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Abstract Semen analysis is an important analysis for male infertility primary investigation and 

manual semen analysis is a conventional method to assess it. Manual semen analysis has been 

revealed with accuracy and precision limitations due to noncompliance to guidelines and 

procedures. Sperm motility and concentration are the main indicators for pregnancy and 

conception rate hence they were selected for parameters prediction. Convolutional neural network 

(CNN) has benefited computer vision application industry in recent years and has been widely 

applied in computer vision research tasks. In this paper, three-dimensional CNN (3DCNN) was 

designed to extract motion and temporal features, which are vital for sperm motility prediction. For 

sperm concentration, since two-dimensional CNN (2DCNN) is efficient in recognizing and 

extracting spatial features, well-established Residual Network (ResNet) architecture was adopted 

and customized for sperm concentration prediction. Multimodal learning approach is a technique 

to aggregate learnt features from different deep learning architecture that adopted other forms of 

modalities, which could provide deep learning model with better insights on their tasks. Hence, a 

multimodal learning deep learning architecture was designed to receive both image-based (frames 

extracted from video samples) and video-based (stacked frames pre-processed from video 

samples) input that could provide well-extracted spatial and temporal features for sperm 

parameters prediction.  The results obtained using the proposed methodology have surpassed 

other similar research works who used deep learning approach. For sperm motility, its best 

achieved average mean absolute error (MAE) was 8.048, and sperm concentration obtained a 

competent Pearson’s correlation coefficient (RP) value of 0.853. 

Keywords: Sperm parameters prediction, Semen analysis, 3DCNN, ResNet18, Multimodal learning.  
 

 

Introduction 
 

Infertility, is a medical condition where sexually active and non-contracepting couples are unable to 
successfully achieve clinical pregnancy, as defined by WHO [1]. Infertility could happen in both men 
and women, however, half of the failure in childbearing was contributed by infertile men [2].  Semen 
analysis is one of the primary and important analysis required to study the probability of male causing 
infertility among an infertile couple, then only treatment planning options are available for conception. 
Generally, the parameters that will be included in the analysis are sperm concentration, total sperm 
count, sperm motility, sperm morphology, semen volume, semen viscosity, pH values of semen sample 
and sperm vitality [3]–[6]. Sperm motility and concentration are significantly related to pregnancy rate 
and time to pregnancy; hence they act as better conception predictor than other parameters [3], [7], [8]. 
Sperm movement is due to the flagellar beating of sperm tail, and the movement can be categorized 
and graded as progressively motile, non-progressively motile and immotile spermatozoa [3], [9]. Sperm 
concentration is defined as the total number of spermatozoa per unit volume [3]. Human evaluation on 
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sperm motility and concentration are subjective and might be over or underestimated [10], [11]. Mostly 
semen analysis is performed manually by experienced laboratory technicians comply to guidelines 
provided by WHO [3]. It is a time and human resource consuming process as it requires intensive 
training and regular participation in quality assurance programs. Besides, it has been revealed with 
limitations such as lack of standardization in methodologies and tools used for analysis which affected 
the result’s accuracy and precision [12]–[14].  
 
This stimulated the development of automated semen analyzer such as CASA (Computer Aided 
Semen Analyzer) few decades ago and a recent model named as SQA (Sperm Quality Analyzer) [15]. 
CASA working principle is based on image processing algorithms on the captured microscopic images 
to detect motile and immotile spermatozoa [16], while SQA is based on electro-optical signals 
generated by moving spermatozoa, the detection of these signals is then interpreted by proprietary 
algorithms for sperm concentration prediction [16]–[18]. The expected advantages of automated 
semen analyzer are uniform standardization, faster, higher precision, lesser human error and training 
resources to operate the system compared with human evaluation method. However, these devices' 
credibility's on accuracy and precision were questioned based on the correlation of predicted results 
with manual measurement. Besides, the algorithms have issues dealing with semen samples that 
contains lots of debris and round cells, which confuse the algorithm to correctly identify target and non-
target entity, hence affecting the accuracy [17], [19]. From several comparison studies of both models 
using manual evaluation as gold standard, generally SQA series presents closer results with manual 
evaluation than CASA, however, there are also contradict findings from different research stated that 
sperm count and motility assessment using SQA models were poorer and not comparable with manual 
methods except sperm count results of samples with high concentration groups [13]–[16], [18]–[21]. 
Other than that, these automated semen analyzers still required some training to operate the system 
despite being identified as automated system. Although CASA and SQA are available in the market, 
CASA is currently not recommended for routine clinical use due to its methodological procedures that 
received criticisms, and SQA proper guidelines was not being discussed in WHO manual.  
 
