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Abstract Nonlinear effects in optical fibers are mainly caused by two sources: inelastic 

scattering behaviour or the intensity sensitivity of the medium's refractive index. The propagation 

process in photonic crystal fibers is more complex than the propagation process of first-order 

solitons, second-order solitons, and third-order solitons. This article discusses the effects of 

propagation on first-, second- and third-order solitons. A popular approach to supercontinuum 

generation through soliton fission is the higher-order soliton technique for spectral generation. 

Keywords: Photonic crystal fibers (PCFs), supercontinum generation (SCG), soliton, nonlinear effects 
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Introduction 
 

A soliton is any answer to a long-term equation that represents a wave that is localized. (even when it 
moves), and has the ability to interact strongly with other solitons while maintaining its identity, even 
though an exact definition of a soliton is difficult to come by [1]. In other words, a soliton is a bundle of 
waves or momentum that maintains its shape even when moving at a constant speed. The rejection of 
dispersive and complex effects in the middle causes the formation of a soliton [2]. One way to 
conceptualize each wave packet as being made up of plane waves at various frequencies is to 
consider dispersion, a process that determines a wave's phase and amplitude dependent on its 
frequency [3]. Due to dispersion, waves of different frequencies travel at different speeds, and the 
shape of the pulse changes over time. It's worth noting that the spread simply rearranges itself the 
phase relationships between the remaining frequency components in the pulse's original spectrum; it 
does not introduce any new frequency elements [4]. However, nonlinear factors can change the phase 
shift during the pulse, thereby producing additional frequency components in the pulse spectrum (this 
effect is called self-phase modulation in optics). As shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. shown the change of phase shift during the pulse, to produce additional frequency 
components in the pulse spectrum by (a) dispersion (b) self-phase modulation 
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If the initial pulse has the proper form, nonlinear processes can accurately cancel dispersion, 
producing a pulse with a consistent shape that defined a soliton [1, 5]. While there are a number of 
partially differential nonlinear dispersive formulae that provide soliton solutions, the Schrodinger 
nonlinear equation which describes the waves of light in fiber optics more crucially is the most essential 
one (among those that characterize physical systems) [1, 6], Since a soliton is a constant wave that is 
both confined (although they were moving) and capable of intense interaction with other solitons while 
maintaining its identity, it is generally understood to refer to any solution of a nonlinear equation [7]. In 
other words, a soliton is a bundle of waves or momentum that maintains its shape even when moving 
at a constant speed. The cancellation of dispersion and nonlinear effects in the medium leads to the 
formation of solitons [8]. One way to conceptualize each wave packet as being made up of plane 
waves at various frequencies is to consider dispersion as a process that determines a wave's phase 
and amplitude dependent on its frequency [9]. Due to dispersion, waves of different frequencies travel 
at different speeds, and the shape of the pulse changes over time [10]. It is essential to note that 
dispersion just rearranges the phase relationships between the remaining frequency components in the 
pulse's original spectrum; it does not introduce any new frequency elements [11]. However, nonlinear 
factors can change the phase shift during the pulse, thereby producing additional frequency 
components in the pulse spectrum (this effect is called self-phase modulation in optics). 

 

When a pulse has the correct form, nonlinear processes can exactly cancel out dispersion, creating a 
soliton, or pulse with a consistent shape [11–12]. While several partial differential nonlinear dispersive 
formulas provide soliton solutions, the Schrodinger nonlinear equation—which describes the waves of 
light in optical fibers more crucially—is especially significant (among those that characterize physical 
systems) [13–14]. 

 
Materials and Methods 
 

This paper represents a theoretical study of the propagation mechanism of a single-order and multiple-
order optical soliton spread through a solid-core photonic crystal fiber  Its dimensions are the diameter 

of the air holes, the distance between the holes, and the number of holes are (d=0.5𝜇𝑚,ꓥ=3 𝜇𝑚 N=6 ) 

