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Abstract The non-commuting graph, denoted by 𝛤𝐺, is defined on a finite group 𝐺, with its vertices 

are elements of 𝐺 excluding those in the center 𝑍(𝐺) of 𝐺. In this graph, two distinct vertices are 

adjacent whenever they do not commute in 𝐺. The graph 𝛤𝐺 can be associated with several matrices 
including the most basic matrix, which is the adjacency matrix, 𝐴(𝛤𝐺), and a matrix called Sombor 

matrix, denoted by 𝑆(𝛤𝐺). The entries of 𝑆(𝛤𝐺) are either the square root of the sum of the squares of 
degrees of two distinct adjacent vertices, or zero otherwise. Consequently, the adjacency and Sombor 

energies of 𝛤𝐺 is the sum of the absolute eigenvalues of the adjacency and Sombor matrices of 𝛤𝐺, 

respectively, whereas the spectral radius of 𝛤𝐺 is the maximum absolute eigenvalues. Throughout this 
paper, we find the spectral radius obtained from the spectrum of 𝛤𝐺 and the Sombor energy of 𝛤𝐺 for 

dihedral groups of order 2𝑛, 𝐷2𝑛, where 𝑛 ≥ 3. Moreover, there is an almost linear correlation between 

the Sombor energy and the adjacency energy of 𝛤𝐺 for 𝐷2𝑛 which is slightly different than reported 
earlier in previous literature. 
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Introduction 
 
The concept of the non-commuting graph was first introduced in 1976 by Neumann [17]. However, 
Abdollahi et al. [1] started extensive research in exploring more on the properties of the non-commuting 
graph, which includes graph connectivity, regularity, and the relation of these graph properties with group 
properties.  
 
The non-commuting graph, denoted by 𝛤𝐺, is defined on a finite group 𝐺, with its vertices are elements 

of 𝐺\𝑍(𝐺), where 𝑍(𝐺) is the center of 𝐺. This graph has to satisfy a condition in which 𝑣𝑝, 𝑣𝑞 ∈ 𝐺\𝑍(𝐺), 

and 𝑣𝑝 ≠ 𝑣𝑞, are joined by an edge whenever 𝑣𝑝𝑣𝑞 ≠ 𝑣𝑞𝑣𝑝. If there is an edge between 𝑣𝑝 and 𝑣𝑞 in 𝛤𝐺, 

then they are called adjacent. This adjacency property of 𝛤𝐺 can be represented in a matrix named 

adjacency matrix, 𝐴(𝛤𝐺) = [𝑎𝑝𝑞] of size 𝑛 × 𝑛, in which 𝑎𝑝𝑞 = 1, if 𝑣𝑝 and 𝑣𝑞 are adjacent, and 𝑎𝑝𝑞 = 0 

otherwise. Furthermore, the characteristic polynomial formula of 𝐴(𝛤𝐺), 𝑃𝐴(𝛤𝐺)(𝜆) = |𝜆𝐼𝑛 − 𝐴(𝛤𝐺)|, where 

𝐼𝑛 is the identity matrix of size 𝑛 × 𝑛. The eigenvalues of 𝛤𝐺 are the roots of 𝑃𝐴(𝛤𝐺)(𝜆) = 0, labeled as 

𝜆1, 𝜆2, … , 𝜆𝑛. 
 
A non-commuting graph 𝛤𝐺 is a simple graph that implies the adjacency matrix of 𝛤𝐺, 𝐴(𝛤𝐺), to be 

symmetric with its real eigenvalues that can be arranged as 𝜆1 ≥ 𝜆2 ≥ … ≥ 𝜆𝑛. The list of all 𝜆1, 𝜆2, … , 𝜆𝑛, 

denoted by 𝑆𝑝𝑒𝑐(𝛤𝐺) = {𝜆1
𝑘1 , 𝜆2

𝑘2 , … , 𝜆𝑛
𝑘𝑛} is called the spectrum of 𝛤𝐺 with 𝑘1, 𝑘2, … , 𝑘𝑛 are their respective 

