 0j xyS =   must be non-negative and therefore the positive square root must 

always be taken. 

 

d) Maximum Likelihood Estimation of 2

i  

Differentiating equation (2) with respect to 2

i  we get 
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( )

22

22 2
2

1 1 1

1 1
(log  ) ( ) ( )

2

qn n

i i i i

i j ii i
i

n
L x X y X


 

   = = =

  
= − + − + − − 

  
   

To estimate 2ˆ i , 
2

let (log ) 0
i

L



=  

( )

22

22
2

1 1 1

1 1
( ) ( ) 0

2

qn n

i i i i

i j ii
i

n
x X y X 

  = = =

  
− + − + − − = 

  
   

22 2

1 1 1

1 1
ˆ ( ) ( )

2

qn n

i i i ji j j i

i j i

x X y X
n

  
= = =

  
= − + − − 

  
   (6) 

 

 

Based on Kendall and Stuart (1973), knowledge of the ratio of error variances has enabled us to evaluate 

the MLE of the parameter estimate, but the trouble is 2ˆ i  is not a consistent estimator of 2

i  as Lindley 

(1947) showed. The inconsistency of the MLE is therefore a reflection of the small-sample bias of the 

MLE in general. This particular inconsistent estimator causes no difficulty, a consistent estimator of 2

i  

being given by replacing the number of observations, 2n , by the number of degrees of freedom, 

2 ( 2) 2n n n− + = − , in the divisor of 2ˆ i . The consistent estimator is therefore 

22 2

1 1 1

1 1
ˆ ( ) ( )

2

qn n

i i i ji j j i

i j i

x X y X
n

  
= = =

  
= − + − − 

−   
   (7) 

 
Fisher Information Matrix of the Simultaneous LFRM 
 

The Fisher Information Matrix of parameters ˆ
j  and ˆ

j  are used to obtain the variance-covariance 

matrix of ˆ
j  and ˆ

j . The second derivative of equation (2) with respect to j  is then: 

2

2 2
(log )

j i

n
L



 
= −  

Therefore, 
2

2 2
(log )

j i

n
E L



 

 
− = 
 
 

 

The second derivative of equation (2) with respect to j  is then: 

2
2

2 2
1

1 ˆ(log )
n

i

ij i

L X


  =

= −   

Therefore, 
2

2

2 2
1

1 ˆ(log )
n

i

ij i

E L X


  =

 
− = 
 
 

  

2

2
1

1 ˆ(log )
 

n

i

ij j i

L X


   =

= −   

Therefore, 
2

2
1

1 ˆ(log )
 

n

i

ij j i

E L X


   =

 
− = 
 
 

  

 

Thus, the estimated Fisher information matrix, F  for ̂  and ̂  is as follows, 

2 2
1

2

2 2
1 1

1 ˆ

1 1ˆ ˆ

n

i
ii i

n n

i i

i ii i

n
X

A B
F

C D
X X

 

 

=

= =

 
 

  = =     
  
 



 

 (8) 

where A  is a 1 1  matrix, B  is a 1 n matrix, C  is a 1n  matrix, and D  is a n n  matrix. From the 

theory of partitioned matrices (Nelder, 1977), the inverse of F  is  
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( ) ( )

( ) ( )

1 1
1 1 1

1

1 1
1 1 1

A BD C A B D CA B
F

D C A BD C D CA B

− −
− − −

−

− −
− − −

 − − −
 

=
 
 − − −
 

(9) 

( )
1

1ˆ ˆ( )jVar A BD C
−

−= −  

1
1

2

2 2 2 2
1 1 1

1 1 1ˆ ˆ ˆˆ ˆ( )
n n n

j i i i

i i ii i i i

n
Var X X X

   

−
−

= = =

      
 = −      
       

    

( )
( )

2 2

2

ˆ ˆˆ
ˆˆ ˆ( ) = 1

ˆ

j i j xy

j

xy j

S
Var x T

S n

   




+   
+ + 

  

 (10) 

( )
1

1ˆˆ ( )jVar D CA B
−

−= −  

1
1

2

2 2 2 2
1 1 1

1 1 1ˆ ˆ ˆˆˆ ( )
n n n

j i i i

i i ii i i i

n
Var X X X

   

−
−

= = =

        
 = −       
         

    

( )
 