Artificial intelligence and deep learning have taken off rapidly in recent decades, which video analysis 
has also achieved remarkable achievements such as activity recognition [22] and video classification 
[23]. For sperm motility prediction, Thambawita et al. introduced a novel method that was which is the 
combination of autoencoders and CNN for sperm morphology classification and sperm motility 
prediction. The general idea is to pretrain an autoencoder which its decoder will form an image with 
embedded learnt features, then pass it through pretrained ResNet34 for final motility and morphology 
prediction  [24]. A similar work by the same author is by using ResNet34 that adopted video-based 
input, obtained by stacking an RGB frame, followed by 2 dense optical flow frames generated with 
stride 1 and 10 respectively [25]. Both approaches experimented by Thambawita et al. achieved MAE 
of 9.427 and 8.825 respectively [24], [25]. In Hicks et al.’s work, the authors presented several 
machines and deep learning algorithms they have experimented for motility prediction. The best 
method is by using pretrained ResNet50 that adopt image-based input, which is dense optical flow 
frames extracted with stride 1 and this approach achieved an average MAE of 8.740 [10]. 
Nevertheless, the approaches explored by both authors were using 2DCNN classification architectures 
which could be less efficient in extracting temporal information from either image-based or video-based 
input. Rosenblad et al. Battacharjee et al. have proposed using 3DCNN in their work to capture 
temporal information [26], [27]. Rosenblad et al. established a consecutive 3DCNN architecture and 
preprocessed the input into 15 consecutive grayscale frames stacked as video-based modality. It has 
achieved motility prediction with an MAE of 8.83 [26]. On the other hand, Battacharjee et al. 
incorporated ResNet18 into 3DCNN architecture forming a ResNet18-3DCNN architecture, which aim 
to classify a 3D video-based input into one of the motility classes (progressive, non-progressive, 
immotile). The input was generated by stacking 50 consecutive grayscale frames extracted from video 
sample [27]. Although the work proposed has achieved 100% accuracy on motility classification, the 
work does not predict the proportion/percentage of each motility classes of a sample but classify entire 
sample into one class, which the output might be less useful for further evaluation by the clinician.  
 
In previous studies that have been discussed afore, those research works focused on using deep 
learning algorithms for sperm motility prediction. This following work presented an approach using a 
classical ANN architecture to predict sperm concentration [28]. The input was based on a full 
absorption spectrum obtained using a UV-visible spectrophotometer, where the light absorption values 
were used to quantify sperm concentration. The information obtained was then fed into a simple ANN 
architecture with 711 input variables as the first layer, 12 neurons in the first hidden layer, 20 neurons 
in the second hidden layer, and followed by the last output variable (711:12:20:1). It was reported to 
achieve 93% accuracy with clinical measurements using a manual approach. The equation defined by 
the author was the percentage ratio between predicted concentrations and manual evaluation values 
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(100 × prediction/manual value) [28]. If a sample’s predicted concentration exceeds clinical evaluation 
would have achieved an accuracy of more than 100%, this would contribute to controversial accuracy 
evaluation. All in all, since the modality adopted in this paper was vision input (video-based and image-
based modalities extracted from VISEM’s video samples), 2DCNN is more suitable for concentration 
prediction than ANN as demonstrated by Lesani et al.’s work.  
 