multiplicities. The spectral radius of 𝛤𝐺 is defined as 𝜌(𝛤𝐺) = 𝑚𝑎𝑥{|𝜆|: 𝜆 ∈ 𝑆𝑝𝑒𝑐(𝛤𝐺)}. Clearly, 𝜌(𝛤𝐺) is a 

non-negative real number and is the smallest disc radius that includes all the eigenvalues of 𝛤𝐺 with the 
center at the origin of the complex plane [11]. There are a number of papers focusing on the spectral 
radius of other types of graphs, such as the spectral radius of power graphs on dihedral groups [5], the 
spectral radius of directed graphs [6] and the spectral radius of the interval-valued fuzzy graph [25] with 
regards to signless Laplacian matrix. 
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Moreover, the concept of the spectrum of the adjacency matrix associated with finite graphs can further 
be extended to the study of graph energies. Gutman in 1978 is the first to discover the (ordinary) energy 
of a finite graph in order to estimate the energy of the electrons in a chemical molecule which is regarded 
as a graph. For 𝛤𝐺 with 𝑛 vertices, the adjacency energy is denoted by 𝐸𝐴(𝛤𝐺) and is defined in [9] as 

𝐸𝐴(𝛤𝐺) = ∑ |𝜆𝑖|
𝑛
𝑖=1 . The graphs on 𝑛 vertices with an energy of more than 𝐸𝐴(𝐾𝑛) can be classified as 

hyperenergetic, or in other words, when 𝐸(𝛤𝐺) > 2(𝑛 − 1) [13]. It should be noted as well that the 
(ordinary) adjacency energy is neither an odd number [3] nor the square root of an odd number [18].  
  
In 2021, a new graph matrix definition was put forward by Gowtham & Swamy [8], named the Sombor 

matrix of 𝛤𝐺, denoted by 𝑆(𝛤𝐺) = [𝑠𝑝𝑞] whose (𝑝, 𝑞) −th entry is equal to 

𝑠𝑝𝑞 = {
√𝑑𝑣𝑝

2 + 𝑑𝑣𝑞

2 ,    if 𝑣𝑝 ≠ 𝑣𝑞 and they are adjacent 

0,                       otherwise,                                         

 

where 𝑑𝑣𝑖
 as the degree of 𝑣𝑖. This concept is the algebraic perspective of the Sombor index in 

mathematical chemistry that was established by [10]. 
 
Recently, the study on Sombor indices and Sombor energy of a graph has become one of the topics of 
interest for many researchers. There are many ways in which the Sombor index and its energy can be 
related to, for instance, see [23]. Moreover, the bound of graph energy has been derived in terms of the 
Sombor index, see [14,26]. Besides, Liu et al. [15] generalized the Sombor matrix definition and named 

it as 𝑝 −Sombor matrices. They discussed the spectral properties of the graphs corresponding to these 
matrices. Rather & Imran [20] provided the Sombor energy updates for the extremal graph. Later they 
corrected their previous result in [21], one of the upper bounds of Sombor’s energy was invalid. In 
correlation studies for molecules containing hetero atoms and their total electron energy with a 
correlation, Gowtham & Swamy [8] stated that the Sombor energy values were highly correlated with 
their total electron energy with a correlation coefficient of 0.952. However, a different result was shown 
by [22] in which they presented a numerical approach for comparing the Sombor energy and the 
adjacency energy of graphs, and it is still an open problem for Mathematical proof. 
 
Throughout this paper, we focus on the Sombor matrix of 𝛤𝐺 for the non-abelian dihedral groups of order 

2𝑛, 𝑛 ≥ 3, denoted by 𝐷2𝑛. The dihedral group has a presentation 𝐷2𝑛 = 〈𝑎, 𝑏 ∶  𝑎𝑛 = 𝑏2 = 𝑒, 𝑏𝑎𝑏 = 𝑎−1〉 
and its elements can be written as 𝑎𝑖 and 𝑎𝑖𝑏 [2]. The center of 𝐷2𝑛, 𝑍(𝐷2𝑛) is either equal to the set {𝑒}, 

if 𝑛 is odd or {𝑒, 𝑎
𝑛
2} for even 𝑛. The centralizer of the element 𝑎𝑖 in 𝐷2𝑛 is 𝐶𝐷2𝑛 (𝑎

𝑖) = { 𝑎𝑗: 1 ≤ 𝑗 ≤ 𝑛 }  and 

for the element 𝑎𝑖𝑏 is either 𝐶𝐷2𝑛
(𝑎𝑖𝑏) = {𝑒, 𝑎𝑖𝑏}, if 𝑛 is odd or 𝐶𝐷2𝑛

(𝑎𝑖𝑏) = {𝑒, 𝑎
𝑛
2 , 𝑎𝑖𝑏, 𝑎

𝑛
2
+𝑖𝑏}, if 𝑛 is even.  

