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Abstract Pedestrian detection holds significant importance in computer vision, finding 

applications in video surveillance, human-computer interaction, and autonomous vehicles. 

Surprisingly, there is a scarcity of research addressing the optimal ratio of positive to negative 

images for training detection models. This study endeavors to fill this research gap by exploring 

various detection models and determining the ideal ratio. Two distinct scenarios are investigated, 

each characterized by an equal total image count and an equivalent number of positive images 

sourced from CVC-14 night/visible, night/FIR, and INRIA databases. The study leverages the 

Histogram of Oriented Gradient, utilizing both Support Vector Machines and Medium Neural 

Networks to construct the detection models. Notably, the experiments reveal that the accuracy of 

the models remains relatively stable, even with an increase in the ratio of negative images. 

However, a noteworthy inverse relationship between sensitivity and specificity emerges as the 

ratio escalates. The findings, guided by the Youden Index, pinpoint the optimal training ratio for 

pedestrian detection models, falling within the range of 1:0.5 to 1:2. In the CVC-14 nighttime 

database, the Youden index reached 100% when the model was trained with a 1:0.5 ratio using 

SVM, and a total of 4500 images were employed in the training process. On the other hand, in the 

INRIA dataset, the Youden index exhibited its highest value at 98.50%. This occurred when both 

SVM and a Medium neural network were utilized to train the model with a ratio of 1:2, utilizing a 

total of 3000 images for the training phase. It's worth highlighting that the processing time for SVM 

models lags behind that of Medium Neural Networks. This disparity arises from the heightened 

computational complexity inherent to medium-sized neural networks, making them 

computationally demanding compared to SVMs. This study contributes valuable insights into the 

nuanced relationship between image ratios and the performance of pedestrian detection models. 
 

Keywords: Pedestrian detection, ratio, Histogram of Oriented Gradient, Support Vector Machines, 

Medium Neural Network.  
 

 

Introduction 
 

In recent years, motion detection has been a hot topic in scientific research and engineering applications 
[1-4]. In motion detection, detecting humans accurately is crucial in visual surveillance and person 
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identification. However, vision-based detection is still very challenging due to the diverse kinds of 
apparel, lighting environments, complicated environments, occlusion effects, and a broad range of 
human poses and views [5-8]. Infrared images are superior to visible images as they can penetrate 
obscurants such as fog, mist, aerosols, etc., more effectively in poor atmospheres.  

 

Features and classifiers are the centers of attention in pedestrian detection research. Various feature 
descriptors and classifiers have been developed to encounter different situations. Histogram of Oriented 
Gradient (HOG) is created as a shape descriptor [9] and Local Binary Pattern (LBP) is created to 
represent the texture of the images [10]. Furthermore, these descriptors are enhanced to face various 
situations such as occlusion, illumination, etc. For classifiers, various algorithms are created to classify 
the features based on different focuses such as human body parts, clustering, hyperplane, and more.  

 

To effectively train a pedestrian detection algorithm, the availability of positive images (depicting scenes 
with pedestrians) and negative images (without pedestrians) is crucial. In conventional research 
practices, negative images are often synthesized randomly from the background of existing images [11]. 
While this approach simplifies the acquisition of negative samples, it has inadvertently led to an 
escalation in the ratio of negative images in recent studies. As this ratio increases, the detection model's 
accuracy may improve, but it also introduces the risk of biasing the model towards the negative class 
due to an imbalance in the dataset [12]. The augmentation of negative images can result in a model that 
is overly inclined to predict the absence of pedestrians, essentially favoring the majority class. This bias 
occurs as the model learns to minimize overall error by predominantly classifying instances as the 
prevalent class. In the context of pedestrian detection, such bias could lead to a model consistently 
predicting "no pedestrian," resulting in missed detections. Recognizing this challenge, it becomes 
imperative to adjust the ratio of positive to negative samples during the training process. This adjustment 
serves as a countermeasure to mitigate biases and prevent the model from being overly influenced by 
the abundance of negative instances. Striking an optimal balance in the ratio ensures that the model 
learns to discern both positive and negative cases effectively, enhancing its ability to make accurate 
predictions across a spectrum of real-world scenarios. Consequently, this nuanced approach contributes 
to the creation of a more robust and unbiased pedestrian detection model. In this paper, the primary 
contribution of this research lies in investigating the impact of the ratio of positive to negative images on 
training a human detection model. Given the absence of prior studies addressing the influence of this 
ratio on human detection models, we believe that identifying the optimal ratio is of paramount 
significance, as it directly affects the models' performance. 

 

The paper is organized as follows. Section 2 discusses the related work regarding pedestrian detection. 
Section 3 introduces the method proposed to identify the optimum ratio between positive and negative 
images for the training detection model. Section 4 shows the experimental results and discussion of the 
results. Finally, section 5 summarizes this paper. 

 
Literature Review 
 

Conventional methods have always been a hot research topic in pedestrian detection. The conventional 
method of pedestrian detection consists of two steps: feature extraction and classification. Feature 
descriptors such as Histogram of Oriented Gradient (HOG) [13], Local Binary Pattern (LBP) [14], Scale 
Invariant Features Transform (SIFT) [15], Haar-like features [16], DPM (Deformable Parts Model), SURF 
(Speeded Up Robust Features), and the Viola-Jones algorithm have played significant roles in shaping 
the landscape of pedestrian detection.  

 

Histogram of Oriented Gradient (HOG) features serve as shape-based representations, capturing the 
orientation histogram of edge intensities. These features construct histograms within sub-blocks of an 
image based on the strength of gradient information and accumulation of direction at each pixel within 
the sub-block. HOG excels in portraying a pedestrian's shape and appearance with high accuracy. 

 

In contrast, appearance features like Local Binary Pattern (LBP) and Haar-like features focus on 
extracting texture and color information from local images. LBP features, while computationally efficient 
with high discriminative power, are less suitable for pedestrian detection in complex backgrounds due to 
their threshold function [17]. 