2 2ˆ ˆˆ
ˆˆˆ ( )= 1

j i j

j

xy

Var T
S

   


+
+  (11) 

Thus, the covariance of ˆ
j  and ˆ

j  are  

( )
1

1 1ˆˆ ˆ( , )j jCov D C A BD C 
−

− −= − −  

1
1

2
1 2 2 2

1 12

2 2
1 1

2
1

1 1ˆ ˆ
1 1ˆ ˆˆˆ ˆ( , )

1 ˆ

n n

i in n
i ii i i

j j i i
ni ii i

i
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X X
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X

  
 

 



−
−

−

= =

= =

=

    
 −   

        
= −     

      
  
  

 
 



 

( )
 

2 2ˆ ˆˆ
ˆˆˆ ˆ( , )= 1

j i j

j j

xy

x
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S
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 where 
( )

2

2

ˆ ˆ
ˆ

ˆ
j i

j xy

n
T

S

 

 
=

+
. 

 
Materials and Methods 
 

This simultaneous LRFM will be evaluated through a bias measure and a Monte Carlo simulation study 
is carried out in MATLAB software to assess the performance measure of the parameter estimation. The 
results from the bias measure would indicate the adequacy of the model's parameter estimates. Mean, 
estimated bias, and mean absolute percentage error, MAPE are evaluated for the parameter estimates 

of ˆ
j , ˆ

j  and 2ˆ i . Without loss of generality, the number of simulations is set to be 10000s = , and the 

response variables, 1,...,j q= , are set to be 2q = , which is two response variables, 1y  and 2y  (Arif et 

al., 2019; Ghapor et al., 2015). The values of 1  and 2 = 5 and 10 while 1  and 2 = 1 and also 2

1  

and 2

2  = 1. The sample size is set to be n = 40, 80, 120 and 160, where 1,...,i n= . In the simulation, 

the value of   considered is 1  (Arif et al., 2022, 2021a). For simplicity, r  represent the parameter of 

j , j  and 2

i , and ˆ
r  be the estimated value of ˆ

j , ˆ
j  and 2ˆ i , respectively. ̂  represent the mean 

value of the estimated value. The following are the measures used to assess the estimation quality of 

ˆ
j , ˆ

j  and 2ˆ i .  

• Mean of ̂ , 
1

1ˆ ˆ
s

r

rs
 

=

=   

• Estimated bias of ̂ , ( )ˆ ˆ
rEB   = −  



 

10.11113/mjfas.v20n2.3342 309 

Jamaliyatul et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 20 (2024) 302-319 

•  Mean absolute percentage error of ̂ , ( )
1

ˆ1ˆ
s

r

r

MAPE
s

 


=

−
=   

This general formula will be used to obtain bias measures of 2ˆˆ ,   and ˆj j i   . 

The simulation design can be described as follows: 

Step 1: Generate random iX  of size n , with 1,2,3, ,i n=  . Without loss of generality, the slope, j  

and y -intercept of the parameter, j  of simultaneous LFRM, for  1y  and 2y  are fixed at 1 1 = , 2 1 =

, 1 5 = , 2 10 = , 2

1 1 = , 2

2 1 = , and 1 = , respectively. 

Step 2: Generate three random error terms 1  from 2(0, ) iN   while 1  and 2  from 2(0, )jN  , 

respectively. 1  is the error term of x  while 1  and 2  is the error terms of 1y  and 2y , respectively.  

Step 3: Calculate the observed value of x , 1y  and 2y  using equation (1), where 1x X = + , 1 1 1y Y = +

, and 2 2 2y Y = +  for 2; 1,...,q i n= = . 

Step 4: Calculate the mean of x , 1y  and 2y . 

Step 5: Calculate the parameter estimates 2 2

1 2 1 2 1 2 1 2
ˆ ˆ ˆ ˆˆ ˆ,  ,  ,  ,  , , ˆ  and ˆX X      . 

Step 6: Calculate the mean, estimated bias and mean absolute percentage error (MAPE) of 

2 2

1 2 1 2 1 2
ˆ ˆˆ ˆ,  ,  , , ˆ  and ˆ      . 

 

Simulation Results and Discussion 
 

The result of a simulation in observing the accuracy of the parameter estimation for the simultaneous 
LFRM is given below. 