 
Some recent results in the energy of commuting and non-commuting graphs for 𝐷2𝑛, for 𝑛 ≥ 3, denoted 

by 𝐷2𝑛 have been reported in [16,24]. They worked on adjacency and degree exponent sum matrices. 

To further extend this study, here we discuss on the spectral radius and Sombor energy of 𝛤𝐺 for dihedral 

groups, 𝐷2𝑛. The methodology consists of constructing the Sombor matrix of 𝛤𝐺, finding the eigenvalues 

and the spectrum of the respective matrix, analyzing 𝜌(𝛤𝐺), computing the Sombor energy, and thus 

observing the relationship between 𝜌(𝛤𝐺) and the Sombor energy of the respected 𝛤𝐺. We also investigate 

the hyperenergetic property of 𝛤𝐺 and we compare the Sombor energy, 𝐸𝑆(𝛤𝐺) and the (ordinary) energy 

𝐸𝐴(𝛤𝐺) as one of the cases to answer the claim in [22]. 

   
Preliminaries 
 
We study the non-commuting graph for 𝐺, 𝛤𝐺, being the subset of the dihedral groups of order 2𝑛, 𝐷2𝑛, 

where 𝐺 is either 𝐺1, 𝐺2 or 𝐺1 ∪ 𝐺2. We define 𝐺1 = {𝑎𝑖: 1 ≤ 𝑖 ≤ 𝑛}\𝑍(𝐷2𝑛) and 𝐺2 = {𝑎𝑖𝑏: 1 ≤ 𝑖 ≤ 𝑛}. The 

Sombor energy of 𝛤𝐺 is given by  

                                                                 𝐸𝑆(𝛤𝐺) = ∑ |𝜆𝑖|
𝑛
𝑖=1 ,                   (1) 

with the eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛 (not necessarily distinct) of 𝑆(𝛤𝐺). The Sombor spectral radius of 𝛤𝐺 is  

                                                     𝜌𝑆(𝛤𝐺) = 𝑚𝑎𝑥{|𝜆|: 𝜆 ∈ 𝑆𝑝𝑒𝑐(𝛤𝐺)}.               (2) 

Now since 𝛤𝐺 has 2𝑛 − 1 (odd 𝑛) and 2𝑛 − 2 (even 𝑛) vertices, the 𝛤𝐺 associated with the Sombor matrix 
can be classified as a hyperenergetic graph if the Sombor energy satisfies the following conditions: 

𝐸𝑆(𝛤𝐺) > {
4(𝑛 − 1),            for odd 𝑛   

4(𝑛 − 1) − 2,    for even 𝑛.
 

 
Now we are moving to the properties for constructing the Sombor matrix. The following are some 
underlying results focusing on the degree of vertices of 𝛤𝐺 and the isomorphism of 𝛤𝐺 with some common 

types of graphs for 𝐺 = 𝐺1 ∪ 𝐺2. 
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Theorem 2.1. [12] Let 𝛤𝐺 be the non-commuting graph for 𝐺, where 𝐺 = 𝐺1 ∪ 𝐺2. Then 

1. the degree of 𝑎𝑖 on 𝛤𝐺 is 𝑑𝑎𝑖 = 𝑛, and 

2. the degree of 𝑎𝑖𝑏 on 𝛤𝐺 is 𝑑𝑎𝑖𝑏 = {
2(𝑛 − 1), if 𝑛 is odd
2(𝑛 − 2), if 𝑛 is even.

  

 
Theorem 2.2. [12] Let 𝛤𝐺 be the non-commuting graph for 𝐺. 