 

The Deformable Parts Model (DPM) [18] offers an alternative approach by decomposing objects into 
parts, providing flexibility in capturing variations in object pose and appearance. However, DPM is 
computationally expensive and may struggle with extremely small or highly occluded objects. 
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The Viola-Jones algorithm [19], an influential early method, relies on Haar-like features for rapid object 
detection. Characterized by its use of integral images and an AdaBoost-based classifier, Viola-Jones 
has been historically significant, particularly in face detection applications. However, its limitation to 
rectangular Haar-like features may impede its ability to capture complex patterns well. Additionally, it is 
sensitive to variations in scale and rotation. 

 

Speeded Up Robust Features (SURF) [20] is another feature descriptor known for its speed and 
robustness to transformations. Capable of efficiently extracting distinctive features, SURF has found use 
in pedestrian detection. However, it is memory-intensive and may not perform well with repeated 
patterns. 

 

HOG proposed by Dalal and Triggs has been proven to be the most effective feature for pedestrian 
detection among all the other feature descriptors [13]. However, HOG features-based detection results 
in poor real-time performance due to its high computational complexity. Many methods based on HOG 
have been invented to improve the performance of HOG. Qiang et al. integrated the cascade-of-rejectors 
concept with HOG to achieve fast and true human detection [21]. A large set of blocks at multiple sizes, 
locations, and aspect ratios is used for feature selection in this method. Ning He et al. designed a new 
feature descriptor called Scale Space Histogram of Oriented Gradients (SS-HOG) [22]. By integrating 
scale space theory with HOG, this method encodes the information of body contour at multiple scales 
compared to the original HOG. Tomoki Watanabe et al. proposed Co-occurrence histograms of oriented 
gradients (CoHOG) by using pairs of gradient orientations as units to build histograms [23]. This method 
can express local and global shapes in detail but ends up with a high number of feature dimensionality. 
Masayuki et al. improved CoHOG by dividing it into small features and combining many weak classifiers 
to create a cascade classifier [24]. These variants of HOG show the potential of HOG feature as a 
pedestrian descriptor. Therefore, HOG is selected as the pedestrian descriptor in this research.  

 

For classification, R. Quintero et al. developed Hidden Markov Model (HMM) that recognizes pedestrian 
intention using 3D position and displacements of 11 joints located along the bodies [25]. However, the 
performance of this method is affected by human activities such as self-occlusion. Therefore, Kamal et 
al. improved this method by modifying the hidden Markov Model (M-HMM) to classify human activities 
based on human body parts rather than using body joints [26]. Youv and Robert introduced Adaboost 
algorithm to classify humans into a group compared to other objects [27]. This algorithm will learn from 
labeled data with observed output to make predictions. A weak classifier method is chosen in each round 
to reduce the optimal training error. Therefore, this algorithm is a popular boosting algorithm that can 
optimize the classification error. For classification and recognition, Support vector machine (SVM) is 
trained with positive and negative images and then gives a test sample for testing. SVM constructs a set 
of hyperplanes in an infinite dimensional space to classify pedestrians [28]. It tracks the problem by 
representing the data in the higher dimensional space and makes the classification easier in space. SVM 
is the most utilized method for human classification and activity recognition. 

 

In contrast to the traditional HOG-SVM approach, Convolutional Neural Networks (CNNs) have 
demonstrated their superiority in efficiently extracting high-level contour features and achieving state-of-
the-art performance in real-time multiple-object tracking (MOT) [29]. CNN-based models primarily focus 
on local feature extraction, often overlooking global features [30]. To address this limitation, a hybrid 
approach combining HOG and CNN has been proposed to enhance the performance of detection 
models. 

 

In 2016, Zhang et al. utilized HOG to eliminate background noise when constructing detection models 
for moving objects in videos, resulting in excellent performance for detecting moving objects in 
applications such as food and agricultural traceability analysis [31]. Building upon this foundation, 
Lipetski et al. introduced the HCNN model by integrating the HOG descriptor with CNN to enhance the 
quality of pedestrian detection [30]. Rui et al. presented an algorithm that leverages various feature maps 
from the initial CNN layer as input to HOG, demonstrating that combining HOG-based multi-convolutional 
features for pedestrian detection can yield high accuracy and stable network performance [32]. 

 

Different ratio of positive images and negative images is used for different researchers. This caused the 
results for each researcher to vary from each other. For example, in Dalal et al. research, the ratio of 1:5 
between positive and negative images is used to train the HOG-SVM model [13]. 2478 positive images 

and 12180 negative are used and the result shows 89% at 10−4𝐹𝑃𝑃𝑊 (false positive per window). Ni 
Chen and his team proposed a HOG-SVM with differential evolution model using the ratio of 1:1 where 
150 images for each positive and negative image from the INRIA dataset [33]. The detection rate of the 
model created by Ni Chen et al. is 80%. For Haythem et al., they used the ratio of 1:0.5 which is 2436 
positive images and 1218 negative images to train a HOG model [34]. The detection rate of the model 
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is 85.9%. These showed that the ratio of positive and negative images used for training detection model 
has a great effect on the detection rate. However, no research has been done on the ratio between 
positive and negative images used to train the pedestrian detection model. Therefore, the optimum ratio 
of positive and negative images for model training is unknown.  

 

In this study, the Histogram of Oriented Gradient (HOG) is specifically chosen as the feature descriptor 
for pedestrian detection. HOG exhibits a remarkable ability to encode characteristic patterns of human 
shapes and textures, imparting robustness to variations in pose, scale, and illumination. Its effectiveness 
in capturing relevant information from images makes it well-suited for discerning pedestrians amidst 
diverse environmental conditions. Simultaneously, for the classification component of the model, Support 
Vector Machine (SVM) and Convolutional Neural Network (CNN) is adopted. SVM, a powerful binary 
classifier, is selected for its capability to establish a global decision boundary that effectively separates 
human entities from background clusters. This aids in providing a robust and accurate overall 
classification. CNNs are integrated into the model due to their proven superiority in extracting high-level 
features from images. The study further explores the impact of various ratios of positive to negative 
images during the model training phase. Multiple ratios are systematically tested, and a detailed 
comparison is conducted to pinpoint the optimum ratio for crafting an effective pedestrian detection 
model. This empirical approach ensures that the model's training is fine-tuned to strike the ideal balance, 
maximizing its accuracy and robustness across diverse scenarios. 