The aforementioned approaches for parameters predictions were in unimodal learning approach [24]–
[26], [28]. Nevertheless, aside from using either video-based or image-based data as the main 
modalities for unimodal learning, Hicks et al. and Bhattacharjee et al. have also demonstrated 
multimodal learning techniques in their research work by feeding in additional tabular data from VISEM 
dataset [10], [27]. Hicks et al. utilized multimodal learning concept in deep learning architecture where 
the input types were image-based input and tabular data, it was reported to have achieved MAE of 
9.132 [10]. From the results, multimodal learning did not show improvement as hypothesized where the 
accuracy should improve by providing additional modalities when compared with the unimodal learning 
approach, but they degrade instead. In Bhattacharjee et al.’s study where 3DCNN architecture was 
used for motility classification, it achieved 100% accuracy in both validation and test sets for unimodal 
learning approach, while multimodal learning approach test sets results decreased to 88.89% [27]. 
From the reported results, both research works’ findings showed that not only their proposed 
architecture and modalities could not improve the performance by learning the association between 
both modalities, but by providing additional modalities the performance degrades. This could give a 
hint that tabular data is not a suitable modality to provide better insights for motility prediction. 
Nonetheless, in this paper, a multimodal network would be designed to adopt suitable multimodalities. 
First was 3D input (video-based) that well represented temporal and movement information, the 
second type was 2D input (image-based) which could help generate feature maps to classify targets 
(sperm) from other non-targets. In short, multimodal learning is a plausible approach to improve the 
model’s insights however the types of modalities should be considered wisely.  
 
In this paper, it aimed to formulate a multimodal deep learning methods in sperm parameters prediction 
by adopting image-based and video-based input, which the model’s accuracy would be compared with 
other related research works. The rest of the paper is structured as follows. Section 2 discussed the 
methodologies to preprocess the suitable modalities and architecture design. Section 3 presented the 
experimental settings. Section 4 showed the results and discussion with a descriptive analysis on the 
accuracies achieved. Finally, the conclusion and suggestions for future improvements were proposed 
in Section 5.  

 
Methods 
 

Dataset 
The recorded semen videos are obtained from an online multimodal video dataset, VISEM [29] which 
contains different data sources such as videos, biological analysis data, and participant data that are 
collected from 85 anonymized participants. Semen samples collection and handling method are 
according to WHO guidelines as described by Andersen et al. [30]. Generally, semen samples 
collected were analyzed within two hours and evaluation approach are as defined in WHO manual as 
well. Videos were recorded using Olympus CX31 phase contrast microscope, with heated stage at 
37°C, and a mounted camera (UEye UI-2210C, IDS Imaging Development System). Semen videos 
were captured using 400× magnification with a frame rate of 50 fps.   

 

Preprocessing and Modalities Preparation 
The 3DCNN was foreseen to capture temporal information effectively, given its modality is in video-
based form. To assist the model differentiates better whether the motions captured were from sperm or 
non-sperm entities, a classification 2DCNN (ResNet18) could learn and provide insights which 
functioned as a classifier. Besides it can also be used for sperm concentration regression as the 
temporal feature was not necessary but need only spatial information. To sum it up, a multimodal 
network would acquire final feature maps learnt from 3DCNN and ResNet18 as inputs, then underwent 
a late fusion mechanism for motility and concentration prediction tasks. Hence, suitable video-based 
and image-based modalities were generated, both modalities were denoted as D1 and D2 respectively. 
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Figure 1. Generating dense optical flow frames from extracted images and stacked them to form 
video-based input 

 

 

D1 Input Generation (Video-based modality) 

D1 video-based input was prepared for unimodal 3DCNN architecture in the form of stacked dense 
optical flow frames. One dense optical flow frame was generated by computing the pixel intensity 
changes between 2 consecutive frames extracted from microscopic video, using Gunnar Farneback’s 
Optical Flow algorithm (tools available in OpenCV), the intensity changes denotes motion occurs. The 
general idea is to generate N number of dense optical flow frames for each video. Then, as inspired by 
Thambawita et al., dense optical flow frames generation with stride 1, (e.g. extract 1st and 2nd 
microscopic video’s frame to generate one dense optical flow frame) would provide better results than 
generating dense optical flow frames using stride 10 (e.g. extract 1st and 11th microscopic video’s 
frame to generate one dense optical flow frame) or other stride numbers [25]. This process could be 
summarized in Figure 1. Next, a Z number of dense optical flow frames generated were stacked 
together, after resizing them to a dimension of (3 × 144 × 144), forming a single training/validation 
sample with a dimension of (3 × 144 × 144 × Z).  