1. If  𝐺 = 𝐺1, then 𝛤𝐺 ≅ 𝐾𝑚, where 𝑚 = |𝐺1|.    

2. If  𝐺 = 𝐺2, then 𝛤𝐺 ≅ {
𝐾𝑛 ,                for odd 𝑛

𝐾𝑛 −
𝑛

2
𝐾2, for even 𝑛,

 

for a complete graph 𝐾𝑛 on 𝑛 vertices with 𝐾𝑛 is the complement of 𝐾𝑛, and 
𝑛

2
𝐾2 denotes 

𝑛

2
 copies of 𝐾2. 

 
By those two theorems, we can construct the Sombor matrix of 𝛤𝐺 and thus determine its characteristic 
polynomial. The following results are beneficial for simplifying the process of formulating the 

characteristic polynomial of 𝛤𝐺, 𝑃𝑆(𝛤𝐺)(𝜆), for 𝐺 = 𝐺1 ∪ 𝐺2. 

 
Proposition 2.1. [19] If 𝑤, 𝑥, 𝑦 and 𝑧 are real numbers, and 𝐽𝑛 is an 𝑛 × 𝑛 matrix whose all elements are 

equal to 1, then the determinant of the (𝑛1 + 𝑛2) × (𝑛1 + 𝑛2) matrix of the form  

|
(𝜆 + 𝑤)𝐼𝑛1

− 𝑤𝐽𝑛1
−𝑦𝐽𝑛1×𝑛2

−𝑧𝐽𝑛2×𝑛1
(𝜆 + 𝑥)𝐼𝑛2

− 𝑏𝐽𝑛2

| 

can be simplified as the following expression 

(𝜆 + 𝑤)𝑛1−1(𝜆 + 𝑥)𝑛2−1((𝜆 − (𝑛1 − 1)𝑤)(𝜆 − (𝑛2 − 1)𝑥) − 𝑛1𝑛2𝑦𝑧), 

where 1 ≤ 𝑛1, 𝑛2 ≤ 𝑛 and 𝑛1 + 𝑛2 = 𝑛. 
 

Theorem 2.3. [7] If a square matrix 𝑀 = [
𝐴 𝐵
𝐶 𝐷

] can be partitioned into four blocks, where |𝐴| ≠ 0, then  

|𝑀| = |
𝐴 𝐵
0 𝐷 − 𝐶𝐴−1𝐵

| = |𝐴||𝐷 − 𝐶𝐴−1𝐵|. 

 

In order to compute the Sombor energy of 𝛤𝐺 for 𝐺 = 𝐺1 ∪ 𝐺2, we need the spectrum of 𝐾𝑛 as shown 
below. 
 
Lemma 2.1. [4] If 𝐾𝑛 is the complete graph on 𝑛 vertices, then its adjacency matrix is (𝐽 − 𝐼)𝑛, and the 

spectrum of 𝐾𝑛 is {(𝑛 − 1)1, (−1)𝑛−1}. 
 
In order to determine the roots of 𝑃𝑆(𝛤𝐺)(𝜆) = 0, elementary row and column operations on 𝑃𝑆(𝛤𝐺)(𝜆) need 

to be performed. Now suppose that 𝑅𝑖 is the 𝑖-th row and 𝑅𝑖
′ is the new 𝑖-th row obtained from a row 

operation of 𝑃𝑆(𝛤𝐺)(𝜆). Also, let the 𝑖-th column as 𝐶𝑖 and 𝐶𝑖
′ is the new 𝑖-th column obtained from a column 

operation of 𝑃𝑆(𝛤𝐺)(𝜆). 

 
Moreover, to compare the Sombor energy and the adjacency energy of 𝛤𝐺 for 𝐷2𝑛, we mention the 
previous result from [16] on the adjacency energy as follows: 
 
Theorem 2.4. [16] Let 𝛤𝐺 be the non-commuting graph on 𝐺 = 𝐺1 ∪ 𝐺2. Then the adjacency energy of 𝛤𝐺, 

𝐸𝐴(𝛤𝐺), is 

1. for odd 𝑛, 𝐸𝐴(𝛤𝐺) = (𝑛 − 1) + √5𝑛2 − 6𝑛 + 1, and 

2. for even 𝑛, 𝐸𝐴(𝛤𝐺) = {
8,                                                    if 𝑛 = 4

(𝑛 − 2) + √5𝑛2 − 12𝑛 + 4,    if 𝑛 > 4.
 