 
Materials and Methods 
 

Figure 1 shows the flow chart of the methodology in this research, which consists of data preparation, 
feature extraction, model training, model testing and performance evaluation. 
 

 
Figure 1. Flow chart of the research 

 

 

Data Preparation 
Two distinct datasets were employed in this study: the INRIA database and the CVC-14 database. The 
INRIA database, crafted by Navneet Dalal and his team [13], encompasses 1805 images of humans. 
Each image is standardized to dimensions of 64 * 128 pixels and originates from a diverse assortment 
of personal photographs. Among these images, a subset of 1200 was intentionally selected and mirrored, 
effectively doubling the dataset and yielding a total of 2400 positive images. 

 

The CVC-14 database created by Alejandro Gonzalez and his team [35] is used for training and testing 
the detection model. The database contains four sequences of images which are day/FIR, night/FIR, 
day/visible, and night/visible images. In this research, night/FIR and visible images are selected to build 
the detection model. A FLIR Tau 2 Camera with the specification of 640 * 512 pixels was used to capture 
the FIR images. At the same time, IDS UI-3240CP is used to capture visible images. The acquisition of 
images from both modalities was performed at a frame rate of 10 FPS. 

 

This research examined two distinct scenarios, each involving the generation of six sets of data with 
varying ratios of positive and negative images: 1:0.25, 1:0.5, 1:1, 1:2, 1:5, and 1:10. In the first case, we 
divided a total of 3000 images from INRIA and 4500 FIR images along with 3500 visible images from 
CVC-14 according to the specified ratio. These sets were then employed to develop the model. In 
contrast, the second case utilized 2400 positive images from INRIA and 3600 FIR positive images, and 
2800 visible positive images from CVC-14 for each model. The number of negative images varied 
according to the ratios. 

 

To create the negative image sets used in model training, we extracted images from sequences that did 
not contain any positive samples. For the sake of feature extraction in the subsequent steps, all images 
were standardized to a resolution of 64 * 128 pixels. Figure 2, Figure 3 and Figure 4 display sample 
images used in this research, while Table 1 provides detailed information regarding the composition of 
images for each case.  

Data 
Preparation

Feature 
Extraction

Model 
Training

Model Testing
Performance 

Evaluation
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(a)                                                                                                                   (b) 

 

Figure 2. Example of (a) positive images and (b) negative images for CVC-14 night/FIR images 
        

 

(a)                                                                                                                 (b) 

 

Figure 3. Example of (a) positive images and (b) negative images for CVC-14 night/visible images 
        

 

(a)                                                                            (b) 

Figure 4. Example of (a) positive images and (b) negative images for images from INRIA 

 

Table 1. Total positive and negative images in (a) Case 1 and (b) Case 2 with the ratio of 1:0.25, 1:0.5, 1:1, 1:2, 1:5, and 1:10 

 

(a) 

        

 Ratio 1:0.25 1:0.5 1:1 1:2 1:5 1:10 

CVC-14 FIR Positive image 3600 

Negative image 900 1800 3600 7200 18000 36000 

CVC-14 
Visible 

Positive image 2800 

Negative image 700 1400 2800 5600 14000 28000 

INRIA Positive image 2400 

Negative image 600 1200 2400 4800 12000 24000 
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(b) 

 

 

Feature Extraction 
HOG descriptor is used to extract information about the contour of objects present in the images. There 
are 5 steps in extracting HOG feature from images which are listed below: 

1. Image preprocessing: the only constraint for the HOG descriptor is that the images being analyzed 
have a fixed aspect ratio which is 1:2. According to Dalal et al. research, the HOG descriptor provides 
the best results when the images used for feature extraction are in size of 64*128 resolution. 
Therefore, in this research, all the images used are resized into this aspect of resolution before 
extracting the feature. 

 

2. Gradient computation: to achieve the HOG, the horizontal and vertical gradients are calculated by 
filtering the image with the following kernels: [-1,1], while the magnitude and direction of the gradient 
is calculated using the following formula. 

 

 (𝑥𝑖  ,  𝑦𝑖  ) = √𝜕𝑥(𝑥𝑖  , 𝑦𝑖)2 + 𝜕𝑦(𝑥𝑖  ,  𝑦𝑖)2 

𝜃(𝑥𝑖  , 𝑦𝑖  ) = arctan ( 
𝜕𝑦 (𝑥𝑖  , 𝑦𝑖  )

 𝜕𝑥 (𝑥𝑖  , 𝑦𝑖  )
) 

Where m is the magnitude of the gradient and theta is the direction of the gradient. 

 

3. Weighted vote into cells: The image is divided into 8*8 cells and histogram of gradient is obtained 
from each cell. Then, a histogram containing 9 bins corresponding to angles 0, 20, 40…160 is 
created for each cell. The histogram of gradients obtained from each cell is then rearranged into the 
9 bins histogram based on its direction and magnitude. 

 

4. Normalization: In this step, the histogram is normalized so it will not be affected by lighting variations. 
L2 norm is used to identify the length of the vector and each value of the histogram is normalized by 
dividing the value of the length of the vector. The equation below shows the formula of normalization: 

𝑣 → 𝑣/√||𝑣||2
2 + 𝜀2 

Where 𝑣 represents histogram of vector of a block before normalization and 𝜀 is a minimal constant to 
prevent zero division error. 

 

5. HOG descriptor: At this final step, all the histogram is concatenated to form the final feature vector. 
For each image, a histogram with a 3780-dimensional vector will be formed. Figure 5 illustrates the 
concatenation of the histogram.  

