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Abstract Dendrimers are highly branched macromolecules built up from a monomer, with new 

branches added in steps until a tree structure is created. The various biological characteristics of 

dendrimers are a good choice in chemistry, biology, the medical field, and nano-science. A 

topological index is a type of molecular descriptor that is calculated based on the molecular graph 

of a chemical structure. The Hosoya index is a well-known topological index that is used to predict 

some of their physico-chemical properties from the structure of molecules. The Hosoya index of a 

graph is defined as the total number of its independent edge sets. In this paper, we study the 

Hosoya index of some families of nanostar dendrimers. We obtain the formulas of the Hosoya 

index for two infinite classes of dendrimers, namely, nanostar dendrimer 𝑁𝑆1[𝑛] and 

tetrathiafulvalene dendrimer. We use the Mathematica program to evaluate the results and 

accuracy of calculations. Our results can be used in analyzing the molecular topology of these 

families of nanostar dendrimers. 
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Introduction 
 

Mathematical chemistry is an interdisciplinary field in which molecular phenomena are modeled and 
studied by mathematics. One of the branches of mathematical chemistry in which the molecular structure 
is modeled by a simple graph known as a molecular graph where vertices correspond to atoms and the 
edge to the chemical bound (between the atoms) is chemical graph theory [5]. 

 

In mathematical chemistry, topological indices are defined as a vital tool for analyzing the physical 
properties of chemical compounds. These descriptors determine the relationship between the topology 
of a molecular structure and the physico-chemical properties used in the Quantitative structure-activity 
(QSAR) and structure-property (QSPR) relationships [2, 4]. 

 

Haruo Hosoya first introduced the Hosoya index and showed that certain chemical and physical 
properties of saturated hydrocarbons are correlated with this index [6]. Some studies related to the 
chemical concepts of the Hosoya index can be found in [9, 10, 15].  

 

The Hosoya index is studied in certain structures of molecular graphs involving pentagonal and 
hexagonal cycles. Liu et al. [10] characterized the tricyclic graphs with the largest Hosoya index and with 
the smallest Merrifield–Simmons index. In [15] the extremal unique unicyclic graph that has the maximal 
Hosoya index and the second maximal Hosoya index is characterized. Movahedi et al. [12] obtained the 
exact relations of the Hosoya index on some classes of cycle-related graphs namely, chain triangular 
cactus, Dutch windmill graph, and Barbell graph. In [13], the Hosoya polynomial for three classes of 
nanostar dendrimers, namely, PETIM dendrimer, POPAM dendrimer, and Nanostar dendrimer 𝐷3[𝑛] are 
obtained.  
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In chemical graph theory, chemical structures are modeled by a molecular graph to analyze underlying 
theoretical properties. The molecular graph of a chemical structure is a simple graph (𝐺) where the 
vertices represent the atoms and the edges represent the chemical bonds between the atoms. 

 

Let 𝐺 = (𝑉, 𝐸) be a simple connected graph of order |𝑉| = 𝑛 and size |𝐸| = 𝑚. Two edges of 𝐺 are said 

to be independent if they don't have a common vertex in 𝐺. A 𝑘-matching of 𝐺 is a set of 𝑘 mutually 

independent edges and the number of k-matching in 𝐺 is denoted by 𝑚(𝐺, 𝑘). Let 𝑚(𝐺, 0) = 1 for any 

graph 𝐺. Then, 𝑍(𝐺) is defined as follows: 

𝑍(𝐺) = ∑ 𝑚(𝐺, 𝑘)

⌊
𝑛
2

⌋

𝑘=0

. 

For graph 𝐺, the neighborhood of a vertex 𝑢 ∈ 𝑉 is defined as 𝑁𝐺(𝑢) = { 𝑣 ∈ 𝑉  |  𝑢𝑣 ∈ 𝐸 }. The number 

of edges incident to 𝑢 in 𝐺 is denoted by 𝑑𝑒𝑔𝐺(𝑢). Two graphs 𝐺1 and 𝐺2 containing the same number of 

vertices connected in the same way are said to be isomorphic and denoted as  𝐺1 ≃ 𝐺2 [5]. 