 

Main Results 
 
The following theorem gives the Sombor energy of 𝛤𝐺 for both 𝐺 = 𝐺1 and 𝐺 = 𝐺2. 
 
Theorem 3.1. Let 𝛤𝐺 be the non-commuting graph on 𝐺 = 𝐷2𝑛 and 𝐸𝑆(𝛤𝐺) be the Sombor energy of 𝛤𝐺. 

1. If 𝐺 = 𝐺1, then 𝐸𝑆(𝛤𝐺) = 0. 

2. If 𝐺 = 𝐺2, then 𝐸𝑆(𝛤𝐺) = {
2√2(𝑛 − 1)2,    if 𝑛 is odd

2√2(𝑛 − 2)2,    if 𝑛 is even.
 

Proof. 

1. Let 𝐺 = 𝐺1, then from Theorem 2.2 (1),  𝛤𝐺 ≅ 𝐾𝑚 implies every vertex of 𝛤𝐺 has a degree zero. For odd 

𝑛, we the obtain 𝑚 = |𝐺1| = 𝑛 − 1, while for even 𝑛, 𝑚 = 𝑛 − 2 as the result of removing 𝑒 and 𝑎
𝑛

2 in 
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𝑍(𝐷2𝑛). So, the Sombor matrix of 𝛤𝐺 is 𝑆(𝛤𝐺) = [0]𝑛−1 and 𝑆(𝛤𝐺) = [0]𝑛−2 for odd and even 𝑛, 

respectively. Clearly, the only eigenvalue of 𝑆(𝛤𝐺) is zero. Thus, 𝐸𝑆(𝛤𝐺) = 0. 
 
2. When 𝐺 = 𝐺2 and 𝑛 is odd, Theorem 2.2 (2) gives 𝛤𝐺 ≅ 𝐾𝑛, which means the degree of each vertex in 

𝑛 − 1. Consequently, 𝑆(𝛤𝐺) is a matrix of size 𝑛 × 𝑛 whose (𝑝, 𝑞)-th entry is  √(𝑛 − 1)2 + (𝑛 − 1)2 =

√2(𝑛 − 1) for 𝑣𝑝 ≠ 𝑣𝑞 and they are adjacent, and zero otherwise, where the index of rows and columns 

are labeled by the vertices {𝑏, 𝑎𝑏, 𝑎2𝑏,⋯ , 𝑎𝑛−1𝑏}, as follows 
 

𝑆(𝛤𝐺) =
𝑏
𝑎𝑏
⋮

𝑎𝑛−1𝑏

    𝑏               𝑎𝑏        ⋯   𝑎𝑛−1𝑏

[
 
 
 
 0 √2(𝑛 − 1) ⋯ √2(𝑛 − 1)

√2(𝑛 − 1) 0 ⋯ √2(𝑛 − 1)
⋮ ⋮ ⋱ ⋮

√2(𝑛 − 1) √2(𝑛 − 1) ⋯ 0 ]
 
 
 
 
 

= √2(𝑛 − 1) [

0 1 ⋯ 1
1 0 ⋯ 1
⋮ ⋮ ⋱ ⋮
1 1 ⋯ 0

] 

= √2(𝑛 − 1) ∙ 𝐴(𝐾𝑛). 
 

Meanwhile, from Lemma 2.1, it follows that 𝑆𝑝𝑒𝑐(𝐾𝑛) = {(𝑛 − 1)1, (−1)𝑛−1}. Then considering the 

adjacency energy of 𝐾𝑛 that given by 2(𝑛 − 1), we get the Sombor energy of 𝛤𝐺,  

𝐸𝑆(𝛤𝐺) = √2(𝑛 − 1) ∙ 2(𝑛 − 1) = 2√2(𝑛 − 1)2. 
 