 

. 

 Ratio 1:0.25 1:0.5 1:1 1:2 1:5 1:10 

CVC-14 FIR Positive image 3600 3000 2250 1500 750 409 

Negative image 900 1500 2250 3000 3750 4091 

CVC-14 
Visible 

Positive image 2800 2335 1750 1165 585 320 

Negative image 700 1165 1750 2335 2915 3180 

INRIA Positive image 2400 2000 1750 1000 500 272 

Negative image 600 1000 1750 2000 2500 2728 
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Figure 5. Illustration of the concatenation of histogram inside HOG 

 

 

Data Training 
In this section, we partition the entire dataset using an 80:20 ratio. Specifically, 80% of the images from 
the database are allocated for training purposes, leaving the remaining 20% for performance evaluation. 
To construct the detection models, we employ the histogram generated in the preceding section as input 
for both SVM and neural network classifiers. 

 

For SVM, we opt for a Linear SVM due to its simplicity and ease of comprehension compared to more 
intricate neural networks. Linear SVMs yield results that are interpretable and amenable to visualization 
in lower-dimensional spaces. Additionally, they demonstrate a reduced susceptibility to overfitting, 
rendering them suitable for scenarios where data is limited. 

 

On the other hand, we choose a medium-sized neural network for our neural network classifier. These 
networks strike a balance between overly simplistic models that may underfit the data and excessively 
complex ones that demand substantial computational resources. 

 

In conducting the training and testing processes with MATLAB version 2023a, we leverage the default 
hyperparameters offered by the MATLAB platform for the classifiers. The entire computational workflow 
unfolds on a personal computer equipped with robust hardware, featuring an AMD RYZEN 5 3600 
processor, 16GB RAM, and a NVIDIA GALAX RTX2060 GPU. This configuration ensures a powerful 
and efficient environment for the execution of machine learning tasks, facilitating the training of models 
and subsequent evaluations within a seamlessly integrated MATLAB environment. Table 2 furnishes a 
summary of the hyperparameters employed during the training of the detection models for each 
classifier. 

 

Table 2. Hyperparameters for (a) Linear SVM and (b) Medium Neural Network 
 

Classifier SVM 

Kernel function Linear 

Kernel equation 𝑘(𝑥, 𝑦) = 𝑥 ∙ 𝑦 

Box constraint level 1 

Multiclass method One-vs-one 

 (a) 
 

Classifier Medium Neural Network 

Number of fully connected layers 1 

First layer size 25 

Activation ReLU 

Iteration limit 1000 

Lambda 0 

(b) 
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Performance Evaluation 
The performance of the models was evaluated by accuracy, sensitivity, and specificity. The sensitivity of 
the model is the proportion of total humans detected among those images with humans [36]. Meanwhile, 
the specificity of the model is the proportion of the detected non-human images among the images 
without humans [36]. Sensitivity and specificity are chosen as evaluation metrics for the human detection 
model, primarily due to the elevated costs associated with both false positives and false negatives. In 
the context of human detection, the repercussions of failing to identify a human (false negative) and 
triggering a false alarm (false positive) can be substantial. By prioritizing sensitivity, the model aims to 
minimize the instances of undetected humans, ensuring a reduced risk of overlooking potential threats. 
Simultaneously, an emphasis on specificity helps mitigate false alarms, which could lead to unnecessary 
actions. The formula for accuracy, sensitivity, and specificity are shown below: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

 

Where 𝑇𝑃 is defined as true positive, 𝑇𝑁 is defined as negative, 𝐹𝑃 is defined as false positive and 𝐹𝑁 
is defined as false negative. 

 

Striking a balance between sensitivity and specificity is crucial to optimize the model's performance, 
aligning with the objective of achieving accurate and reliable human detection while minimizing the 
associated costs of errors. The Youden Index, denoted by J [37], serves as a unified metric that 
integrates both sensitivity and specificity into a single measure. It is employed to determine the optimal 
cut-off point in a classification model. By encapsulating both sensitivity and specificity, the Youden Index 
provides a comprehensive evaluation, enabling the identification of the most effective threshold that 
strikes a balance between minimizing false positives and false negatives. Youden index is defined as 
follows: 
 

𝐽 = 𝑀𝑎𝑥𝑐(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑐 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦𝑐 − 1) 
 

Where c is defined as the optimal cutoff.  

 
Results and Discussion 
 

CVC-14 Night/FIR images 
 

Comparison of the Same Number of Images during Training Stage 
The experiment involved six distinct image datasets, each featuring varying ratios, to conduct a 
comprehensive analysis. As illustrated in Table 3, both classifiers consistently demonstrated remarkable 
accuracy levels across all data ratios. It is noteworthy that the linear SVM, in some instances, exhibited 
a slightly lower accuracy compared to the medium neural networks. Specifically, SVM models achieved 
accuracy ranging from 99.20% to a perfect 100%, while medium neural network models demonstrated 
accuracy between 99.20% and 99.80%. This underscores the robust and consistent accuracy 
performance of both classifiers across the spectrum of data ratios. 

 

Within the SVM models, sensitivity exhibited an intriguing pattern. It surged from 99.72% at the 1:0.25 
ratio to an impeccable 100% at the 1:0.5 ratio, only to gradually decline to 93.83% as the ratio increased 
to 1:10. In contrast, specificity commenced at 98.33% for the 1:0.25 ratios and steadily ascended to 
reach 100% at the 1:5 ratio. 

 

For the medium neural network, sensitivity displayed a decreasing trend, diminishing from 99.72% at the 
1:0.25 ratio to 96.30% at the 1:10 ratio. Conversely, specificity started at 98.89% for the 1:0.25 ratio, 
peaked at 100% for the 1:2 ratio, and subsequently receded to 99.87% for the 1:5 ratio and 99.76% for 
the 1:10 ratio. Notably, an inverse relationship between sensitivity and specificity within both SVM and 
medium neural network models was observed. 