 

D2 Input Generation (Image-based modality) 

D2 image-based input was prepared for unimodal 2DCNN (ResNet) in the form of RGB images. The 
D2 sample was the first image of the microscopic frame sequences used for D1 sample generation. 
For example, if a D1 sample with configuration is as follows: XD1 = 10 and ZD1 = 8; then RGB images 
extracted as D2 samples would be 1st frame, 81st frame, 161st frame and the list went on with a 
skipping factor or stride of XD1 × ZD1, in this context was 10 × 8. This process was summarized in 
Figure 2. The default input size for ResNet18 architecture was 224 × 224, but to preserve the 
information embedded within an extracted image, all D2 images were downsized with a ratio of 0.8. 
The original image size was (3 × 640 × 480) and after downsizing was (3 × 512 × 384). 

 

Different Sets with Varying Stride and Depth 

Table 1 shows the types of sets which would be trained with varying configuration XD1 and ZD1, then 
identify which configuration type would provide the best validation accuracy. The total samples 
generated were kept constant for all sets to accurately analyse and deduce the effect of varying D1 
input’s depth and stride number on the performance. 

 

Ground Truth Scaling 

For motility prediction, the ground truth was the percentage of each spermatozoa category within each 
sample, hence the summation of all categories (progressive, non-progressive, immotile) would be 
equal to 100%. The output algorithm used for motility prediction was Softmax where its output within 
the range of 0 to 1. Therefore, the data scaling for motility percentages ground truth was dividing them 
by 100. While for concentration values (×10⁶/mL), its data distribution characteristics were very much 
similar to prices and not in linear distribution. It was observed in price prediction-related regression 
tasks, the ground truth would undergo log transformation to minimize skewness to be closer to normal 
distribution [31], [32]. Thus, log transformation was utilized as scaling approach to reduce the ground 
truth skewness. 
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Figure 2. Selection of D2 sample from frame sequences used to generate D1 sample 

 

Table 1. Different Configuration in Dataset Generation 

 

Set XD1 (Stride 
Number) 

ZD1 (Depth) N (Total Frames per 
Video) 

Total Samples 
Generated (D1, D2) 

*N/ZD1 × 85 

D1 Dimension 

A 1 8 272 2890 3 × 144 × 144 × 8 

B 1 11 374 2890 3 × 144 × 144 × 11 

C 1 14 476 2890 3 × 144 × 144 × 14 

D 10 8 272 2890 3 × 144 × 144 × 8 

E 10 11 374 2890 3 × 144 × 144 × 11 

F 10 14 476 2890 3 × 144 × 144 × 14 

 

 

Deep Learning Architectures 
The following subsections will briefly describe the structure of unimodal (for early stage pretraining) 
and multimodal deep learning architectures.  The general idea was to pretrain 3DCNN and ResNet18 
for motility and concentration prediction respectively. To acquire ResNet18’s learnt features for sperm 
and non-sperm entities classification, a multimodal network was designed to assemble partially 
pretrained 3DCNN and ResNet18 to finetune the motility prediction performance. As explained earlier, 
stacked dense optical flow frames (D1 input) only capture motion hence it needs assistance to better 
identify if the motion was from moving sperm, other cells or just a drifting effect in liquid samples. 
Hence, this induced the idea of a multimodal network that combines both 3DCNN and 2DCNN to 
improve motility prediction. Finally, a multimodal network with finalized finetuned model parts and 
parameters were assembled for multiple-output regression, that is obtaining motility and concentration 
prediction with one run. 
 

 
 

Figure 3. 3DCNN Structure 



  

10.11113/mjfas.v20n2.3263  352 

Goh et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 20 (2024) 347-359 

 
Figure 4. Modified ResNet18 for Concentration Prediction 

 

 

3DCNN 

This 3DCNN model was designed for sperm motility prediction which consists of several basic 
convolutional building blocks and complete architectures were summarized in Figure 3. The complete 
architecture was divided into Part1 and Part2, which was to assist the implementation and 
configuration of the following multimodal network design that requires parameters/weight freezing. 

 

ResNet18 

The original ResNet18 architecture was preserved, and then a fully connected layer for concentration 
regression was added, as shown in Figure 4. Similar to 3DCNN, ResNet18 was separated into three 
parts for assembly process in the late development stage. 