 

a) Simulation result of 1̂  

 

Table 1 shows the simulation result of 1̂  when 1 5 = , 1 1 =  and 2

1 1 =  while Table 2 shows the 

simulation result of 1̂  when 1 10 = , 1 1 =  and 2

1 1 = . 

 

Table 1. Performance measurement for 1̂  when 1 5 = , 1 1 =  and 2

1 1 =  

 

n  Mean ( 1̂ ) EB ( 1̂ ) MAPE ( 1̂ ) 

40 4.9744 -0.0256 0.0750 

80 4.9870 -0.0130 0.0525 

120 4.9959 -0.0041 0.0424 

160 4.9976 -0.0024 0.0366 

 

Table 2. Performance measurement for 1̂  when 1 10 = , 1 1 =  and 2

1 1 =  

 

n  Mean ( 1̂ ) EB ( 1̂ ) MAPE ( 1̂ ) 

40 9.9865 -0.0135 0.0373 

80 9.9877 -0.0123 0.0261 

120 9.9978 -0.0022 0.0182 

160 9.9981 -0.0019 0.0212 
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Both Table 1 and Table 2 have the mean of 1̂  closer to their respective actual value of 1  as we 

increase the value of n . This suggests that, on average, the estimates in both tables are centred around 

the actual values. The estimated bias of 1̂  is closer to to zero in both tables, indicating better estimation 

accuracy. The MAPE of 1̂  is decreasing from both tables. A decreasing MAPE of 1̂  as n  increases 

and a lower value in Table 2 indicate an improvement in the accuracy of estimates when 1 10 = . 

Therefore, the estimation seems adequate for most values of n .  

 

b) Simulation result of 2̂  

 

Table 3 shows the simulation result of 2̂  when 2 5 = , 2 1 =  and 2

2 1 =  while Table 4 shows the 

simulation result of 2̂  when 2 10 = , 2 1 =  and 2

2 1 = . 

 

Table 3. Performance measurement for 2̂ , when 2 5 = , 2 1 =  and 2

2 1 =  

 

n  Mean ( 2̂ ) EB ( 2̂ ) MAPE ( 2̂ ) 

40 4.9858 -0.0142 0.0752 

80 4.9868 -0.0132 0.0532 

120 4.9938 -0.0062 0.0421 

160 4.9968 -0.0032 0.0366 

 

Table 4. Performance measurement 2̂  when 2 10 = , 2 1 =  and 2

2 1 =  

 

n  Mean ( 2̂ ) EB ( 2̂ ) MAPE ( 2̂ ) 

40 9.9880 -0.0120 0.0372 

80 9.9919 -0.0081 0.0264 

120 9.9964 -0.0036 0.0210 

160 9.9970 -0.0030 0.0185 

 

 

Both Table 3 and Table 4 have the mean of 2̂  closer to their respective actual value of 2  as we 

increase the value of n . This suggests that, on average, the estimates in both tables are centred around 

the actual values. The estimated bias of 2̂  is closer to to zero in both tables, indicating better estimation 

accuracy. The MAPE of 2̂  is decreasing from both tables. A decreasing MAPE of 2̂  as n  increases 

and a lower value in Table 4 indicate an improvement in the accuracy of estimates when 2 10 = . 

Therefore, the estimation seems adequate for most values of n .  

 

c) Simulation result of 1̂  

 

Table 5 shows the simulation result of 1̂  when 1 5 = , 1 1 =  and 2

1 1 =  while Table 6 shows the 

simulation result of 1̂  when 1 10 = , 1 1 =  and 2

1 1 = . 

 

Table 5. Performance measurement for 1̂  when 1 5 = , 1 1 =  and 2

1 1 =  

 

n  Mean ( 1̂ ) EB ( 1̂ ) MAPE ( 1̂ ) 

40 1.0054 0.0054 0.0642 

80 1.0021 0.0021 0.0452 

120 1.0012 0.0012 0.0371 

160 1.0011 0.0011 0.0319 
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Table 6. Performance measurement for 1̂  when 1 10 = , 1 1 =  and 2

1 1 =  

 

n  Mean ( 1̂ ) EB ( 1̂ ) MAPE ( 1̂ ) 

40 1.0029 0.0029 0.0634 

80 1.0015 0.0015 0.0448 

120 1.0011 0.0011 0.0367 

160 1.0010 0.0010 0.0316 

 

 

Both Table 5 and Table 6 have the mean of 1̂  closer to their respective actual value of 1  as we 

increase the value of n . This suggests that, on average, the estimates in both tables are centred around 

the actual values. The estimated bias of 1̂  is closer to to zero in both tables, indicating better estimation 

accuracy. The MAPE of 1̂  is decreasing from both tables.  A decreasing MAPE of 1̂  as n  increases 

and a lower value in Table 6 indicate an improvement in the accuracy of estimates when 1 10 = . 