 

To assess discrimination performance comprehensively, sensitivity and specificity were amalgamated 
into a single metric, the Youden Index (J). In Figure 6(a), the SVM model achieved its highest J value at 
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100% for the 1:0.5 ratio, while the medium neural network attained the same 99.5% J value for the 1:0.5 
and 1:2 ratios. Notably, the J values for both SVM and medium neural network models exhibited 
fluctuations at the 1:1 ratio, reaching 98.44% for both. This phenomenon can be attributed to models 
tending to overfit when classes are perfectly balanced during training, posing challenges for machine 
learning models not explicitly designed to handle class imbalance. Overfitting occurs when models learn 
to fit noise rather than capture underlying patterns, potentially leading to diminished generalization 
performance on unseen data. 

 

Additionally, it's worth noting that Linear SVM consistently demonstrated shorter processing times in 
comparison to the Medium Neural Network. Processing time for SVM models ranged from 27.84 seconds 
to 30.63 seconds, while for Medium Neural Network, it spanned from 37.16 seconds to 42.35 seconds, 
as depicted in Figure 6(b). This efficiency renders Linear SVM particularly appealing for scenarios where 
computational resources or stringent time constraints are pivotal factors in model selection.  

 

Table 3. Result of the models trained with different positive-negative ratios using same amount of Night/FIR images 

 

Classifier Ratio 1:0.25 1:0.5 1:01 1:02 1:05 1:10 

SVM Acc 99.40 100.00 99.20 99.60 99.70 99.40 

Sensitivity 99.72 100.00 99.56 99.50 98.00 93.83 

Specificity 98.33 100.00 98.89 99.67 100.00 100.00 

Youden Index 98.06 100.00 98.44 99.17 98.00 93.83 

Processing 
time (s) 

30.63 28.79 27.84 30.15 28.72 28.38 

Medium 
Neural 

Network 

Acc 99.60 99.80 99.20 99.70 99.60 99.40 

Sensitivity 99.72 99.67 99.11 99.50 98.00 96.30 

Specificity 98.89 99.83 99.33 100.00 99.87 99.76 

Youden Index 98.61 99.50 98.44 99.50 97.87 96.05 

Processing 
time (s) 

41.46 37.16 40.30 41.59 39.13 42.35 
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(a) 

 
(b) 

Figure 6. Comparison of (a) performance and (b) processing time of models trained using same number of Night/FIR images 

 

 

Comparison of the Same Number of Positive Images during 
Training Stages 
The fundamental algorithms employed in SVM and neural networks diverge significantly. SVMs employ 
convex optimization techniques known for their efficiency in seeking the global minimum. Conversely, 
neural networks rely on gradient-based optimization methods, which entail a greater number of iterations 
and computational operations. These algorithmic distinctions contribute to the variance in processing 
time between the two models.  
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CVC-14 Night/Visible Images 
 

Comparison of the Same Number of Images during Training 
Stage 
In Table 4, both classifiers consistently demonstrated outstanding levels of accuracy across a range of 
data ratios. It's worth noting that the linear SVM, on occasion, exhibited a slightly lower accuracy when 
compared to the medium neural networks. To provide precise figures, SVM models achieved accuracy 
rates spanning from an impressive 99.40% to an exceptional 99.90%, while medium neural network 
models showcased accuracy levels ranging between 99.50% and 99.90%. 

 

Within the SVM models, sensitivity displayed a distinctive pattern. It started at 99.72% for the 1:0.25 
ratio, climbed to 99.86% at the 1:0.5 ratio, and then experienced a dip to 99.58% before rebounding to 
99.72% at the 1:2 ratio. However, sensitivity gradually declined as the data ratio increased, reaching 
99.31% at the 1:5 ratio and ultimately settling at 99.03% for the 1:10 ratio. Meanwhile, the specificity of 
the SVM model consistently improved, ascending from 98.33% (1:0.25 ratio) to 99.44% (1:0.5 ratio), 
99.93% (1:2 ratio), 99.92% (1:5 ratio), and finally reaching an outstanding 99.97% at the 1:10 ratio. 
Notably, the model's specificity experienced a temporary decline to 99.31% at the 1:1 ratio, attributed to 
overfitting. 

 

In the case of the medium neural network, sensitivity exhibited a distinct trend, declining from 99.72% 
(1:0.25 ratio) to 99.44% for both the 1:0.5 ratio and the 1:1 ratio. Subsequently, it saw a slight rise to 
99.58% at the 1:2 ratio and the 1:5 ratio, only to decrease again to 99.44% for the 1:10 ratio. Meanwhile, 
specificity increased from 98.89% to 99.72% and ultimately reached a perfect 100% for the 1:1 ratio. As 
the data ratio increased, specificity gradually decreased to 99.93% (1:2 ratio and 1:10 ratio) and 99.94% 
(1:5 ratio). 

 

As depicted in Figure 7(a), the SVM models exhibit their peak J value, achieving a remarkable 99.65% 
at the 1:2 ratio. Conversely, for the medium neural network models, the J value reaches its zenith when 
the model's ratio is set at 1:5, attaining an impressive 99.53%. In general, the J values for medium neural 
network models surpass those of SVM models, except for models constructed at the 1:0.5 and 1:2 ratios. 

As illustrated in Figure 7(b), the processing time for the medium neural network is marginally higher than 
that of the SVM model. Notably, both models exhibit an increase in processing time as the training ratio 
increases. The primary explanation for the medium neural network models requiring more processing 
time lies in the neural network's heightened complexity, demanding training prerequisites, and the 
inherent disparities in their algorithms and implementations. 

 

Table 4. Result of the models trained with different positive-negative ratios using same amount of positive Night/FIR images. 