 

Multimodal Network with Single Output (Motility) 

The complete architecture design of multimodal network for motility prediction which combines 
pretrained 3DCNN and ResNet18 is as shown in Figure 5(a). Pretrained weights of 3DCNN model 
Part1 was imported to finetune the motility prediction performance. ResNet18 Part1’s weights were 
frozen and not allowed for backpropagation during the training process, as the parameters were later 
shared with concentration prediction tasks (Section 2.3.4). ResNet18 Part2 (fully connected layer with 
1000 outputs) was proceeded for training to allow partial parameters tuning for best motility accuracy. 
The output from both model parts were then concatenated forming a fully connected layer with a total 
of 1512 units, then slim down to 1000 neurons before the final motility output. Before concatenation, 
the outputs of both model parts were subjected to batch normalization. As suggested by several 
research works, batch normalization should be inserted between linear transformation and non-linear 
unit when two outputs of different modalities were to be joined together in one similar embedding [33], 
[34]. 

 

Multimodal Network with Multiple Output (Concentration & Motility) 

The complete architecture design of a multimodal network for concentration and motility prediction was 
presented in Figure 5(b). It utilized the best-learned parameters from ResNet18 and Multimodal 
Network with Single Output for concentration and motility regression tasks respectively. This model did 
not require training and hence all weights were not subjected to back propagation, just simply model 
assembly from the best-learned weights. 
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Figure 5. The proposed (a) Multimodal Network with Single Output (Motility). (b) Multimodal 
Multimodal Network with Multiple Outputs (Motility & Concentration) 

 

Table 2. Hyperparameters for Implementation Setup 

 

Model Type Initial Learning Rate Training Epochs Loss Function 

ResNet18 3 × 10-4 100 RMSE 

3DCNN 1 × 10-6 Stopped if not improved after 10 
epochs 

MSE 

Multimodal Network with Single 
Output 

3 × 10-5 40 MSE 

 

 

Experimental Settings 
 

All models used Adam optimization algorithm with different initial learning rate as shown in Table 2, 
and same learning rate scheduler “StepLR” which decay with gamma 0.95 every 10 epochs. Batch size 
for all models were standardized as 30. Unimodal 3DCNN would stopped training if the validation 
accuracy did not improve after 10 epochs. Whereas the other models were trained with maximum 
epochs as shown in Table 2 and the epoch checkpoint that achieved lowest validation error were 
saved. For models (Unimodal 3DCNN, Multimodal Network with Single Output) that tackled motility 
prediction, the loss function adopted was mean squared error (MSE) as suggested by other similar 
research works [10], [24]–[27], whereas the loss function of ResNet18 for concentration prediction was 
root mean squared error (RMSE), which also has been practiced by Lesani et al. [28] in his research 
work for same parameter prediction. All sets prepared in subsection 2.2.3 would undergo three-fold 
cross validation as practiced by other research works. MAE was selected as the evaluation metric for 
sperm motility prediction and to allow the performance comparison with existing research works that 
used the same VISEM dataset [10], [24]–[27], [35]. In addition, MAE was also used as one of the 
evaluation metrics for concentration regression to compare the performance amongst different sets 
generated in this research study. For sperm concentration prediction, since there were limited research 
works that explored the deep learning approach, Pearson’s correlation coefficient (RP) and Spearman 
rank correlation (RS) were chosen as metrics to compare with other related studies. Both performance 
metrics were used in the comparison studies of sperm concentration prediction performances of 
automated semen analyser (CASA, SQA series) with manual semen analysis [18], [19], [36].  

 
Results and Discussion 
 

Concentration Prediction (Unimodal ResNet18) 
Table 3 represents the performance of the proposed method (modified ResNet18 for concentration 
prediction) compared with the commercialized products which were CASA and SQA-Vision in terms of 
RP and RS. Overall, the proposed approach was comparable with the commercialized products as most 
of the sets achieved correlation values above 0.8, which was a strong linear relation between predicted 
concentration and actual concentration.  
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Table 3. Comparison of Concentration Prediction between Previous Research Works and Proposed Modified ResNet18 

 

Previous research works /  
Datasets Type 

Performance metrics 

RP RS 

[36] 0.970 (CASA) - 

[18] 0.958 (SQA-Vision) 0.978 (SQA-Vision) 

[19] - 0.950 (CASA, SQA-V-Gold) 

A (XD2 = 8) 0.843 0.821 

B (XD2 = 11) 0.825 0.828 

C (XD2 = 14) 0.835 0.805 

D (XD2 = 80) 0.807 0.822 

E (XD2 = 110) 0.796 0.833 

F (XD2 = 140) 0.853 0.831 

 

