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Abstract In the statistical literature, the Birnbaum-Saunders distribution has garnered considerable 

attention as an important fatigue life distribution for engineers. This distribution finds applications in 

medicine, engineering, and science. A percentile denotes a threshold below which a designated 

percentage of scores or data points are situated. In particular cases, percentiles are the preferred 

choice over mean and variance, especially when dealing with skewed data. This paper investigates 

confidence intervals for the ratio of percentiles of Birnbaum-Saunders distributions. It discusses the 

generalized fiducial confidence interval, Bayesian credible interval, and the highest posterior density 

intervals using a prior distribution with partial information and a proper prior with known 

hyperparameters. To compare the performance of these confidence intervals, the study employs 

coverage probability and average length measurements. Monte Carlo simulation via the R package is 

used to calculate the coverage probability and average length. The results indicate that the highest 

posterior density interval using a prior distribution with partial information outperforms the other 

confidence intervals. Finally, the paper presents the results of the simulation study and applies them in 

the field of environmental sciences. 

Keywords: Bayesian credible interval, Birnbaum-Saunders distribution, generalized fiducial confidence 

interval, highest posterior density interval, percentile. 
 

 

Introduction 
 

The well-known Weibull distribution is a commonly utilized model for lifetimes. Nonetheless, the Weibull 
distribution may not accurately represent lifetime data in certain cases. For instance, Durham and 
Padgett [8] suggested that the Birnbaum-Saunders (BS) distribution provides a much better fit for some 
carbon fiber or carbon composite tensile strength data compared to the Weibull distribution. Furthermore, 
the BS distribution can serve as an approximation of the inverse Gaussian distribution [2] and can be 
seen as an equal mixture of the inverse Gaussian distribution [7]. Additionally, the properties of the BS 
distribution bear resemblance to those of the log-normal distribution [21]. Birnbaum and Saunders [3] 
introduced the BS distribution as a model for failure times resulting from cyclic loading-induced fatigue 
failure. The BS distribution is widely adopted as a lifetime distribution in various reliability theory models. 
Therefore, statistical inference for the BS distribution holds practical value in reliability applications. 
Numerous researchers have developed and discussed methods for inference based on the BS 
distribution. For example, Birnbaum and Saunders [4] presented the maximum likelihood estimator for 
its parameters, while Ng et al. [17] introduced the modified moment estimator. Wu and Wong [25] 
provided approximated interval estimation for the BS distribution based on higher-order likelihood 
asymptotic procedures. Li and Xu [15] presented the fiducial estimator for the distribution's parameters 
and compared it with maximum likelihood and Bayesian estimators. Guo et al. [11] introduced methods 
for both interval estimation and hypothesis testing regarding the common mean of BS distributions. Their 
approach blends aspects of generalized inference with principles from large sample theory. Jayalath [13] 
used a flexible Gibbs sampler for parameter inference for the BS distribution. Puggard et al. [20] 
introduced confidence intervals (CIs) for the variance and the difference of variances for BS distributions. 
The BS distribution, also referred to as the fatigue life distribution, is a widely employed probability 
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distribution in the fields of reliability engineering and statistics. It is primarily utilized for modeling the 
lifespan or fatigue life of materials or products exposed to cyclical or repetitive stress. This distribution 
proves instrumental in gaining insights into the degradation or wear and tear of products and materials 
over time. This distribution provides a robust framework for the modeling and analysis of data pertaining 
to fatigue life and failure rates, serving as a valuable tool for engineers and researchers to make well-
informed decisions concerning the reliability and durability of products and materials. Widely embraced 
in the realm of reliability analysis, particularly within industries like engineering, material science, and 
product design, the BS distribution is employed to discern the likely points in time when products or 
materials may fail. It considers factors such as cumulative damage, wear and tear, and fatigue in its 
assessments. Furthermore, this distribution plays a pivotal role in risk assessment by aiding in the 
evaluation of the likelihood of rare or extreme events associated with failures. Its utility in risk 
management and the analysis of product reliability is particularly noteworthy. 

 

While the mean and variance are fundamental statistical concepts, percentiles provide unique 
advantages in certain scenarios, especially when data deviate from normal distributions, incorporate 
outliers, or when assessing risk and making decisions relies on evaluating event probabilities concerning 
specific benchmarks. The selection of the most suitable measure depends on both the characteristics of 
the data and the specific goals of the analysis. Percentiles are frequently used in various fields such as 
medicine, engineering, and environmental sciences. In medicine, comparing a new drug to a standard 
one may involve examining the percentile response of a majority of patients, which can be more 
significant than the average response. In engineering, the percentile of a lifetime distribution is commonly 
employed for maintenance or structural design.  