Therefore, the estimation seems adequate for most values of n .  

 

d) Simulation result of 2̂  

 

Table 7 shows the simulation result of  2̂  when 2 5 = , 2 1 =  and 2

2 1 =  while Table 8 shows the 

simulation result of 2̂  when 2 10 = , 2 1 =  and 2

1 1 = . 

 

Table 7. Performance measurement for 2̂  when 2 5 = , 2 1 =  and 2

2 1 =  

 

n  Mean ( 2̂ ) EB ( 2̂ ) MAPE ( 2̂ ) 

40 1.0030 0.0030 0.0642 

80 1.0022 0.0022 0.0446 

120 1.0017 0.0017 0.0369 

160 1.0010 0.0010 0.0321 

 

Table 8. Performance measurement 2̂  when 2 10 = , 2 1 =  and 2

2 1 =  

 

n  Mean ( 2̂ ) EB ( 2̂ ) MAPE ( 2̂ ) 

40 1.0023 0.0023 0.0636 

80 1.0019 0.0019 0.0445 

120 1.0013 0.0013 0.0364 

160 1.0005 0.0005 0.0315 

 

 

Both Table 7 and Table 8 have the mean of 2̂  closer to their respective actual value of 2  as we 

increase the value of n . This suggests that, on average, the estimates in both tables are centred around 

the actual values. The estimated bias of 2̂  is closer to to zero in both tables, indicating better estimation 

accuracy. The MAPE of 2̂  is decreasing from both tables.  A decreasing MAPE of 2̂  as n  increases 

and a lower value in Table 8 indicate an improvement in the accuracy of estimates when 2 10 = . 

Therefore, the estimation seems adequate for most values of n .  

 

e) Simulation result of 2

1̂  

 

 Table 9 shows the simulation result of 2

1̂  when 1 5 = , 1 1 =  and 2

1 1 =  while Table 10 shows the 

simulation result of 2

1̂  when 1 10 = , 1 1 =  and 2

1 1 = . 
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Table 9. Performance measurement for 2

1̂  when 1 5 = , 1 1 =  and 2

1 1 =  

 

n  Mean ( 2

1̂ ) EB ( 2

1̂ ) MAPE ( 2

1̂ ) 

40 0.9963 -0.0037 0.1814 

80 0.9984 -0.0016 0.1290 

120 0.9987 -0.0013 0.1037 

160 0.9992 -0.0008 0.0903 

 

Table 10. Performance measurement for 2

1̂  when 1 10 = , 1 1 =  and 2

1 1 =  

 

n  Mean ( 2

1̂ ) EB ( 2

1̂ ) MAPE ( 2

1̂ ) 

40 0.9968 -0.0032 0.1813 

80 0.9989 -0.0011 0.1284 

120 0.9993 -0.0007 0.1026 

160 0.9998 -0.0002 0.0895 

 

 

Both Table 9 and Table 10 have the mean of 2

1̂  closer to their respective actual value of 2

1̂  as we 

increase the value of n . This suggests that, on average, the estimates in both tables are centred around 

the actual values. The estimated bias of 2

1̂  is closer to to zero in both tables, indicating better estimation 

accuracy. The MAPE of 2

1̂  is decreasing from both tables.  A decreasing MAPE of 2

1̂  as n  increases 

and a lower value in Table 10 indicate an improvement in the accuracy of estimates when 1 10 = . 

Therefore, the estimation seems adequate for most values of n .  
 

f) Simulation result of 2

2̂  

Table 11 shows the simulation result of 2

2̂  when 2 5 = , 2 1 =  and 2

2 1 =  while Table 12 shows the 

simulation result of 2

2̂  when 2 10 = , 2 1 =  and 2

2 1 = 2

1 1 = . 