 

Classifier Ratio 1:0.25 1:0.5 1:01 1:02 1:05 1:10 

SVM Acc 99.40 99.70 99.40 99.90 99.80 99.90 

Sensitivity 99.72 99.86 99.58 99.72 99.31 99.03 

Specificity 98.33 99.44 99.31 99.93 99.92 99.97 

Youden Index 98.06 99.31 98.89 99.65 99.22 99.00 

Processing 
time (s) 

30.63 36.39 51.88 75.47 179.52 338.18 

Medium 
Neural 

Network 

Acc 99.60 99.50 99.70 99.80 99.90 99.90 

Sensitivity 99.72 99.44 99.44 99.58 99.58 99.44 

Specificity 98.89 99.72 100.00 99.93 99.94 99.93 

Youden Index 98.61 99.17 99.44 99.51 99.53 99.38 

Processing 
time (s) 

41.46 54.28 77.76 91.52 184.68 362.45 
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(a) 

 
(b) 

Figure 7. Comparison of (a) performance and (b) processing time of models trained using a same number of positive Night/FIR images 

 

Table 5. Result of the models trained with different positive-negative ratios using a same number of Night/Visible images 

 

Classifier Ratio 1:0.25 1:0.5 1:01 1:02 1:05 1:10 

SVM Acc 98.40 98.60 98.60 98.40 98.40 99.00 

Sensitivity 99.11 99.14 99.43 96.57 93.16 90.63 

Specificity 95.71 97.42 97.71 99.36 99.49 99.84 

Youden Index 94.82 96.57 97.14 95.92 92.65 90.47 

Processing 
time (s) 

28.75 29.89 25.33 28.49 26.22 25.74 

Medium 
Neural 

Network 

Acc 98.10 97.90 99.10 98.90 99.00 99.90 

Sensitivity 98.75 97.86 98.57 98.28 97.44 100.00 

Specificity 95.71 97.85 99.71 99.14 99.31 99.84 
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Classifier Ratio 1:0.25 1:0.5 1:01 1:02 1:05 1:10 

Youden Index 94.46 95.71 98.29 97.43 96.75 99.84 

Processing 
time (s) 

35.10 50.35 34.90 37.94 34.68 33.67 

 

 
(a) 

 
(b) 

Figure 8. Comparison of (a) performance and (b) processing time of models trained using same number of Night/Visible images 
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Within Table 5, the accuracy of SVM models spans from 98.40% to 99.00%, whereas medium neural 
network models exhibit accuracy ranging from 97.90% to 99.90%. Broadly speaking, models trained with 
CVC-14 night/visible images tend to display lower accuracy compared to those constructed using CVC-
14 night/FIR images. This discrepancy can be attributed to the visible camera's images being relatively 
blurrier than those captured by the infrared camera during nighttime. 

 

In Figure 8(a), the J values for SVM models display a noticeable trend. They rise from 94.82% at the 
1:0.25 ratio to 96.57% at the 1:0.5 ratio, reaching their peak at 97.14% for the 1:1 ratio. However, 
following this peak, the J value consistently declines, reaching 95.92% at the 1:2 ratio, 92.65% at the 1:5 
ratio, and finally resting at 90.47% for the 1:10 ratio. This suggests that the optimal ratio for utilizing the 
CVC-14 night/visible images with the SVM model is the 1:1 ratio. 

 

For medium neural network models, a similar pattern in J values is observed, mirroring the SVM models. 
They ascend from 94.46% at the 1:0.25 ratio to 98.49% at the 1:1 ratio and then decline until reaching 
96.75% at the 1:5 ratio. However, intriguingly, the J value rebounds to 99.84% at the 1:10 ratio. This 
exceptional value at the 1:10 ratio suggests that, in this scenario, the model may have become extremely 
cautious and classified nearly all instances as positive to avoid false negatives. Consequently, the most 
suitable ratio for the medium neural network with this database is also the 1:1 ratio. 

 

Regarding processing time, as illustrated in Figure 8(b), SVM models consistently exhibit processing 
times ranging from approximately 25.33 seconds to 29.89 seconds. In contrast, medium neural network 
models display a broader range, spanning from 33.67 seconds to 50.35 seconds. Notably, the 
processing time for the 1:0.5 ratio is comparatively longer. This can be attributed to the inherent variability 
in neural network training complexities, particularly when dealing with imbalanced datasets like the 1:0.5 
ratio, where positive examples are abundant. In such cases, the network may require additional iterations 
and time to converge to an optimal solution.  

 

Comparison of the Same Number of Positive Images during 
Training Stages 
In Table 6, the performance of SVM models is highlighted by an accuracy range spanning from 97.30% 
at the 1:1 ratio to a peak of 98.80% at the 1:10 ratio. Overall, the SVM model consistently maintains a 
commendably high level of accuracy across all ratios, with its pinnacle achieved at the 1:10 ratio. 
Conversely, medium neural network models demonstrate accuracy ranging from 97.00% at the 1:2 ratio 
to an impressive 99.00% at the 1:10 ratio. These findings underscore the medium neural network's 
capacity for sustaining consistently high accuracy, ultimately reaching its zenith at the 1:10 ratio. 
 
As indicated in Figure 9(a), the Youden Index (J) for both SVM and medium neural network models 
follows a parallel trajectory. Beginning at the 1:0.25 ratio, it ascends and reaches its zenith at the 1:0.5 
ratio. Subsequently, a general decline in the Youden Index is observed for both SVM and medium neural 
network models as the data ratio increases. This pattern signifies that, with an increase in the ratio, the 
models adopt a more cautious and balanced approach in their predictions. Consequently, according to 
the Youden Index, the optimal ratio for developing models for CVC-14 night/visible images is determined 
to be the 1:0.5 ratio, a choice that holds for both classifiers. 