 

Dendrimers are macromolecules with highly branched monodisperse and have complex chemical and 
interesting structures with a precisely tailored architecture. Applications of dendrimers are unlimited in 
chemistry, biology, nano-science, targeted drug delivery, and suitable subjects for interdisciplinary 
research. Some topological indices of these macromolecules are studied in [3, 14,16]. 

 

In this paper, we investigate the Hosoya index for two infinite classes of dendrimers nanostar dendrimer 
𝑁𝑆1[𝑛] and tetrathiafulvalene dendrimer. The results can be used in analysing the molecular topology of 
these families of nanostar dendrimers. 

 
Methodology and Main Results 
 

In this section, we obtain the main results for computing the Hosoya index of four infinite classes of 
dendrimers. First, we give some lemmas that will be used in the proof of our results. 

 

Lemma 1 [5] Let 𝐺 = (𝑉, 𝐸) be a graph. 

i) If 𝑢𝑣 ∈ 𝐸(𝐺), then 𝑍(𝐺) = 𝑍(𝐺 − 𝑢𝑣) + 𝑍(𝐺 − {𝑢, 𝑣 }). 
ii) If 𝑣 ∈ 𝑉(𝐺), then 𝑍(𝐺) = 𝑍(𝐺 − 𝑣) + ∑ 𝑍(𝐺 − {𝑢, 𝑣 }).𝑢∈𝑁𝐺(𝑣)  

iii) If 𝐺1, 𝐺2, … , 𝐺𝑡 are all components of 𝐺, then 𝑍(𝐺) = ∏ 𝑍(𝐺𝑖)𝑡
𝑖=1 . 

 

Lemma 2 [5] Let 𝑃𝑛 and 𝑆𝑛 be the path and star graph of order 𝑛, respectively. Then, for any positive 

integer 𝑛, 

i) 𝑍(𝑃𝑛) = 𝐹𝑛+1, 
ii) 𝑍(𝑆𝑛) = 𝑛, 
 

where 𝐹𝑛 is the 𝑛-th Fibonacci number, defined by 𝐹0 = 0, 𝐹1 = 1 and 𝐹𝑛+1 = 𝐹𝑛 + 𝐹𝑛−1. 
 

First, we consider another type of PAMAM dendrimers, denoted by 𝑁𝑆1[𝑛], where 𝑛 ≥ 0 is the steps of 

growth (see Figure 1). This graph has 2𝑛+5 − 28 vertices and 2𝑛+5 − 29 edges [1]. In the following, we 

compute the Hosoya index of 𝑁𝑆1[𝑛] for 𝑛 ≥ 0. In doing so, we use graphs 𝐺𝑛
′  and 𝐺𝑛

′′ which are shown 
in Figure 2. 
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Figure 1. 𝑁𝑆1[𝑛] nanostar dendrimer 

 

 

Theorem 1. The Hosoya index of 𝑁𝑆1[𝑛] for 𝑛 ≥ 0 is given by 

𝑍(𝑁𝑆1[𝑛]) = 𝑍(𝐺𝑛
′ )2 + 𝑍(𝐺𝑛

′′)2, 

where graphs 𝐺𝑛
′  and 𝐺𝑛

′′ are shown in Figure 2 and for 𝑛 ≥ 1, 

𝑍(𝐺𝑛
′ ) = 456𝑍(𝐺𝑛−1

′ )2 + 530𝑍(𝐺𝑛−1
′ )𝑍(𝐺𝑛−1

′′ ) + 154𝑍(𝐺𝑛−1
′′ )2, 

𝑍(𝐺𝑛
′′) = 312𝑍(𝐺𝑛−1

′ )2 + 362𝑍(𝐺𝑛−1
′ )𝑍(𝐺𝑛−1

′′ ) + 105𝑍(𝐺𝑛−1
′′ )2, 

 with the initial conditions 𝑍(𝐺0
′ ) = 2 and 𝑍(𝐺0

′′) = 1. 

Proof. By Lemma 1 and deleting the edge 𝑢𝑣 (see Figure 1), we get 

𝑍(𝑁𝑆1[𝑛]) = 𝑍(𝑁𝑆1[𝑛] − 𝑢𝑣) + 𝑍(𝑁𝑆1[𝑛] − {𝑢, 𝑣 }) 

                                                                           = 𝑍(𝐺𝑛
′ )2 + 𝑍(𝐺𝑛

′′)2, 

where graphs 𝐺𝑛
′  and 𝐺𝑛

′′ are shown in Figure 2.  