For the second case, when 𝑛 is even, as it is known from Theorem 2.2 (2), 𝛤𝐺 ≅ 𝐾𝑛 −
𝑛

2
𝐾2, which implies 

𝑑𝑎𝑖𝑏 is 𝑛 − 2. Following the definition of the Sombor matrix of 𝛤𝐺, 𝑆(𝛤𝐺), we can construct 𝑆(𝛤𝐺) of size 

𝑛 × 𝑛 whose (𝑝, 𝑞)-th entry is  √2(𝑛 − 2) for 𝑣𝑝 ≠ 𝑣𝑞 and they are adjacent and zero otherwise. In the 

same manner indexing rows and columns as in the odd 𝑛 case, we obtain 𝑆(𝛤𝐺) as the following  
 

𝑆(𝛤𝐺) =

𝑏
𝑎𝑏
⋮

𝑎
𝑛

2
−1𝑏

𝑎
𝑛

2𝑏

𝑎
𝑛

2
+1𝑏
⋮

𝑎𝑛−1𝑏

    𝑏                𝑎𝑏        ⋯    𝑎
𝑛

2
−1𝑏         𝑎

𝑛

2𝑏         𝑎
𝑛

2
+1𝑏    ⋯   𝑎𝑛−1𝑏

[
 
 
 
 
 
 
 
 0 √2(𝑛 − 2) ⋯ √2(𝑛 − 2) 0 √2(𝑛 − 2) ⋯ √2(𝑛 − 2)

√2(𝑛 − 2) 0 ⋯ √2(𝑛 − 2) √2(𝑛 − 2) 0 ⋯ √2(𝑛 − 2)
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

√2(𝑛 − 2) √2(𝑛 − 2) ⋯ 0 √2(𝑛 − 2) √2(𝑛 − 2) ⋯ 0

0 √2(𝑛 − 2) ⋯ √2(𝑛 − 2) 0 √2(𝑛 − 2) ⋯ √2(𝑛 − 2)

√2(𝑛 − 2) 0 ⋯ √2(𝑛 − 2) √2(𝑛 − 2) 0 ⋯ √2(𝑛 − 2)
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

√2(𝑛 − 2) √2(𝑛 − 2) ⋯ 0 √2(𝑛 − 2) √2(𝑛 − 2) ⋯ 0 ]
 
 
 
 
 
 
 
 

. 

 
In other words, 

𝑆(𝛤𝐺) = √2(𝑛 − 2) [
(𝐽 − 𝐼)𝑛

2

(𝐽 − 𝐼)𝑛

2

(𝐽 − 𝐼)𝑛

2

(𝐽 − 𝐼)𝑛

2

]. 

Here 𝐽 − 𝐼 is a matrix with zero diagonal entries and non-diagonal entries being one. Then we get 

𝑃𝑆(𝛤𝐺)(𝜆) = |𝜆𝐼𝑛 − 𝑆(𝛤𝐺)|, and it is equal to  

                   𝑃𝑆(𝛤𝐺)(𝜆) = |
(𝜆 + √2(𝑛 − 2))𝐼𝑛

2

− √2(𝑛 − 2)𝐽𝑛

2

−√2(𝑛 − 2)(𝐽 − 𝐼)𝑛

2

−√2(𝑛 − 2)(𝐽 − 𝐼)𝑛

2

(𝜆 + √2(𝑛 − 2))𝐼𝑛

2

− √2(𝑛 − 2)𝐽𝑛

2

|.              (4) 

Now, for 1 ≤ 𝑖 ≤
𝑛

2
, by the row operation 𝑅𝑛

2
+𝑖

′ = 𝑅𝑛

2
+𝑖 − 𝑅𝑖, followed by column operation by replacing 𝐶𝑖 

with 𝐶𝑖
′ = 𝐶𝑖 + 𝐶𝑛

2
+𝑖 on Equation (4), yield 

𝑃𝑆(𝛤𝐺)(𝜆) = |
(𝜆 + 2√2(𝑛 − 2))𝐼𝑛

2

− 2√2(𝑛 − 2)𝐽𝑛

2

−√2(𝑛 − 2)(𝐽 − 𝐼)𝑛

2

0𝑛

2

𝜆𝐼𝑛

2

| = |
𝐴 𝐵
𝐶 𝐷

|. 