 

Table 6. Result of the models trained with different positive-negative ratios using the same amount of positive Night/Visible images 

 

Classifier Ratio 1:0.25 1:0.5 1:01 1:02 1:05 1:10 

SVM Acc 98.40 98.30 97.30 97.60 98.50 98.80 

Sensitivity 99.11 98.21 97.14 96.25 94.82 92.14 

Specificity 95.71 98.57 97.50 98.21 99.18 99.48 

Youden Index 94.82 96.79 94.64 94.46 94.00 91.63 

Processing 
time (s) 

28.75 38.21 56.78 85.83 228.06 352.93 

Medium 
Neural 

Network 

Acc 98.10 98.50 97.60 97.00 98.30 99.00 

Sensitivity 98.75 98.57 97.86 95.71 96.43 95.36 

Specificity 95.71 98.21 97.32 97.68 98.71 99.41 

Youden Index 94.46 96.79 95.18 93.39 95.14 94.77 

Processing 
time (s) 

35.10 51.72 61.57 110.43 287.49 331.59 
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(a) 

 
(b) 

Figure 9. Comparison of (a) performance and (b) processing time of models trained using same number of positive Night/Visible images 
 
 
Furthermore, it's noteworthy that processing time escalates for both SVM and medium neural network 
models as the data ratio veers towards greater imbalance, with the 1:10 ratio exhibiting the lengthiest 
processing times. This trend aligns with the well-established understanding that imbalanced datasets, 
where one class predominates significantly, tend to necessitate extended training durations, particularly 
in the case of neural networks. 
 

INRIA Database  
 

Comparison of the Same Number of Images during Training Stage 
In Table 7, the performance metrics and processing times for both SVM and medium neural network 
models across different data ratios are presented. SVM models exhibit accuracy ranging from 97.90% 
at the 1:1 ratio to 99.00% at the 1:2 and 1:5 ratios. The accuracy generally remains high across all ratios, 
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with some fluctuations. Medium neural network models also maintain relatively high accuracy, with 
values ranging from 97.80% at the 1:5 ratio to 99.00% at the 1:2 and 1:10 ratios. Like SVM models, 
medium neural network models demonstrate consistent accuracy performance across the ratios. 

 

Sensitivity for SVM models varies across the ratio. It starts with 99.58% at 1:0.25 ratio and declines to 
98.57% at 1:1 ratio. The sensitivity for 1:2 ratio reached 100% and then drops to 95.19% at 1:10 ratios. 
For medium neural network models, sensitivity ranges from 90.74% at the 1:10 ratio to 100% at the 1:2 
ratio. Like SVM models, there is sensitivity to data imbalance, with a drop observed at the 1:10 ratio. 

 

Specificity for SVM models exhibits an increasing trend with data ratios, starting at 92.50% for the 1:0.25 
ratio and reaching 99.63% at the 1:10 ratio. This suggests that SVM models become more specific as 
the data becomes more imbalanced. Medium neural network models show specificities ranging from 
97.71% at the 1:1 ratio to 99.82% at the 1:10 ratio. While there is an increasing trend, it's worth noting 
that specificity remains relatively high across all ratios for medium neural network models. 

 

In Figure 10(a), the Youden Index (J) exhibits parallel trends for both SVM and medium neural network 
models. The J value reaches its pinnacle at the 1:2 ratios, achieving a robust 98.5%. This signifies the 
highest discriminatory power observed at these ratios. However, it's noteworthy that there is a noticeable 
decline in J values at the 1:10 ratio, indicative of diminished discriminatory capability in the presence of 
significant data imbalance. 

 

Similar to patterns observed in other database models, the processing time for medium neural network 
models surpasses that of SVM models. Figure 10(b) illustrates this, with processing times for SVM 
models ranging from 22.96 seconds to 29.90 seconds. Conversely, medium neural network processing 
times span from 29.86 seconds to 36.75 seconds. This discrepancy in processing times aligns with the 
convention that neural networks, due to their architectural complexity and training requirements, typically 
entail longer computational durations compared to SVM models.  

 

Table 7. Result of the models trained with different positive-negative ratios using same number of Night/Visible images 

 

Classifier Ratio 1:0.25 1:0.5 1:01 1:02 1:05 1:10 

SVM Acc 98.20 98.30 97.90 99.00 98.20 98.30 

Sensitivity 99.58 99.50 98.57 100.00 91.00 85.19 

Specificity 92.50 96.00 97.14 98.50 99.60 99.63 

Youden Index 92.08 95.50 95.71 98.50 90.60 84.82 

Processing 
time (s) 

23.39 26.93 29.90 27.09 25.93 22.96 

Medium 
Neural 

Network 

Acc 98.70 98.80 98.10 99.00 97.80 99.00 

Sensitivity 98.54 99.00 98.57 100.00 95.00 90.74 

Specificity 99.17 98.50 97.71 98.50 98.40 99.82 

Youden Index 97.71 97.50 96.29 98.50 93.40 90.56 

Processing 
time (s) 

29.86 31.24 36.75 32.39 32.80 30.35 
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(a) 

 

 
(b) 

Figure 10. Comparison of (a) performance and (b) processing time of models trained using the same number of images 
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Comparison of the Same Number of Positive Images during 
Training Stages 
In Table 8, both SVM and medium neural network models exhibit consistent performance across various 
data ratios. These models maintain a high level of accuracy, with SVM achieving slightly lower accuracy 
compared to the medium neural network. Specifically, SVM accuracy ranges from 98.00% to 99.30%, 
while medium neural network accuracy spans from 98.00% to 99.40%. 
 
Regarding sensitivity, both SVM and medium neural network models demonstrate decreasing trends as 
the data ratio increases. For SVM models, sensitivity decreases from 99.58% at the 1:0.25 ratio to 
93.54% at the 1:10 ratio. On the other hand, medium neural network sensitivity ranges from 98.54% at 
the 1:0.25 ratio to 95.63% at the 1:10 ratio. This decreasing sensitivity trend signifies that as the data 
becomes more imbalanced, the models become less sensitive to detecting positive instances. 
 