 
 

Figure 6. Concentration Prediction Error (MAE) of Different Set 

 

 

By using RP, it was observed Set F had the highest RP correlation value, which was 0.853, while Set E 
was the lowest with 0.796. On the other hand, Set E had topped the others with the highest RS 
correlation value of 0.833 while Set C achieved the lowest RS value which was 0.805. From Figure 6, it 
was observed that generally Set A to C had higher MAE than Set D to F. This observation reflected the 
changes in the number of skipping frames used to extract the D2 input, XD2. XD2 denoted the time 
interval between 2 consecutive frames which were extracted as D2 samples within a video, this ranged 
from 0.16 seconds to 2.8 seconds corresponding to Set A to F. ResNet18 was supposed to learn 
spatial and target cells’ features that were embedded within image-based input. If the dispersion of 
target cells of was observed in a similar distribution in all the frames extracted from one video sample 
due to small XD2 value (Set A to C), then it could not be an effective dataset for deep learning model to 
learn as the model could not regularize well enough to predict the test/validation set. Hence, sets 
generated with larger XD2 value regularized better, therefore lower MAE and better accuracy. 

 

Motility Prediction (Unimodal 3DCNN) 
Table 4 presented the MAE of motility prediction by the proposed method on the prepared sets from 
subsection 2.2.3 and the set achieved lowest MAE was Set C with MAE of 8.506. Results showed that 
by using only unimodal learning approach, the combination of 3DCNN and video-based stacked dense 
optical flow frames has already surpassed most of the similar research works that employed deep 
learning model and unimodal image-based or video-based modality. It showed that Set A to C have 
already performed better than all other previous studies. This indicated that the proposed method 
(3DCNN + D1 input) for motility prediction were effective on temporal features learning. On the other 
hand, Set D to F performed slightly weaker than Hicks et. al.’s work [10] which used dense optical flow 
frames as their image-based input, but still surpassed Thambawita et. al.’s work (autoencoders + 
image-based input) [24], Thambawita et. al. (ResNet34 + video-based input) [25] and Rosenblad et. al. 
(3DCNN + stacked grayscale frames as video-based input) [26].  
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Figure 7. Comparison of MAE Achieved Using Different Stride and Depth 

 

Table 4. Comparison of Motility Prediction between Previous Research Works and Proposed 3DCNN Unimodal Learning Approach 

 

Previous research works / Dataset 
type 

Modality MAE 

PR NPR IM Average 

[7] Feature vectors 13.220 7.260 11.920 10.800 

[7] Image-based (dense 
optical flow frames) 

10.191 7.114 8.914 8.740 

[21] Image-based - - - 9.427 

[22] Video-based - - - 8.825 

[23] Video-based 10.160 7.410 8.920 8.830 

Set A (XD1=1, ZD1=8) Video-based 10.322 6.919 8.567 8.602 

Set B (XD1=1, ZD1=11) 10.254 7.021 8.463 8.579 

Set C (XD1=1, ZD1=14) 9.974 6.959 8.583 8.506 

Set D (XD1=10, ZD1=8) 10.620 7.075 9.257 8.984 

Set E (XD1=10, ZD1=11) 11.187 7.310 9.697 9.398 

Set F (XD1=10, ZD1=14) 10.780 7.150 9.479 9.136 

 

 

The reason that indirectly caused Set D to F to have a slightly higher error was due to the stride 
number, XD1 used to generate dense optical flow frames. This is due to similar concept as explained in 
subsection 4.2 on concentration prediction. The higher error trend indicated that precision of moving 
targets’ location has better impact on achieving higher accuracy than having longer duration of 
information (ZD2).  As shown in Figure 7, a trend where MAE decreased as the depth, ZD1 
increased was observed in Set A to C (XD1 = 1). This indicated that with deeper depth in video-based 
modality, D1 data provided more information for the deep learning model to learn, hence better results 
than shallower depth. For sets generated with XD1 = 10, due to the precision of moving targets’ location 
as addressed afore, the impact of depth on motility prediction is ignored as similar trend was not 
observed.  
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Table 5. Comparison of Motility Prediction between Proposed Multimodal Learning Architecture (3DCNN + ResNet18) with Other 
Previous Works 

 