We apply the reduction process to 𝐺𝑛
′  and 𝐺𝑛

′′, 𝑛 ≥ 1 and delete the edges of these graphs such that the 

formulas are obtained in terms 𝐺𝑛−1
′  and 𝐺𝑛−1

′′ . Therefore, for 𝑛 ≥ 1 

𝑍(𝐺𝑛
′ ) = (2(𝑍(𝑃5) + 𝑍(𝑃2)2)2 + 2(𝑍(𝑃4) + 𝑍(𝑃2))(𝑍(𝑃5) + 𝑍(𝑃2)2)) 𝑍(𝐺𝑛−1

′ )2 

                                     +2 (2( 𝑍(𝑃5) + 𝑍(𝑃2)2) ( 𝑍(𝑃4) + 𝑍(𝑃2))  

      +( 𝑍(𝑃4) + 𝑍(𝑃2))
2

+ 𝑍(𝑆4)(𝑍(𝑃5) + 𝑍(𝑃2)2)) 𝑍(𝐺𝑛−1
′ )𝑍(𝐺𝑛−1

′′ ) 

+ (2( 𝑍(𝑃4) + 𝑍(𝑃2))
2

+ 2 𝑍(𝑆4)( 𝑍(𝑃4) + 𝑍(𝑃2))) 𝑍(𝐺𝑛−1
′′ )2, 

Then, by substituting for 𝑍(𝑃𝑛) and 𝑍(𝑆𝑛) using Lemma 2 the result follows.  

Similarly, for graph 𝐺𝑛
′′ ,  

𝑍(𝐺𝑛
′′) = ((𝑍(𝑃5) + 𝑍(𝑃2)2)2 + 2(𝑍(𝑃4) + 𝑍(𝑃2))(𝑍(𝑃5) + 𝑍(𝑃2))) 𝑍(𝐺𝑛−1

′ )2 

                                    +2(2( 𝑍(𝑃5) + 𝑍(𝑃2)2)( 𝑍(𝑃4) + 𝑍(𝑃2)) 

+( 𝑍(𝑃4) + 𝑍(𝑃2))
2

 + 𝑍(𝑆4)(𝑍(𝑃5) + 𝑍(𝑃2)2)) 𝑍(𝐺𝑛−1
′ )𝑍(𝐺𝑛−1

′′ ) 

                                   + ((𝑍(𝑃4) + 𝑍(𝑃2))
2

+ 2𝑍(𝑆4)(𝑍(𝑃4) + 𝑍(𝑃2))) 𝑍(𝐺𝑛−1
′′ )2, 

Then, the result follows using Lemma 2. 

For the case 𝑛 = 0, it is easy to see that 𝑁𝑆1[0] ≃ 𝑃1 (see Figure 1). Therefore,  

𝑍(𝐺0
′ ) = 𝑍(𝑃2) = 2, 

and 

𝑍(𝐺0
′′) = 𝑍(𝐾1) = 1. 

This follows our result. 
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■ 

 
Figure 2. The graphs 𝐺𝑛

′  and 𝐺𝑛
′′ in Theorem 1 

 

 

Finally, we shall compute the Hosoya index of another family of nanostar dendrimers as 
tetrathiafulvalene dendrimer of generation 𝐺𝑛 with 𝑛 growth stages, denoted by 𝑇𝐷2[𝑛] for 𝑛 ≥ 0. The 

number of vertices of 𝑇𝐷2[𝑛] is 31 × 2𝑛+2 − 74 [11] as shown in Figure 3. 

 

 
Figure 3. Tetrathiafulvalene dendrimer with 2-growth stages, 𝑇𝐷2[2] 

 

 

In order to prove Theorem 2, we use two graphs 𝐺𝑛
′  and 𝐺𝑛

′′ as shown in Figure 4. The number of vertices 

of 𝐺𝑛
′  and 𝐺𝑛

′′ are 31 × 2𝑛+1 − 37 and 31 × 2𝑛+1 − 38, respectively. We also need in the process of 

proving to compute the Hosoya index of some of the certain graphs given in Figure 5 and Figure 6. 
Tables 1 and 2 show the Hosoya index of these graphs in Figures 5 and 6, respectively.  
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For computing the Hosoya index of graphs in Figure 6, we repeat Lemma 1 until the remaining graph 

contains components in the form of graphs in Figure 5. For example, we compute 𝑍(𝑡′′).  