 

There has been extensive research into the parameters of the BS distribution. Several researchers have 
explored inferences based on these parameters, including Achcar [1], Lu and Chang [16], Ng et al. [17], 
Wu and Wong [25], Leiva et al. [14], Wang [23], Niu et al. [18], Wang et al. [24], and Guo et al. [11]. This 
paper's objective is to provide CIs for the ratio of two percentiles of the BS distributions. It employs four 
different approaches: the generalized fiducial confidence interval (GFCI) approach, the Bayesian 
approach, and the highest posterior density (HPD) approaches using a prior distribution with partial 
information (HPD-PI) and a proper prior with known hyperparameters (HPD-KH) to estimate interval 
estimates for the population ratio of percentiles. These approaches rely on simulated data for 
constructing the CIs. To facilitate practical usage, a computer program is developed in the R language 
for calculating coverage probability (CP) and average length (AL). A numerical example is provided to 
demonstrate the application of this program. 

 
Materials and Methods 
 

Let ijX  be non-negative random variable drawn from a BS distribution with shape parameter 
i  and 

scale parameter 
i , where i 1,2=  and 

ij 1,2,...,n= . The probability density function is  

( )

1 3

2 2
iji i i

ij i i 2

ij ij i iji i i

x1 1
f (x ; , ) exp 2

x x x2 2 2

 
         

  = + − + −                       
 

,                               (1) 

where ijx 0 , i 0  , and i 0  . 

 

Based on the research conducted by Puggard et al. [20], they employed this transformation to produce 
sample data from the BS distribution, streamlining the extraction of several of its supplementary 
properties, including various statistical moments. 

 

The normal transformation was utilized to generate samples from the BS distributions and to facilitate 

the derivation of several other properties, such as various moments. Therefore, suppose that ijX  is a 

random variable following the BS distribution with parameters i  and i , and it is  

( )2 2

ij i ij ij ijX 1 2(Z ) 2Z 1 (Z )=  + + + ,                                                                                  (2) 

 

where 

2
ij i i

ij

i ij

X1 ( )
Z ~ N 0,

2 X 4

    
 = −      

.                                                                                 (3) 
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Following Chang and Tang [6] and Padgett and Tomlinson [19], the p -th percentile of ijX  is  

2
2 2i

i i p i pz ( ) z 4
4

   =  +  +
 

,                                                                                           (4) 

where 
1

pz (p)−=   is the p -th quantile of the standard normal distribution.   

 

Therefore, the ratio of percentiles is  

1

2


 =


,                                                                                                                                (5) 

where  
2

2 21
1 1 p 1 pz ( ) z 4

4

   =  +  +
 

                                                       (6) 

and  
2

2 22
2 2 p 2 pz ( ) z 4

4

   =  +  +
 

.                                                                                          (7) 

 

Generalized Fiducial Confidence Interval (GFCI) Approach 
Generalized fiducial inference offers a means to convert the initial dataset into different distributions with 
established properties. Following the guidelines of these alternative distributions, adjustments are made 
to the transformed data, and the outcomes are then reconverted to their original form using an inverse 
transformation, as described by Hannig [12]. 

 

Suppose that   means “is proportional to”. Li and Xu [15] derived the generalized fiducial distribution, 
which is 

i i ij ij i i ij i if ( , | x ) J(x ,( , ))L(x | , )       ,                                                                             (8) 

where 

i i

i i
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j 1j 1i i ij ij i i ij

x1 1
L(x | , ) exp 2

( ) ( ) x x 2( ) x==
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                       (9) 

and 

i

ij ik

ij i i

1 j k n
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ij ik
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According to Li and Xu [15] and Puggard et al. [20], the priors of i  and i  are the special case of the 

prior with partial information which are 

i

i

1
( )  


                                                                                                                     (11) 

and 

i

ij ik

i

1 j k n i ij i ik

x x
( )

(1 / x )(1 / x )  

−
  

+ +
 .                                                                              (12) 

 

Hence, i i ijf ( , | x )   is suitable for the specific scenario involving a prior informed by the priors of i  in 

Equation (11) and i  in Equation (12), both representing partial information. Let i̂  and i̂  be the 

generalized fiducial samples of i  and i , respectively. Because i̂  and i̂  can be derived from the 

generalized fiducial distribution using a procedure similar to that of the Bayesian posterior, the process 
employed to generate fiducial samples from the generalized fiducial distribution specified in Equation (8) 
involved the utilization of adaptive rejection Metropolis sampling (ARMS), an extension of adaptive 
rejection sampling (ARS). Gilks and Wild [9] introduced the concept of ARS, which was primarily 
designed for handling target densities that exhibit log-concavity. However, recognizing the limitations of 
ARS, Gilks et al. [10] enhanced the technique to make it more versatile. Their modifications allowed ARS 
to accommodate multivariate distributions and non-log-concave density functions by permitting the 
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proposal distribution to be lower than the target in specific regions. They also introduced a Metropolis-
Hastings step to ensure that the accepted samples conform to the desired distribution. This improved 
technique was named ARMS. It is easy to implement ARMS using the 'arms' function within the R 

software suite's 'dlm' package. Please be aware that i̂  and i̂  are random variables. Hence, i  is 

substituted by i̂  and i  is substituted by i̂ . 

 

Therefore, the generalized fiducial estimates of   is  

1

2

ˆ
ˆ

ˆ


 =


,                                                                                                                            (13) 

where  

2
2 21

1 1 p 1 p

ˆ
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4
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                                                                                          (14) 

and  

2
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2 2 p 2 p

ˆ
ˆ ˆ ˆz ( ) z 4

4

   =  +  +
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.                                                                                        (15) 

 

Therefore, the 100(1 )%−   two-sided CI based on the GFCI approach is  

GFCI GFCI GFCI
ˆ ˆCI [L ,U ] [ ( / 2), (1 / 2)]= =    −  ,                                                                      (16) 

where ˆ ( / 2)   and ˆ (1 / 2) −   are the 100( / 2) -th and 100(1 / 2)−  -th percentiles of ̂ , respectively, 

and ̂  is defined in Equation (13).  

 

Algorithm 1: CI based on the GFCI approach 

Step 1: Generate ijx  from BS distribution, where i 1,2=  and ij 1,2,...,n=  

Step 2: Generate K  samples of i  and i  using the 'arms' function 

Step 3: Burn-in B  samples  

Step 4: Reduce the number of samples by using sampling lag L 1  and the final number of samples is 

K (K B) / L = −  

Step 5: Calculate ̂  using Equation (13) and obtain (1) (2) (K )
ˆ ˆ ˆ, ,...,     

Step 6: Calculate GFCIL  and GFCIU  

 

Bayesian Approach 
The Bayesian approach is commonly expressed using Bayes' theorem, a mathematical representation 
that elucidates the conversion of prior probability into posterior probability, accounting for the data's 
likelihood. 

 

Xu and Tang [26] pointed out that utilizing the reference prior for the BS distribution leads to an improper 
posterior distribution. Wang et al. [24] subsequently confirmed this impropriety. To address this issue, 

proper priors with known hyperparameters are established by assuming that i  follows an inverse-

gamma distribution with parameters ia  and ib , denoted as i i iIG( | a ,b ) , and that 
2

i i( ) =   follows an 

inverse-gamma distribution with parameters ic  and id , denoted as 
2

i i iIG(( ) | c ,d ) . 

 

The joint posterior density function of i i( , )   is 

i i ij ij i i i i i i i ip( , | x ) L(x | , ) ( | a ,b ) ( | c ,d )          
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The marginal distribution of i  is  

i

ii i

i i

(n 1)1 3
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 .            (18) 

 

The conditional posterior distribution of i  given i  is  

in
iji i

i ij i i i

j 1 i ij

xn 1
( | x , ) IG c , 2 d

2 2 x=

  
     + + − + 

    
 .                                                            (19) 

 

Posterior samples are generated using the Markov Chain Monte Carlo technique. The marginal 

distribution of i , as defined in Equation (18), cannot be easily expressed, making it impossible to use 

standard methods to generate posterior samples for i . In such cases, three common approaches come 

into play: the random-walk Metropolis procedure, the Metropolis-Hastings algorithm, and the slice 
sampler. These methods introduce auxiliary variables to simplify the sampling problem when dealing 
with the marginal posterior distribution defined in Equation (18). However, all three approaches are prone 
to producing serially correlated draws, often necessitating a very large sample size to obtain accurate 
estimates of the desired attributes of the posterior distribution. To overcome these potential challenges 
in generating posterior samples, the generalized ratio-of-uniforms method, as outlined by Wakefield et 

al. [22], is employed to generate posterior samples for i , which is defined as i . The generalized ratio-

of-uniforms method operates based on the following concept. 

 

A pair of random variables i i(u ,v )  is uniformly distributed inside region which is  

i

i

1/(r 1)

i
i i i i ijr

i

v
A(r ) (u ,v ) : 0 u x

u

+    
=       

     

,                                                                       (20) 

where ir 0  is a constant term and ij( | x )   is the marginal posterior distribution in Equation (18). 