Previous research 
works / Dataset type 

Modality MAE 

PR NPR IM Average 

[7] Feature vectors 13.220 7.260 11.920 10.800 

[7] Frame-based 10.191 7.114 8.914 8.740 

[21] Frame-based - - - 9.427 

[22] Video-based - - - 8.825 

[23] Video-based 10.160 7.410 8.920 8.830 

Set A Video-based 9.365 7.038 7.740 8.048 

Set B 10.025 6.721 7.899 8.215 

Set C 10.403 6.701 7.997 8.367 

Set D 10.588 7.268 8.670 8.842 

Set E 11.323 7.513 9.379 9.405 

Set F 11.108 7.201 9.220 9.176 

 

 
 

Figure 8. Motility and Concentration Predictions’ MAE 

 

 

Motility and Concentration Prediction Using by Multimodal 
Learning Approach (3DCNN + ResNet18) 
Table 5 represents the performance of proposed multimodal network for motility prediction (3DCNN + 
ResNet18) compared with other similar research works. It showed that using the multimodal learning 
approach with appropriate modalities which are stacked dense optical flow frames as video-based 
modality, and RGB image-based modality, it could reduce the error by 6.450% at maximum when 
compared with unimodal learning approach, which was achieved by Set A with MAE of 8.048. From 
Set A to C, the error decrement trend for motility prediction was in reversed with unimodal learning 
approach (Figure 7), where Set A was the one with the lowest MAE of 8.048 and Set C with a relatively 
higher MAE of 8.367, despite the latter had deeper depth and theoretically should have lower MAE. 
During multimodal training, the features learnt from ResNet18 which was pretrained for concentration 
prediction was imported and it affected the motility prediction.  
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Table 6. Validation of Results Obtained by Final Assembled Model (Multimodal Network with Multiple Outputs) 

 

Dataset 
Types 

MAE (Motility) RP (Concentration) 

Multimodal, 
Single output 

Multimodal, 
Multiple output 

ResNet18 Multimodal, 
Multiple output 

A 8.048 8.065 0.843 0.843 

B 8.215 8.379 0.825 0.825 

C 8.367 8.260 0.835 0.835 

D 8.842 8.791 0.807 0.807 

E 9.405 9.352 0.796 0.796 

F 9.176 9.141 0.853 0.853 

 

 

From Figure 8, the motility prediction error decrement trend was in sync with concentration prediction 
error decrement trend as denoted by the line graph, where the error decreased from Set C to Set A. 
Therefore, instead of adding the depth of video-based modality to improve the accuracy, the spatial 
features learnt from ResNet18 assisted better and had a bigger impact than the depth of video-based 
modality on motility prediction. This observation also indirectly proved that a multimodal learning 
approach with a suitable modality would improve the model’s insights on their learning tasks. 
 

Validation of Final Assembled Model (Multimodal Network with Multiple 
Outputs) 
Since this model was just merely combining the model parts and finetuned parameters which means it 
did not require any backpropagation, hence this section only evaluate whether this proposed 
architecture obtained the same best-optimized accuracy as previous pretrained model parts (ResNet18 
and Multimodal Network with Single Output). From the outcome acquired by Set A to F as shown in 
Table 6, it showed both concentration and motility prediction of this assembled model was on par with 
the best accuracy achieved by ResNet18 and Multimodal Network Single Output, the model assembly 
process was successful. 

 

Conclusion and Future Recommendations 
 
In this paper, a multimodal deep learning architecture consist of 3DCNN and ResNet18 which can run 
the regression for sperm parameters prediction has been successfully developed, specifically the 
motility and concentration prediction. Video-based and image-based input were generated as the 
modalities for this multimodal learning network. The video-based input was in the form of stacked 
dense optical flow frames that accentuates motion features, whereas image-based input which were 
extracted from microscopic videos act as the main modality for concentration prediction. The features 
learnt from ResNet18 was then imported to finetune multimodal learning network for motility prediction 
as it could help the model to identify target and non-target entities. The results obtained from these 
proposed architectures were compared and analysed with other similar research works. For motility 
prediction, the multimodal network was proven to have surpassed all other studies that use the deep 
learning approach with the lowest error, which is MAE of 8.048, whereas for concentration prediction it 
achieved a comparable performance with commercialized products, with Pearson’s correlation 
coefficients of 0.853.  
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