 

Table 11. Performance measurement for 2

2̂  when 2 5 = , 2 1 =  and 2

2 1 =  

 

n  Mean ( 2

2̂ ) EB ( 2

2̂ ) MAPE ( 2

2̂ ) 

40 0.9918 -0.0082 0.1806 

80 0.9981 -0.0019 0.1270 

120 0.9997 -0.0003 0.1034 

160 1.0001 0.0001 0.0898 

 

Table 12. Performance measurement 2

2̂  when 2 10 = , 2 1 =  and 2

2 1 =  

 

n  Mean ( 2

2̂ ) EB ( 2

2̂ ) MAPE ( 2

2̂ ) 

40 0.9990 -0.0010 0.1815 

80 0.9997 -0.0003 0.1260 

120 0.9998 -0.0002 0.1029 

160 0.9999 -0.0001 0.0894 

 

 

Both Table 11 and Table 12 have the mean of 2

2̂  closer to their respective actual value of 2

2̂  as we 

increase the value of n . This suggests that, on average, the estimates in both tables are centred around 

the actual values. The estimated bias of 2

2̂  is closer to to zero in both tables, indicating better estimation 

accuracy. The MAPE of 2

2̂  is decreasing from both tables. A decreasing MAPE of 2

2̂  as n  increases 

and a lower value in Table 12 indicate an improvement in the accuracy of estimates when 2 10 = . 

Therefore, the estimation seems adequate for most values of n .  
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Application of Simultaneous Linear Functional Relationship 
Model to Real Data 
Coastal weather stations commonly collect data on wind speed, temperature, and humidity, which are 
essential for understanding local weather conditions and atmospheric environments. This data is 
valuable for gaining insights into meteorological and climatic patterns, and it plays a crucial role in 
predicting and comprehending monsoon phenomena. Monsoons, characterised by seasonal shifts in 
wind direction along with notable changes in temperature and humidity, are closely observed using these 
collected data. In summary, the information gathered from coastal weather stations, precisely wind 
speed, temperature, and humidity data, is vital for monitoring and comprehending monsoon patterns. 
This knowledge has diverse applications, ranging from aiding in agricultural planning to facilitating 
disaster preparedness and response in regions affected by monsoons. In this study, we demonstrate the 
applicability of the simultaneous linear functional relationship model by utilising wind speed, temperature, 
and humidity data from the Butterworth and Melaka stations. Figure 1  shows the location of Melaka and 
Butterworth in Malaysia. 

 

 
 

Figure 1. Location Melaka and Butterworth in Malaysia 

 

 

Melaka town is located on the southwestern peninsula of Malaysia (2.16 °N, 102° 15'E) and encounters 
high temperatures and humidity without much fluctuation most days of the year (Manteghi et al., 2020). 
Next, Butterworth is located on the northwest coast of Peninsular Malaysia (5° 27' N, 100° 23' E). Wind 
conditions are generally light and variable, originating from the Andaman Sea and the Straits of Melaka 
(Hussin et al., 2015). The dataset, sourced from the Malaysian Meteorological Department (MDD) and 
presented in Microsoft Excel, includes daily maximum wind speed, 24-hour mean relative humidity, and 
24-hour mean temperature during the southwest monsoon season in 2020 starting from 18th May 2020 

until 22nd September 2020 (Laporan Tahunan 2020, 2020). With the sample size of n =128, the wind 

speed of Melaka is addressed as the variable 1x  while the wind speed of Butterworth is as 2x . Next, the 

mean relative humidity of Melaka is let as 1y  while 3y  is the mean relative humidity for Butterworth. The 

variable 2y  is the mean temperature data for Melaka and 4y  for Butterworth. The relationship between 

the variable 1x , 2x , 1y , 2y , 3y  and 4y  is shown in Table 13: 
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Table 13. Relationship of wind speed, temperature, and humidity data of Melaka and Butterworth 

 

Type of relationship/Station  Melaka Butterworth 

Humidity data with wind speed 
1 1 1x X = +  and 1 1 1y Y = + , 

where 1 1 1 1Y X = +  
2 2 2x X = +  and 3 3 3y Y = + , where 

3 3 3 1Y X = +  

Temperature data with wind 
speed 1 1 1x X = +  and 2 2 2y Y = + , where 

2 2 2 2Y X = +  

2 2 2x X = +  and 4 4 4y Y = + , 

where 4 4 4 2Y X = +  

 
 

The normal distribution will be used to model the relationship between wind speed, humidity and 
temperature data throughout the southwest monsoon in 2020 for Butterworth and Melaka. The normality 
of the wind speed, humidity and temperature data is tested using the Kolmogorov-Smirnov test. 
Kolmogorov-Smirnov test is a well-known and widely used method to test whether the data is normally 
distributed (Zakaria, 2022). This test is applicable when the population distribution function is continuous 

(Hawkins & Kanji, 1995). The following are the null, 0H  and alternative hypotheses, AH  used in a 

Kolmogorov-Smirnov test: 

0H : The distribution of the data is normal. 