In terms of specificity, both SVM and medium neural network models exhibit an increasing trend as the 
data ratio increases. SVM specificity ranges from 92.50% at the 1:0.25 ratio to 99.90% at the 1:10 ratio. 
Medium neural network specificity varies from 99.17% at the 1:0.25 ratio to 99.77% at the 1:10 ratio. This 
pattern suggests that as the data ratio becomes more imbalanced, the models become more specific in 
correctly identifying negative instances. 
 
As depicted in Figure 11(a), the J values for SVM models consistently fall below those of the medium 
neural network across all ratios. Nevertheless, they exhibit a parallel trend, with both achieving their 
highest J values at the 1:2 ratio. Specifically, the SVM model reaches 97.19%, while the medium neural 
network model attains 97.81%. 
 
Processing time increases for both SVM and medium neural network models as the data ratio becomes 
more imbalanced. The 1:10 ratio exhibits the longest processing times for both classifiers. This aligns 
with the typical observation that highly imbalanced datasets, where one class dominates, can lead to 
longer training times, especially for neural network models due to their complexity and iterative training 
processes. 

 

Table 8. Result of the models trained with different positive-negative ratios using the same amount of positive Night/Visible images 

 

Classifier Ratio 1:0.25 1:0.5 1:01 1:02 1:05 1:10 

SVM Acc 98.20 98.60 98.00 98.90 99.10 99.30 

Sensitivity 99.58 98.96 98.13 97.71 96.04 93.54 

Specificity 92.50 97.92 97.92 99.48 99.71 99.90 

Youden Index 92.08 96.88 96.04 97.19 95.75 93.44 

Processing 
time 

23.39 28.87 40.38 63.37 143.59 332.12 

Medium 
Neural 

Network 

Acc 98.70 98.80 98.00 99.20 99.00 99.40 

Sensitivity 98.54 98.54 97.71 98.13 96.67 95.63 

Specificity 99.17 99.17 98.33 99.69 99.42 99.77 

Youden Index 97.71 97.71 96.04 97.81 96.08 95.40 

Processing 
time 

29.86 32.37 45.20 65.10 131.61 285.41 
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(a) 

 

 
(b) 

Figure 11. Comparison of (a) performance and (b) processing time of models trained using the same number of positive images 
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Conclusions 
 
The primary objective of this study is to determine the optimal ratio of positive to negative images when 
training HOG-SVM and HOG-CNN models for pedestrian detection. This investigation explores two 
distinct cases and encompasses six different image ratios sourced from the CVC-14 night/FIR database, 
CVC-14 night/visible database, and INRIA database to build and evaluate the detection models. The 
experimental findings emphasize that the choice of positive and negative image ratios significantly 
influences the accuracy, sensitivity, and specificity of the detection models. In general, across all 
databases, both classifiers consistently exhibit remarkable accuracy across various data ratios. 
Sensitivity and specificity display an inverse relationship as the data ratio increases. Based on the 
Youden Index, the study reveals that, on average, the medium neural network model achieves slightly 
higher values than the SVM model. Consequently, the recommended ratios for constructing human 
detection models using both classifiers are 1:0.5 and 1:2. 
 
Notably, concerning processing time, the medium neural network consistently demands more time than 
the SVM model across all databases. This discrepancy in processing time can be attributed to several 
factors, including model complexity and batch size. Neural networks, particularly medium-sized ones, 
typically feature a greater number of parameters and layers compared to linear SVMs. The heightened 
model complexity necessitates more computational resources during both training and inference, 
contributing to extended processing times. Additionally, neural networks often benefit from larger batch 
sizes during training, which further amplifies processing time. Conversely, SVMs generally operate with 
smaller subsets of data during each iteration. 
 
The findings also illuminate a tendency towards overfitting at both the 1:1 and 1:10 data ratios. When 
the positive and negative classes are perfectly balanced, there exists a heightened risk of overfitting, 
especially for intricate models such as neural networks. Overfitting transpires when a model overlearns 
noise in the data rather than capturing the underlying patterns, resulting in diminished generalization 
performance on unseen data. At the 1:10 ratio, where negative instances significantly outnumber positive 
ones, the model may exhibit an inclination to classify nearly all instances as positive to mitigate the 
potential for false negatives. 
 
However, it is important to acknowledge that the study's focus on specific datasets or scenarios may 
limit the seamless generalization of the identified optimal ratio to diverse environments. Real-world 
scenarios, characterized by variations in complexity, lighting conditions, and pedestrian densities, pose 
challenges not fully addressed in the study. Additionally, the investigation into varying ratios may not 
thoroughly explore the severity of imbalance, particularly in extreme cases. Insights into how extreme 
imbalances impact model performance and whether specialized handling techniques are needed remain 
areas for further exploration.  
 
To enhance the models' performance, several avenues for future research are recommended based on 
the findings of this study. Firstly, it is advisable to consider the use of class weighting during training to 
address the challenge posed by class imbalance. This approach can be especially beneficial for ratios 
that are susceptible to overfitting, such as the 1:1 ratio. Secondly, there is potential to harness hardware 
accelerators like GPUs or TPUs for both model training and inference, which can substantially reduce 
processing time.  

 
Further investigation into the intricate relationship between model complexity and the optimal ratio is 
warranted. Complex models may exhibit unique preferences for positive to negative ratios, offering 
valuable insights into model architecture design. Instead of pursuing a universal optimal ratio, future 
research can shift its focus towards exploring the utilization of multiple ratios and evaluating their impacts 
on model performance. Gaining insights into the trade-offs in various scenarios will empower researchers 
to make informed decisions, allowing them to select ratios that are specifically tailored to meet the 
requirements of diverse applications.. 
 
Additionally, further investigation into different feature extraction techniques should be conducted. This 
includes exploring various HOG variations and more advanced feature extraction methods to capture 
more comprehensive and informative data from the images. Lastly, it is essential to expand the 
experimentation to real-time applications to assess the models' performance in practical, real-world 
scenarios. 
 
These proposed directions can contribute to the continued advancement of pedestrian detection models, 
ultimately enhancing their accuracy, speed, and applicability in diverse settings. 
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