Therefore, the probability density function of 
i

i
i r

i

v

u
 =  becomes 

i ij

i ij i

( | x )

( | x )d

 
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. To generate random 

samples that are uniformly distributed in iA(r ) , the accept-reject method is applied from a suitable 

enveloping region. Following Wakefield et al. [22], the minimal bounding rectangle for iA(r )  is  

i i i[0,a(r )] [b (r ),b (r )]− + ,                                                                                                    (21) 

where 
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i
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+
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−
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and 

( ) i i

i
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i i i ij
0

b (r ) sup | x
+

+

 
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Wang et al. [24] proposed that ib (r ) 0− = , ia(r )  is finite, and ib (r )+
 is finite when choosing an appropriate 

value for ir . The generalized ratio-of-uniforms method comprises the following three sequential stages: 

1. Compute ia(r )  and ib (r )+
 

2. Compute iu  from ( )iU 0,a(r ) , compute iv  from ( )iU 0,b (r )+ , and compute ir

i iv / u =  

3. If 
i1/(r 1)

i i iju ( | x )
+

      is true, assign i =  ; otherwise, repeat the process 

 

In the meantime, i , representing the posterior samples of i , can be obtained by applying the 

conditional posterior distribution described in Equation (19) using the LearnBayes package in the R 
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software suite. Let i  be the posterior samples of i  which is computed by the square roots of i . Let 

i  and i  be random variables. Consequently, the Bayesian estimate for   is 

1

2


 =


,                                                                                                                            (25) 

where  

2
2 21

1 1 p 1 pz ( ) z 4
4

   =  +  +
 

                                                                                          (26) 

and  

2
2 22

2 2 p 2 pz ( ) z 4
4

   =  +  +
 

.                                                                                        (27) 

 

Therefore, the 100(1 )%−   two-sided credible interval based on the Bayesian approach is  

Baye Baye BayeCI [L ,U ] [ ( / 2), (1 / 2)]= =    −  ,                                                                        (28)      

where ( / 2)   and (1 / 2) −   are the 100( / 2) -th and 100(1 / 2)−  -th percentiles of  , respectively. 

 

Algorithm 2: Credible interval based on Bayesian approach 

Step 1: Set ia , ib , ic , and id , where i 1,2=  

Step 2: Compute ia(r )  and ib (r )+
 

Step 3: Repeat m  times 

(a) Generate iu  from ( )iU 0,a(r )  and generate iv  from ( )iU 0,b (r )+ , and then compute ir

i i iv / u =  

(b) If 
i1/(r 1)

i i iju ( | x )
+

     , set 
i,(m) i = ; otherwise, repeat step (a) 

(c) Generate 
i,(m)  from 

in
ij i,(m)i

i i

j 1 i,(m) ij

xn
IG c , 2 d

2 x=

  
 + + − + 

    
 , and then 

i,(m) i,(m) =   

(d) Compute the Bayesian estimates for   using Equation (25) 

Step 4: Repeat step 3, a total M  times 

Step 5: Calculate BayeL  and BayeU  

 

Highest Posterior Density (HPD) Approach 
The HPD approach is a foundational concept in Bayesian statistics, allowing the determination of credible 
intervals for parameters by focusing on the range of values where the posterior probability density is 
most densely clustered. This method is highly valuable for expressing the degree of uncertainty 
associated with parameter estimates and for enabling probabilistic reasoning in a Bayesian context. 

 

The HPD interval encompasses values where the posterior density at every point within the interval 
surpasses the posterior densities at points outside of it. This indicates that the interval includes the 
parameter values that are more probable while excluding the less probable ones. Box and Tiao [5] 
outlined two key characteristics of the HPD interval as follows: 

 

1. Within the interval, the probability density is higher compared to points outside of it. 

2. At a specified probability level (1 )−  , the interval possesses the smallest possible length. 

 

Using Equation (10), Li and Xu [15] demonstrated that ij i iJ(x ,( , ))   corresponds to a specific instance 

of a prior informed by partial information, and the generalized fiducial estimates for i  and i  can be 

derived using a method analogous to that for the Bayesian posterior. 

 

Therefore, the 100(1 )%−   two-sided CI based on the HPD-PI approach is  

HPD PI HPD PI HPD PICI [L ,U ]− − −= ,                                                                                              (29)      

where HPD PIL −  and HPD PIU −  are obtained by using the HDInterval package from the R software suite. 
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Algorithm 3: CI based on the HPD-PI approach 

Step 1: Generate ijx  from BS distribution, where i 1,2=  and ij 1,2,...,n=  

Step 2: Generate K  samples of i  and i  using the 'arms' function 

Step 3: Burn-in B  samples  

Step 4: Reduce the number of samples by applying sampling lag L 1  and the final number of samples 

is K (K B) / L = −  

Step 5: Calculate ̂  using Equation (13) and obtain (1) (2) (K )
ˆ ˆ ˆ, ,...,     

Step 6: Calculate HPD PIL −  and HPD PIU −  

 

Moreover, the 100(1 )%−   two-sided CI based on the HPD-KH approach is  

HPD KH HPD KH HPD KHCI [L ,U ]− − −= ,                                                                                          (30)      

where HPD KHL −  and HPD KHU −  are obtained by using the HDInterval package from the R software suite. 