According to Theorem 2.3, since 𝐶 = 0, we then obtain 𝑃𝑆(𝛤𝐺)(𝜆) given in Equation (5) 

𝑃𝑆(𝛤𝐺)(𝜆) = |𝐴||𝐷| = (𝜆 + 2√2(𝑛 − 2))

𝑛

2
−1

(𝜆 − √2(𝑛 − 2)2)𝜆
𝑛

2. 

Therefore, the Sombor energy of 𝛤𝐺 can be obtained as the summation of absolute roots of Equation (5), 

𝐸𝑆(𝛤𝐺) = (
𝑛

2
− 1) |−2√2(𝑛 − 2)| + (1)|√2(𝑛 − 2)2| + (

𝑛

2
) |0| = 2√2(𝑛 − 2)2. 

□ 
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We now formulate the characteristic polynomial of 𝑆(𝛤𝐺) and calculate the Sombor energy of 𝛤𝐺 for 𝐺 =
𝐺1 ∪ 𝐺2. 
 
Theorem 3.2. Let 𝛤𝐺 be the non-commuting graph on 𝐺, where 𝐺 = 𝐺1 ∪ 𝐺2, then the characteristic 

polynomial of 𝑆(𝛤𝐺) is 

1. for odd 𝑛,  

𝑃𝑆(𝛤𝐺)(𝜆) = 𝜆𝑛−2 (𝜆 + 2√2(𝑛 − 1))
𝑛−1

(𝜆2 − 2√2(𝑛 − 1)2𝜆 − 𝑛(𝑛 − 1)(𝑛2 + 4(𝑛 − 1)2). 

2. For even 𝑛, 

𝑃𝑆(𝛤𝐺)(𝜆) = 𝜆
3(𝑛−2)

2 (𝜆 + 4√2(𝑛 − 2))

𝑛

2
−1

(𝜆2 − 2√2(𝑛 − 2)2𝜆 − 𝑛(𝑛 − 2)(𝑛2 + 4(𝑛 − 2)2). 

Proof. 
1. For the case of odd 𝑛, we know that 𝑍(𝐷2𝑛) = {𝑒} which implies that there are 2𝑛 − 1 vertices for 𝛤𝐺, 

where 𝐺 = 𝐺1 ∪ 𝐺2. We label the set 𝐺1 as {𝑎, 𝑎2, ⋯ , 𝑎𝑛−1} and 𝐺2 as {𝑏, 𝑎𝑏, 𝑎2𝑏,⋯ , 𝑎𝑛−1𝑏}. From the fact 

that the centralizer of 𝑎𝑖 in 𝐷2𝑛 is {𝑒, 𝑎, 𝑎2, ⋯ , 𝑎𝑛−1}, then the vertex 𝑎𝑖, for 1 ≤ 𝑖 ≤ 𝑛 − 1, is not adjacent 

to all vertices of 𝐺1, however, it always has an edge with all members of 𝐺2. While the centralizer of 𝑎𝑖𝑏 

in 𝐷2𝑛 is {𝑒, 𝑎𝑖𝑏} implies that for 1 ≤ 𝑖 ≤ 𝑛, vertex 𝑎𝑖𝑏 is connected with all other elements of 𝐺1 ∪ 𝐺2. 

Considering Theorem 2.1 we get 𝑑𝑎𝑖 = 𝑛 and 𝑑𝑎𝑖𝑏 = 2(𝑛 − 1), for all for 1 ≤ 𝑖 ≤ 𝑛.  Now the Sombor 

matrix for 𝛤𝐺, 𝑆(𝛤𝐺), is a (2𝑛 − 1) × (2𝑛 − 1) matrix 
 

𝑆(𝛤𝐺) =

𝑎

𝑎2

⋮

𝑎𝑛−1

𝑏

𝑎𝑏

⋮

𝑎𝑛−1𝑏

     𝑎                             𝑎2              ⋯             𝑎𝑛−1                        𝑏                              𝑎𝑏             ⋯           𝑎𝑛−1𝑏

[
 
 
 
 
 
 
 