By starting from removing edge 𝑥𝑦 and repeating Lemma 1, we have 

𝑍(𝑡′′) = [(𝑍(𝑃3)2 + 1)(𝑍(𝑃2)𝑍(2) + 𝑍(5)) + (𝑍(𝑃4) + 𝑍(𝑃2))(𝑍(4) + 𝑍(6))] 

                  × ([(𝑍(𝑃3)2 + 1)( 𝑍(𝑃2)𝑍(2) + 𝑍(5)) + (𝑍(𝑃4) + 𝑍(𝑃2))( 𝑍(4) + 𝑍(6))] 

                                  +2 [( 𝑍(𝑃2) + 𝑍(𝑃4))( 𝑍(2) + 𝑍(5)) + 𝑍(𝑃3)( 𝑍(4) + 𝑍(6))]) 

                                   +𝑍(𝑃2)[(𝑍(𝑃3)2 + 1)𝑍(2) + (𝑍(𝑃4) + 𝑍(𝑃2))𝑍(4)],  

By Table 1, we have 𝑍(𝑡′′) = 8597596. 

 

 
Figure 4. The graphs 𝐺𝑛

′  and 𝐺𝑛
′′ in Theorem 2 

 

 

Theorem 2. The Hosoya index of 𝑇𝐷2[𝑛] for 𝑛 ≥ 0 is obtained by the following formula, 

𝑍(𝑇𝐷2[𝑛]) = 𝑍(𝐺𝑛
′ )2 + 𝑍(𝐺𝑛

′′)2, 

where for 𝑛 ≥ 1, 

𝑍(𝐺𝑛
′ ) = α′𝑍(𝐺𝑛−1

′ )2 + 2β′𝑍(𝐺𝑛−1
′ )𝑍(𝐺𝑛−1

′′ ) + γ′𝑍(𝐺𝑛−1
′′ )2, 

𝑍(𝐺𝑛
′′) = α′′𝑍(𝐺𝑛−1

′ )2 + 2β′′𝑍(𝐺𝑛−1
′ )𝑍(𝐺𝑛−1

′′ ) + γ′′𝑍(𝐺𝑛−1
′′ )2, 

such that α′ = 84303360, β′ = 28831616, γ′ = 8597596, α′′ = 36774400, β′′ = 14140512, 

 γ′′ = 5521204 with the initial conditions 𝑍(𝐺0
′ ) = 198048 and 𝑍(𝐺0

′′) = 90064. 

First, we prove the following two lemmas. 

 

Lemma 3. For 𝑛 ≥ 1, 

𝑍(𝐺𝑛
′ ) = α′𝑍(𝐺𝑛−1

′ )2 + 2β′𝑍(𝐺𝑛−1
′ )𝑍(𝐺𝑛−1

′′ ) + γ′𝑍(𝐺𝑛−1
′′ )2, 

where α′ = 84303360, β′ = 28831616 and γ′ = 8597596. 

Proof.  

According to Figure 4 and Lemma 1(i) and (iii), we have 

𝑍(𝐺𝑛
′ ) = 𝑍(𝐺𝑛

′ − 𝑎𝑏) + 𝑍(𝐺𝑛
′ − 𝑎 − 𝑏) 

= 𝑍(𝐺𝑛−1
′ )𝑍(𝐻𝑛) + 𝑍(𝐺𝑛−1

′′ )𝑍(𝐹𝑛) 

such that 𝐻𝑛 is the graph constructed by deleting edge 𝑎𝑏 from 𝐺𝑛
′  and 𝐹𝑛 is the graph obtained by 

removing the vertices 𝑎 and 𝑏 from 𝐺𝑛
′ . 
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For computing 𝑍(𝐻𝑛) and 𝑍(𝐹𝑛), we use Lemma 1(i) and (iii) and consider the edge 𝑎′𝑏′ such that the 

remaining graphs be in Figure 6. Therefore, using Table 1 

𝑍(𝐻𝑛) = 𝑍(𝑡)𝑍(𝐺𝑛−1
′ ) + 𝑍(𝑡′)𝑍(𝐺𝑛−1

′′ ) 

                                    = 84303360𝑍(𝐺𝑛−1
′ ) + 28831616𝑍(𝐺𝑛−1

′′ ). 