 

Algorithm 4: CI based on the HPD-KH approach 

Step 1: Set ia , ib , ic , and id , where i 1,2=  

Step 2: Compute ia(r )  and ib (r )+
 

Step 3: Repeat m  times 

(a) Generate iu  from ( )iU 0,a(r )  and generate iv  from ( )iU 0,b (r )+ , and then compute ir

i i iv / u =  

(b) If 
i1/(r 1)

i i iju ( | x )
+

     , set 
i,(m) i = ; otherwise, repeat step (a) 

(c) Generate 
i,(m)  from 

in
ij i,(m)i

i i

j 1 i,(m) ij

xn
IG c , 2 d

2 x=

  
 + + − + 

    
 , and then 

i,(m) i,(m) =   

(d) Compute the Bayesian estimates for   using Equation (25) 

Step 4: Repeat step 3, a total M  times 

Step 5: Calculate HPD KHL −  and HPD KHU −  

 
Results 
 

A Monte Carlo simulation was undertaken to assess the performance of the proposed CIs for the ratio 
of percentiles in the BS distribution, employing the R package. The evaluation of these CIs focused on 
their CPs and ALs, maintaining a fixed nominal confidence level of 0.95. An optimal CI was defined by 
its CP of 0.95 or higher and the shortest AL. 

 

According to a study by Puggard et al. [20], they set the shape parameters as 1 2( , )  =  (0.25, 0.25), 

(0.25, 0.50), (0.25, 1.00), (0.50, 0.50), (0.50, 1.00), and (1.00, 1.00), while the scale parameters remained 

fixed at 1 2( , )  =  (1.00, 1.00). The study involved 1000 replications with K =  3000 for the GFCI,  

B =  1000 for HPD-PI interval, and M=  1000 for Bayesian credible interval and HPD-KH interval. 
Additionally, according to Wang et al. [24], Bayesian credible interval and HPD-KH interval were 

considered with 1 2(r ,r ) =  (2.00, 2.00) and set the hyperparameters 1a , 2a , 1b , 2b , 1c , 2c , 1d , and 2d  

to 410− .  

 

The CPs and ALs of the CIs can be computed based on the following methodology. 

Step 1: Use Algorithm 1 - Algorithm 4 to construct the CIs 

Step 2: If L U   , set P =  1; else set P =  0 

Step 3: Compute U L−  

Step 4: Repeat step 1 - step 3, a total 1000 times  

Step 5: Compute average of P  defined as the CP 

Step 6: Compute average of U L−  defined as the AL 

 

The proposed CIs for the ratio of percentiles of BS distributions were evaluated in Table 1 and illustrated 
in Figures 1 and 2. In Table 1, the findings suggest that, in certain instances, the CPs of all approaches 
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exceeded the nominal confidence level of 0.95. The HPD-PI interval exhibited shorter ALs compared to 
the other CIs. However, the GFCI and HPD-KH intervals were the shortest in some cases. 

 

Figures 1 and 2 illustrate the CPs and ALs of the CIs, respectively, concerning different sample sizes 
and shape parameters. As depicted in Figure 1, when the sample sizes were set to 50, the CPs of all 
approaches matched the nominal confidence level of 0.95, but they decreased for sample sizes greater 
than 50. Furthermore, as the sample size increased, the AL of all approaches decreased. The CPs of all 
CIs were smaller when the sample sizes are larger because its ALs were shorter which was effect to the 
proportion of the time that the interval contains the true value. In Figure 2, the CPs of all approaches 
closely aligned with the nominal confidence level of 0.95 when the shape parameters were set to 0.50. 
Additionally, the AL of all approaches increased with the shape parameter. 