AH : The distribution of the data is not normal. 

The Kolmogorov-Smirnov statistic ( D ) is defined as 

1

1
max ( ) , ( )i i

i n

i i
D F Y F Y

n n 

− 
= − − 

 
(13) 

where F  is the theoretical cumulative distribution. 0H  is rejected if D exceeds the critical value 

determined from the table obtained by Massey (Lo Brano et al., 2011; Massey, 1951). The critical value 
is derived from the maximum absolute difference between sample and population cumulative 

distributions for a sample size n  (Massey, 1951). The equation critical value of D  when  = 0.05, and 

the sample size is over 35, is 
1.36

n
 based on Massey (1951) (Hawkins & Kanji, 1995). Insert the value 

of the sample size, 128, into the equation
1.36

critical value of 
128

D = . Hence, the critical value is 0.1202. 

The Kolmogorov-Smirnov statistic, D  for wind speed, humidity, and temperature throughout the 

southwest monsoon in 2020 for Melaka and Butterworth is shown in Table 14. 
 

Table 14. Kolmogorov-Smirnov statistic ( D ) for wind speed, humidity, and temperature throughout the southwest monsoon season in 

2020 for Melaka and Butterworth 

 

Data Melaka Butterworth 

Wind speed 0.1186 0.0811 

Humidity 0.0480 0.0793 

Temperature 0.0713 0.0700 

 

 

From Table 14, all the D  values are below the critical value for Melaka and Butterworth; hence the 0H  

cannot be rejected. This indicates that Melaka and Butterworth's wind speed, humidity and temperature 
data throughout the southwest monsoon in 2020 can be assumed to be normally distributed. Therefore, 
the extended model in this study is normally distributed and can be used to describe the relationship 
between wind speed, humidity and temperature data throughout the southwest monsoon in 2020 for 
Melaka and Butterworth. 

 

Q-Q plots for wind speed, humidity and temperature data in Melaka and Butterworth throughout the 
southwest monsoon in 2020 are constructed to show the data's goodness-of-fit to the normal distribution. 
Q-Q plot illustrates the data distribution. The points will fall on a reference line if the two data sets are 
from the normal distribution. The Q-Q plot for wind speed, humidity and temperature data in Melaka and 
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Butterworth throughout the southwest monsoon in 2020 are displayed in Figure 2, Figure 3, Figure 4, 
Figure 5, Figure 6, and Figure 7, respectively. 

 

 
Figure 2. Q-Q plot for wind speed data during the southwest monsoon in 2020 for Melaka 

 

 
Figure 3. Q-Q plot for humidity data during the southwest monsoon in 2020 for Melaka 
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Figure 4. Q-Q plot for temperature data during the southwest monsoon in 2020 for Melaka 

 

 
Figure 5. Q-Q plot for wind speed data during the southwest monsoon in 2020 for Butterworth 
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Figure 6. Q-Q plot for humidity data during the southwest monsoon in 2020 for Butterworth 

 

 
Figure 7. Q-Q plot for temperature data during the southwest monsoon in 2020 for Butterworth 

 

 

Kolmogorov-Smirnov test and the Q-Q plot support that Melaka and Butterworth's wind speed, humidity, 
and temperature data during the southwest monsoon of 2020 will be treated with normal distribution. 
The detail for real data simultaneous LFRM for each station can be described as follows: 

Step 1:Insert 1x , 2x , 1y , 2y , 3y  and 4y . Let 1 = . 

Step 2:Calculate the mean of 1x , 2x , 1y , 2y , 3y  and 4y . 

Step 3:Fit the data by using simultaneous LFRM from equation (2). 

Step 4:Calculate the parameter estimates 1̂ , 2̂ , 3̂ , 4̂ , 1̂ , 2̂ , 3̂ , 4̂ , 2

1̂ , 2

2̂ , 2

3̂  and 2

4̂ .  