 

 
Figure 5. Some certain graphs in Theorem 5 

 

 

In a similar way, for the graph 𝐹𝑛, 

𝑍(𝐹𝑛) = 𝑍(𝑡′)𝑍(𝐺𝑛−1
′ ) + 𝑍(𝑡′′)𝑍(𝐺𝑛−1

′′ ) 

                          = 28831616𝑍(𝐺𝑛−1
′ ) + 8597596(𝐺𝑛−1

′′ ). 

So, by putting α′ = 84303360, β′ = 28831616 and γ′ = 8597596 the result completes. 

■ 

 

Lemma 4. For 𝑛 ≥ 1,  

𝑍(𝐺𝑛
′′) = α′′𝑍(𝐺𝑛−1

′ )2 + 2β′′𝑍(𝐺𝑛−1
′ )𝑍(𝐺𝑛−1

′′ ) + γ′′𝑍(𝐺𝑛−1
′′ )2, 

where α′′ = 36774400, β′′ = 14140512 and γ′′ = 5521204. 

Proof.  

According to Figure 5 and similar to the proof of Lemma 3 we have, 

𝑍(𝐺𝑛
′′) = 𝑍(𝐺𝑛−1

′ )𝑍(𝐻𝑛
′ ) + 𝑍(𝐺𝑛−1

′′ )𝑍(𝐹𝑛
′) 

where 𝐻𝑛
′  and 𝐹𝑛

′ are obtained by deleting edge 𝑎𝑏 and vertices {𝑎, 𝑏} in the graph 𝐺𝑛
′′ , respectively. 

 
Figure 6. Some certain graphs in Lemmas 7 and 8 

 

 

By Lemma 1 and by considering the edge 𝑎′𝑏′ such that the remaining graphs are in Figure 6, we can 

compute 

𝑍(𝐻𝑛
′ ) = 𝑍(𝑡1)𝑍(𝐺𝑛−1

′ ) + 𝑍(𝑡1
′ )𝑍(𝐺𝑛−1

′′ ) 

                                        = 36774400 𝑍(𝐺𝑛−1
′ ) + 14140512 𝑍(𝐺𝑛−1

′′ ), 
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and 

𝑍(𝐹𝑛
′) = 𝑍(𝑡1

′ )𝑍(𝐺𝑛−1
′ ) + 𝑍(𝑡1

′′)𝑍(𝐺𝑛−1
′′ ) 

                               = 14140512𝑍(𝐺𝑛−1
′ ) + 5521204𝑍(𝐺𝑛−1

′′ ). 

By Table 2, and by putting α′′ = 36774400, β′′ = 14140512 and γ′′ = 5521204, the proof completes. 

 

Table 1. The Hosoya index of graphs in Figure 5 

 

Numbers of Graphs Hosoya index 

1 24 

2 64 

3 16 

4 44 

5 38 

6 26 

 

 

Proof of Theorem 2.  Let 𝐺𝑛 be the graph of tetrathiafulvalene dendrimer 𝑇𝐷2[𝑛]. Using Lemma 1 and 

considering edge 𝑥𝑦 in Figure 3, we have 

𝑍(𝐺𝑛) = 𝑍(𝐺𝑛 − 𝑥𝑦) + 𝑍(𝐺𝑛 − {𝑥, 𝑦 }) 

                                                                       = 𝑍(𝐺𝑛
′ )2 + 𝑍(𝐺𝑛

′′)2, 

where 𝐺𝑛
′  and 𝐺𝑛

′′ are shown in Figure 4. Using Lemmas 3 and 4, the formulas of the theorem hold. Thus, 

it is sufficient to obtain the initial conditions. 

It is clear that we have 𝐺0
′ ≃ 𝐾1

′′ and 𝐺0
′′ ≃ 𝐾2

′′ (see Figure 7). For 𝑛 = 0, 

𝑍(𝐺0
′ ) = ( 𝑍(2)𝑍(𝑃3) + 𝑍(4)𝑍(𝑃2)) × (( 𝑍(2)𝑍(𝑃3) + 𝑍(4)𝑍(𝑃2)) 

                 +2(𝑍(2)𝑍(𝑃2) + 𝑍(4))) + ( 𝑍(2) + 𝑍(4))
2

𝑍(𝑃6) = 198048, 

 

 and, 

 (𝑍(2)𝑍(𝑃3) + 𝑍(4)𝑍(𝑃2))
2

+ ( 𝑍(2) + 𝑍(4))
2

= 90064. 