 
Table 1. The CPs and ALs of 95% two-sided CIs for the ratio of percentiles of BS distributions 
 

1 2(n ,n )  1 2( , )   

CP (AL) 

GFCICI  
BayeCI  

HPD PICI −
 

HPD KHCI −
 

(10,10) (0.25,0.25) 0.9540  
(0.4590) 

0.9530  
(0.4595) 

0.9460  
(0.4518) 

0.9520  
(0.4519) 

(0.25,0.50) 0.9410  
(0.7343) 

0.9390  
(0.7435) 

0.9400  
(0.7159) 

0.9400  
(0.7225) 

(0.25,1.00) 0.9300  
(1.2780) 

0.9360  
(1.3524) 

0.9200  
(1.2117) 

0.9310  
(1.2703) 

(0.50,0.50) 0.9440  
(0.9537) 

0.9470  
(0.9630) 

0.9350  
(0.9203) 

0.9410  
(0.9285) 

(0.50,1.00) 0.9500  
(1.4376) 

0.9530  
(1.5076) 

0.9450  
(1.3485) 

0.9470  
(1.4070) 

(1.00,1.00) 0.9430  
(1.9955) 

0.9430  
(2.0722) 

0.9500  
(1.8183) 

0.9560  
(1.8775) 

(10,30) (0.25,0.25) 0.9440  
(0.3695) 

0.9490  
(0.3706) 

0.9440  
(0.3645) 

0.9440  
(0.3654) 

(0.25,0.50) 0.9350  
(0.4861) 

0.9420  
(0.4881) 

0.9340  
(0.4783) 

0.9430  
(0.4801) 

(0.25,1.00) 0.9440  
(0.7391) 

0.9430  
(0.7460) 

0.9430  
(0.7197) 

0.9420  
(0.7278) 

(0.50,0.50) 0.9510  
(0.7521) 

0.9470  
(0.7562) 

0.9560  
(0.7317) 

0.9560  
(0.7352) 

(0.50,1.00) 0.9510  
(0.9442) 

0.9550  
(0.9571) 

0.9480  
(0.9114) 

0.9480  
(0.9236) 

(1.00,1.00) 0.9380  
(1.5330) 

0.9400  
(1.5343) 

0.9310  
(1.4279) 

0.9350  
(1.4329) 

(30,30) (0.25,0.25) 0.9470  
(0.2544) 

0.9450  
(0.2541) 

0.9480  
(0.2515) 

0.9440  
(0.2513) 

(0.25,0.50) 0.9410  
(0.3977) 

0.9450  
(0.3992) 

0.9390  
(0.3925) 

0.9450  
(0.3936) 

(0.25,1.00) 0.9440  
(0.6845) 

0.9420  
(0.6927) 

0.9440  
(0.6693) 

0.9430  
(0.6774) 

(0.50,0.50) 0.9480  
(0.5055) 

0.9520  
(0.5073) 

0.9440  
(0.4975) 

0.9520  
(0.4992) 

(0.50,1.00) 0.9450  
(0.7490) 

0.9420  
(0.7566) 

0.9380  
(0.7305) 

0.9380  
(0.7374) 

(1.00,1.00) 0.9460  
(0.9628) 

0.9450  
(0.9671) 

0.9510  
(0.9302) 

0.9470  
(0.9352) 

(30,50) (0.25,0.25) 0.9370  
(0.2269) 

0.9400  
(0.2269) 

0.9320  
(0.2247) 

0.9320  
(0.2247) 

(0.25,0.50) 0.9340  
(0.3261) 

0.9380  
(0.3266) 

0.9320  
(0.3224) 

0.9340  
(0.3226) 

(0.25,1.00) 0.9510  
(0.5331) 

0.9480  
(0.5369) 

0.9470  
(0.5241) 

0.9450  
(0.5274) 

(0.50,0.50) 0.9480  
(0.4479) 

0.9490  
(0.4479) 

0.9450  
(0.4411) 

0.9470  
(0.4411) 

(0.50,1.00) 0.9480  0.9450  0.9400  0.9420  
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1 2(n ,n )  1 2( , )   

CP (AL) 

GFCICI  
BayeCI  

HPD PICI −
 

HPD KHCI −
 

(0.6133) (0.6151) (0.6011) (0.6031) 

(1.00,1.00) 0.9490  
(0.8480) 

0.9480  
(0.8494) 

0.9500  
(0.8243) 

0.9560  
(0.8247) 

(50,50) (0.25,0.25) 0.9420  
(0.1958) 

0.9420  
(0.1962) 

0.9390  
(0.1939) 

0.9410  
(0.1943) 

(0.25,0.50) 0.9460  
(0.3054) 

0.9420  
(0.3058) 

0.9390  
(0.3020) 

0.9420  
(0.3024) 

(0.25,1.00) 0.9380  
(0.5186) 

0.9380  
(0.5201) 

0.9350  
(0.5101) 

0.9320  
(0.5118) 

(0.50,0.50) 0.9560  
(0.3878) 

0.9520  
(0.3879) 

0.9480  
(0.3828) 