respectively, such that the pulse preserves its message throughout distance and time. The Matlab 
program was relied upon to process and clarify the diffusion mechanism, and the equation adopted in 
the program is the nonlinear Schrodinger equation (NLSE) [15]. which can be stated mathematically as 
[16]. 
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Here β2 is the second-order dispersive coefficient, α is the loss of fibers, and γ is the coefficient of 
nonlinear-ity, A (z, t) is the slowly changing pulse amplitude. The effects of fiber loss, dispersion and 
nonlinearity on pulse propagation in the fiber are represented by the three terms on the right of the 
equation above, respectively. Depending on the type of incident light, which has a peak intensity of 1 
watt and a starting duration of 1 ps, either dispersive or nonlinear-effects are most significant in the 
fiber. The parameters of the fiber's dispersion length (LD) and nonlinear length (LN), over which effects 
of dispersions or nonlineariiness are significant for the evolution of pulses, provide the length scale, 
which is based on math. 
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Fourier split-step technique (SSFM) is applied to the numerical simulations. With α = 0, there are no 
losses and the dispersion is thought to be abnormal (β2 = - 3). Their values (1,2,3) W-1Km-1, however, 
will alter due to nonlinear influences, and depend on Mathlab software is used to compute the findings. 

 

Results and Discussion 
 

We numerically explore the low-power pulse's propagation characteristics using Equation (1) to 
examine the influence of the nonlinear effects on fundamental and high-order soliton on the 
development of a trapped soliton. As the next sections demonstrate. When using sech,pulses with the 
following form are employed. 

 

𝐴(0, 𝑡) = 𝑁 𝑆𝑒𝑐ℎ(𝑡) 

 

where N represents the pulse's order. Just generate the first pulse while using N=1. 

 

𝐴(0, 𝑡) =  𝑆𝑒𝑐ℎ(𝑡) 
 

The basic soliton is the pulse that has a "Sech" form and N = 1. The progression of this pulse along the 
fiber is seen in the schematics below. 

 

When nonlinear effects are valued differently  (1,3,5) W-1 km-1, As illustrated in Figures 1-A, B, and C, 
the pulse in the case of the first-order soliton will essentially remain unchanged over time and space, 
but there will be discernible increases in the output pulse's intensity as the value of nonlinear effects 
rises, as indicated in Figures 1-D and E, until it surpasses the input pulse's value, as shown in Figure 
1-F. 
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Figure 2. First-order soliton propagation along a PCF fiber with nonlinear effects, A-when 𝛾 =
1 𝑤−1𝐾𝑚−1 ,B-when 𝛾 = 3 𝑤−1𝐾𝑚−1,C-when𝛾 = 5 𝑤−1𝐾𝑚−1,  and the pulse and features of the same 

parameters are displayed in figures D, E, and F 
 
 
In the second soliton order, during the change of nonlinear effect value, the pattern appears 
bumpy with distance and time, as shown in Figure (2-A, B, C)). Furthermore, the intensity of 
the mode changes and the output mode decreases until it reaches the chirp stage, as shown 
in Figures (2-D, E, F). 
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As evident in Figures 3 (A, B, and C), the third-order soliton's pulse exhibits a variety of 
bifurcations that demonstrate the generation of the supercontinuum by soliton fission with 
distance and time, and the output intensity decreases to a point that is almost imperceptible 
with increased nonlinear effects Figure 3 (D, E, and F) 
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Figure 4.  Third-order soliton propagation along a PCF fiber with nonlinear effects, A-when 

𝛾 = 1 𝑤−1𝐾𝑚−1 ,B-when 𝛾 = 3 𝑤−1𝐾𝑚−1,C-when𝛾 = 5 𝑤−1𝐾𝑚−1,  and the pulse and features 
of the same parameters are displayed in figures D, E, and F 
 
 

Conclusions 
 

The impact of nonlinear effects on fundamental and high-order soliton was examined. Observe that 
nonlinear effects lead to basic soliton pulse displacement, but significant spectral expansion leads to 
high-order effects when they follow other higher-order effects. The data's spectrum properties reveal 
that the high nonlinear component splits apart while flailing around the beat. Nonlinear effects, while 
one of the components involved in soliton-based telecommunication transmission, can provide a wide 
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variety of frequencies that are supported by the supercontinuum source for WDM systems when 
combined with other higher order components. effects. In this way, nonlinear effects contribute to the 
accessibility of diode lasers for the low-power production of wide spectrum components. 
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