 This completes the proof. 

■ 

 

Table 2. The Hosoya index of graphs in Figure 6 

 

Numbers of Graphs Hosoya index 

𝑡 84303360 

𝑡′ 28831616 

𝑡′′ 8597596 

𝑡1 36774400 

𝑡1
′  14140512 

𝑡1
′′ 5521204 

 

  
Figure 7. The graphs 𝐾1

′′ and 𝐾2
′′ in Theorem 2. 
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Numerical Results and Analysis 
In the field of QSAR and QSPR studies, physico-chemical properties of the chemical compounds and 
their topological indices are used to predict the bioactivity of different chemical compounds. The Hosoya 
index is a molecular structure descriptor that is related to their physicochemical properties and is applied 
in the theory of conjugated π-electron systems.  

 

Dendrimers are macromolecules with repeated growth and activation stages. Dendrimers have large 
and complex chemical structures and are one of the major available nanoscale building blocks. These 
structures are nearly perfect mono-disperse macromolecules with a regular and highly branched three-
dimensional architecture.  

 

Table 3. Numerical results related to the Hosoya index of the molecular graphs nanostar dendrimer 
𝑁𝑆1[𝑛] and tetrathiafulvalene dendrimer 

 

 

 

 

 
Figure 8. Comparison of the Hosoya index of the molecular graphs PAMAM, PETAA, nanostar 

dendrimer 𝑁𝑆1[𝑛] and tetrathiafulvalene dendrimer for 𝑛 = 1, 2 

 

 

In this study, we investigated the molecular structures of two infinite classes of dendrimers, namely, 

nanostar dendrimer 𝑁𝑆1[𝑛], and tetrathiafulvalene dendrimer. We obtained the formulas of the Hosoya 
index for these molecular structures. The numerical results of the Hosoya index of the molecular structure 
of studied dendrimers are shown in Table 3.   

 

The graphical comparison of the results obtained from the Hosoya index is shown in Figure 8. It can be 

observed from Figure 8 and Table 3 that the value of the Hosoya index of the molecular graph 𝑍(𝑇𝐷2[𝑛]) 

of tetrathiafulvalene dendrimer is more than others in the first and second stages (𝑛 = 1, 2).  

Since the molecular topology structure of tetrathiafulvalene dendrimer has a more complex structure 
than the other studied structures, and based on Table 3 and Figure 8, it can be concluded that the 
Hosoya index for this structure is more than other structure at every stage. 

 
Conclusion 
 

The QSAR and QSPR models use parameters describing the molecular structure to give the relationship 
between the descriptors and biological activities. The topological index is a numerical characterization of 
a chemical graph that is useful in QSPR models for modeling some physico-chemical properties such as 
boiling point, stability, and strain energy of chemical compounds. 

 

The Hosoya index is one of the important topological indices that is of great interest and has applications 
in molecular chemistry, such as boiling point, entropy, or heat of vaporization. 

 

In this paper, the molecular structures for two infinite dendrimers, nanostar dendrimer 𝑁𝑆1[𝑛] and 
tetrathiafulvalene dendrimer based on the graph theory modeling and the edge-partition method. We 

𝒏 (stages) 𝒁(𝑵𝑺𝟏[𝒏]) 𝒁(𝑻𝑫𝟐[𝒏]) 

1 1.3543 × 1𝑜7 2.3177 × 1𝑜37 

2 9.9071 × 1𝑜19 5.5576 × 1𝑜90 
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obtained the formula of the Hosoya index for the molecular graphs of these dendrimer structures.  

According to the numerical results, the value of the Hosoya index of the molecular graph 𝑍(𝑇𝐷2[𝑛]) of 
tetrathiafulvalene dendrimer is more than others.  

 

The results of this study can help to predict some physico-chemical properties, especially boiling points, 
entropy, or heat of vaporization of the molecular structure of the finite dendrimers.  
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