0.9460  
(0.3829) 

(0.50,1.00) 0.9460  
(0.5661) 

0.9480  
(0.5696) 

0.9430  
(0.5557) 

0.9490  
(0.5594) 

(1.00,1.00) 0.9610  
(0.7222) 

0.9620  
(0.7235) 

0.9530  
(0.7051) 

0.9590  
(0.7065) 

(50,100) (0.25,0.25) 0.9500  
(0.1698) 

0.9520  
(0.1699) 

0.9510  
(0.1682) 

0.9470  
(0.1684) 

(0.25,0.50) 0.9470  
(0.2363) 

0.9500  
(0.2366) 

0.9440  
(0.2339) 

0.9530  
(0.2342) 

(0.25,1.00) 0.9320  
(0.3752) 

0.9320  
(0.3765) 

0.9310  
(0.3705) 

0.9330  
(0.3718) 

(0.50,0.50) 0.9430  
(0.3339) 

0.9500  
(0.3340) 

0.9390  
(0.3301) 

0.9490  
(0.3300) 

(0.50,1.00) 0.9360  
(0.4431) 

0.9350  
(0.4440) 

0.9330  
(0.4366) 

0.9290  
(0.4376) 

(1.00,1.00) 0.9530  
(0.6165) 

0.9510  
(0.6166) 

0.9530  
(0.6042) 

0.9520  
(0.6048) 

(100,100) (0.25,0.25) 0.9390  
(0.1375) 

0.9430  
(0.1377) 

0.9350  
(0.1363) 

0.9400  
(0.1364) 

(0.25,0.50) 0.9470  
(0.2150) 

0.9460  
(0.2153) 

0.9450  
(0.2129) 

0.9440  
(0.2132) 

(0.25,1.00) 0.9430  
(0.3609) 

0.9410  
(0.3626) 

0.9340  
(0.3563) 

0.9390  
(0.3580) 

(0.50,0.50) 0.9570  
(0.2710) 

0.9560  
(0.2715) 

0.9490  
(0.2682) 

0.9530  
(0.2687) 

(0.50,1.00) 0.9320  
(0.3990) 

0.9370  
(0.4001) 

0.9280  
(0.3935) 

0.9290  
(0.3947) 

(1.00,1.00) 0.9370  
(0.5000) 

0.9390  
(0.5010) 

0.9380  
(0.4921) 

0.9440  
(0.4929) 

Note: Bold font means the CI with CP greater than or equal to 0.95 and the shortest AL 
 

 
 

Figure 1. Comparison of the CPs and ALs of the CIs according to sample sizes 
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Figure 2. Comparison of the CPs and ALs of the CIs according to shape parameters 

 

 

Empirical Application 
 
The GFCI, Bayesian, HPD-PI, and HPD-KH approaches were utilized to determine CIs for the percentile 
ratio. Our focus was on the dataset for particulate matter 2.5 (PM2.5) levels. The daily PM2.5 level data 
in Phrae and Lampang provinces have become serious air pollution issues, significantly affecting health 
and visibility for transportation. The percentile ratio was employed to compare the PM2.5 levels in Phrae 
and Lampang provinces. We examined the CIs for the percentile ratio of PM2.5 levels in Phrae province 
and Lampang province. The Pollution Control Department collected daily PM2.5 level data in Phrae and 
Lampang provinces from January 1 to July 31, 2022, as displayed in Table 2. Figure 3 provides 
histograms compared with normal distribution curves illustrating the distribution of daily PM2.5 levels in 
Phrae and Lampang provinces. The suitability of the probability models for fitting the daily PM2.5 level 
data was evaluated through the Akaike Information Criterion (AIC). Table 3 presents the AIC values 
estimated for different probability models applied to the PM2.5 level data from Phrae and Lampang 
provinces. As shown in Table 3, the PM2.5 level data from these provinces was best fit by the BS 
distributions. 

 

Table 2. Daily PM2.5 levels data in Phrae and Lampang provinces 
 

Provinces Daily PM2.5 levels (
3g / m ) 

Phrae 

26 18 26 26 29 31 34 38 33 36 
38 44 39 45 38 42 21 25 29 27 
29 27 21 29 31 31 35 45 43 38 
56 75 34 38 47 22 17 24 21 28 
39 45 29 36 46 36 23 23 20 14 
11 11 19 28 29 34 40 46 50 59 
64 60 52 52 51 37 19 31 40 51 
52 57 59 55 46 34 25 25 46 18 
15 20 19 33 40 48 42 25 31 32 
32 12 12 35 51 64 81 84 102 87 
74 40 55 70 55 48 52 22 16 16 
19 24 29 31 33 35 39 42 24 25 
17 14 19 32 38 32 15 8 10 11 
9 8 11 13 15 15 10 11 12 9 
6 12 17 13 14 21 20 21 20 23 
16 16 22 20 8 7 8 9 8 12 
11 12 11 14 14 15 10 8 9 8 
7 8 7 8 9 9 14 12 8 8 
11 10 8 9 10 10 9 8 7 6 
6 7 11 6 6 6 9 12 11 13 
8 6 6 5 8 9 11 15 22 24 
19 8         