Step 5: Calculate the Var ( 1̂ ), Var ( 2̂ ), Var ( 1̂ ), Var ( 2̂ ), Cov( 1̂ , 1̂ ), and Cov( 2̂ , 2̂ ), respectively. 

 

Table 15 presents the parameter estimates for wind speed, humidity and temperature collected from 
Melaka and Butterworth during the southwest monsoons of 2020 when fitted with a simultaneous 
functional relationship model for linear variables. 
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Table 15. Parameter estimates of Melaka and Butterworth wind speed, humidity and temperature during the southwest monsoon 2020 
 

 Melaka Butterworth 

Variable Humidity Temperature Humidity Temperature 

ˆ
j
 1̂ = 13.9429 2̂ = 28.9451 3̂ = 13.6790 4̂ = 29.1486 

ˆ
j  

1̂ = 6.7436 2̂ = -0.1217 3̂ = 7.1225 4̂ = -0.1059 

2

j  2

1̂ = 4.3346 2

2̂ = 0.7793 2

3 = 4.9464 2

4 = 0.6738 

Var ( ˆ
j ) Var ( 1̂ ) = 1113.2165 Var ( 2̂ ) = 0.2005 Var ( 3̂ ) =  1259.2059 Var ( 4̂ ) = 0.1285 

Var ( ˆ
j ) Var ( 1̂ ) = 11.5343 Var ( 2̂ ) = 0.0020 Var ( 3̂ ) = 14.1740 Var ( 4̂ ) = 0.0014 

Cov ( ˆ
j , ˆ

j ) Cov ( 1̂ , 1̂ ) = 0 Cov ( 2̂ , 2̂ ) =0 Cov ( 3̂ , 3̂ ) = 0 Cov ( 4̂ , 4̂ ) =0 

 

 

From Table 15, the model for wind speed, humidity and temperature collected from Melaka and 

Butterworth during the southwest monsoons of 2020 are 11 13.9429 6.7436y x+= , 

12 28.9451 0.1217y x−= , 23 13.6790 7.1225y x+=  and 24 29.1486 0.1059y x−= . Next, the variance of 

1̂ , 3̂ , 1̂ , and 3̂  are relatively high. A surprisingly high variance may prompt a closer examination of 

the data to ensure its quality. Outliers or errors in measurement could contribute to unusually high 

variance values. The variance of 2̂ , 4̂ , 2̂ , and 4̂  are rather small and indicates good estimation for 

2̂ , 4̂ , 2̂ , and 4̂ .  

 

Conclusions 
 

In conclusion, this paper extends parameter estimation from a simple linear functional relationship model 
(LFRM) to simultaneous LFRM for linear variables using the maximum likelihood estimation (MLE) 
method and the covariance matrix of the parameters is derived using the Fisher Information matrix. 
Results from the simulation study showed that the mean of the parameter estimate becomes closer to 
the real value of the parameter as we increase the value of sample size, n . Therefore, the estimation 
seems adequate for most values of n . The applicability of the simultaneous linear functional relationship 
model is demonstrated using Melaka and Butterworth wind speed, humidity, and temperature data 
throughout the southwest monsoon season in 2020 using this simultaneous linear functional relationship 
model (LFRM). Error terms are taken into consideration for the multivariate data. The MLE method 
estimates the wind speed, humidity and temperature parameters with errors in every variable. The 
simultaneous LFRM for wind speed, humidity and temperature collected from Melaka and Butterworth 

during the southwest monsoon of 2020 are 11 13.9429 6.7436y x+= , 12 28.9451 0.1217y x−= , 

23 13.6790 7.1225y x+=  and 24 29.1486 0.1059y x−= . From the findings, we can study the relationship 

between more than two linear variables which are wind speed, humidity and temperature for two 
locations which are Melaka and Butterworth during the southwest monsoon season in 2020 with error 
considerations for each variable. Understanding these relationships is crucial for drawing meaningful 
conclusions in statistical analysis. This model can assist in managing outdoor activities while considering 
weather and safety by calculating the wind speed, mean relative humidity and temperature in Melaka 
and Butterworth throughout the southwest monsoon. This model may be used in future research to 
investigate the relationship between wind speed data, mean relative humidity, and temperature and to 
describe it as a simultaneous functional relationship model at several other locations with consideration 
of outliers. 
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