Lampang 
19 15 19 22 26 21 26 24 26 24 
31 37 35 33 31 33 15 16 20 17 
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Provinces Daily PM2.5 levels (
3g / m ) 

17 16 13 17 21 22 21 25 20 24 
27 36 24 27 36 13 16 17 19 27 
29 41 31 34 53 50 16 19 17 8 
8 18 15 24 22 30 41 40 48 62 
54 52 48 42 42 38 14 22 30 30 
37 41 46 48 40 34 26 29 33 17 
11 10 11 26 31 40 43 22 26 31 
27 8 8 21 38 41 57 74 77 73 
59 43 62 69 55 54 57 28 18 13 
16 22 30 33 37 38 41 41 23 19 
15 15 14 22 24 23 13 8 9 10 
9 9 12 13 15 14 7 8 9 7 
5 13 16 12 13 20 19 23 18 20 
16 12 17 16 7 6 6 7 8 10 
13 10 10 12 10 10 7 6 5 6 
5 6 5 7 5 7 9 8 6 6 
5 5 5 5 5 7 6 5 5 6 
5 6 8 5 5 4 7 8 6 8 
5 5 4 6 6 8 8 10 13 14 
10 5         

Source: Pollution Control Department, Thailand http://air4thai.pcd.go.th/webV3/#/History 
 

 
 

Figure 3. Histograms of the daily PM2.5 level data for Phrae and Lampang provinces 
 
Table 3. The estimated AIC values for the seven probability models, using the PM2.5 level data from Phrae and Lampang provinces 
 

Distributions Phrae province Lampang province 

Normal 1835.17 1775.88 
Log-normal 1744.43 1673.66 
Weibull 1758.89 1688.17 
Gamma 1750.37 1680.63 
Exponential 1812.78 1728.25 
Cauchy 1889.10 1815.74 
BS 1738.24 1666.50 
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Table 4. Sample statistics of the daily PM2.5 level data in Phrae and Lampang provinces 
 

Statistics Phrae province Lampang province 

Minimum 5.00 4.00 
Mean 26.33 21.57 

Maximum 102.00 77.00 
n  212 212 

̂  0.74 0.79 

̂  18.87 15.20 

̂  18.87 15.20 

 
 

Table 4 displays the sample statistics of the PM2.5 level data in Phrae and Lampang provinces. The 
estimated ratio of percentiles of daily PM2.5 level data in Phrae and Lampang provinces was 1.2414. 
Table 5 displays the 95% CIs for the percentile ratio of daily PM2.5 level data in Phrae and Lampang 
provinces using four approaches. According to Table 4, the HPD-KH approach provided the shortest 
interval length. 

 
Table 5. The lower limit (L) and upper limit (U) of the 95% CIs for the ratio of percentiles of the daily PM2.5 level data in Phrae and 
Lampang provinces 
 

Approaches [L,U]  Interval length 

GFCI [1.1118,1.4493] 0.3375 
Bayesian [1.0994,1.4349] 0.3355 
HPD-PI [1.1163,1.4525] 0.3362 
HPD-KH [1.0884,1.4205] 0.3321 

 
 

Discussion 
 

CIs for the ratio of percentiles of BS distributions were established through four distinct approaches: the 
GFCI approach, the Bayesian approach, the HPD-PI approach, and the HPD-KH approach. The HPD-PI 
approach, specifically, stood out by producing comparatively shorter ALs. All four methods employed 
simulation data in their CI construction.  

 

Based on the outcomes of the study, it can be inferred that, for constructing CIs for the ratio of percentiles 
in BS distributions, the HPD-PI approach is the recommended choice. This recommendation is 
consistent with the findings presented in Puggard et al. [20]. 

 
Conclusion 
 

CIs for the percentile ratio were created using various approaches, including GFCI, Bayesian, HPD-PI, 
and HPD-KH approaches. Using example from the PM2.5 dataset in Phrae and Lampang provinces, all 
approaches were illustrated through real data analysis. The performance of the CIs agreed with our 
simulation studies, as the ALs of GFCI, HPD-PI, and HPD-KH were shorter in some cases. 
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