 
 0 0 ⋯ 0 √𝑛2 + 4(𝑛 − 1)2 √𝑛2 + 4(𝑛 − 1)2 ⋯ √𝑛2 + 4(𝑛 − 1)2

0 0 ⋯ 0 √𝑛2 + 4(𝑛 − 1)2 √𝑛2 + 4(𝑛 − 1)2 ⋯ √𝑛2 + 4(𝑛 − 1)2

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0 √𝑛2 + 4(𝑛 − 1)2 √𝑛2 + 4(𝑛 − 1)2 ⋯ √𝑛2 + 4(𝑛 − 1)2

√𝑛2 + 4(𝑛 − 1)2 √𝑛2 + 4(𝑛 − 1)2 ⋯ √𝑛2 + 4(𝑛 − 1)2 0 2√2(𝑛 − 1) ⋯ 2√2(𝑛 − 1)

√𝑛2 + 4(𝑛 − 1)2 √𝑛2 + 4(𝑛 − 1)2 ⋯ √𝑛2 + 4(𝑛 − 1)2 2√2(𝑛 − 1) 0 ⋯ 2√2(𝑛 − 1)
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

√𝑛2 + 4(𝑛 − 1)2 √𝑛2 + 4(𝑛 − 1)2 ⋯ √𝑛2 + 4(𝑛 − 1)2 2√2(𝑛 − 1) 2√2(𝑛 − 1) ⋯ 0 ]
 
 
 
 
 
 
 
 
 

. 

 
Here the Sombor matrix of 𝛤𝐺 can be obtained as the block matrix  

𝑆(𝛤𝐺) = [
0𝑛−1 √𝑛2 + 4(𝑛 − 1)2𝐽(𝑛−1)×𝑛

√𝑛2 + 4(𝑛 − 1)2𝐽𝑛×(𝑛−1) 2√2(𝑛 − 1)(𝐽 − 𝐼)𝑛

], 

and the determinant below is the characteristic polynomial for 𝑆(𝛤𝐺),  

𝑃𝑆(𝛤𝐺)(𝜆) = |
𝜆𝐼𝑛−1 −√𝑛2 + 4(𝑛 − 1)2𝐽(𝑛−1)×𝑛

 −√𝑛2 + 4(𝑛 − 1)2𝐽𝑛×(𝑛−1) (𝜆 + 2√2(𝑛 − 1)) 𝐼𝑛 − 2√2(𝑛 − 1)𝐽𝑛
|. 

Repeated application of Proposition 2.1, with 𝑤 = 0, 𝑥 = 2√2(𝑛 − 1), 𝑦 = 𝑧 = √𝑛2 + 4(𝑛 − 1)2, 𝑛1 = 𝑛 −
1, and 𝑛2 = 𝑛, we get the required result. 
 

2. Suppose now 𝑛 is even. Since 𝑍(𝐷2𝑛) = {𝑒, 𝑎
𝑛
2}, 𝛤𝐺, where 𝐺 = 𝐺1 ∪ 𝐺2 has 2𝑛 − 2 vertices with 𝑛 − 2 

vertices from 𝑎𝑖, for 1 ≤ 𝑖 <
𝑛

2
, 

𝑛

2
< 𝑖 < 𝑛, and 𝑛 vertices from 𝑎𝑖𝑏, for 1 ≤ 𝑖 ≤ 𝑛. We write the set 𝐺1 as 

{𝑎, 𝑎2, ⋯ , 𝑎
𝑛

2
−1, 𝑎

𝑛

2
+1, ⋯ , 𝑎𝑛−1} and 𝐺2 {𝑏, 𝑎𝑏, 𝑎2𝑏,⋯ , 𝑎𝑛−1𝑏}. Again, considering the centralizer of 𝑎𝑖 in 𝐷2𝑛, 

then all the members of 𝐺1 are only connected with the elements of 𝐺2.  Since the centralizer of 𝑎𝑖𝑏 is 

{𝑒, 𝑎
𝑛
2 , 𝑎𝑖𝑏, 𝑎

𝑛
2+𝑖𝑏 }, then two vertices 𝑎𝑖𝑏 and 𝑎

𝑛
2+𝑖𝑏 are always disconnected in 𝛤𝐺. From Theorem 2.1, the 

fact that 𝑑𝑎𝑖 = 𝑛 and 𝑑𝑎𝑖𝑏 = 2(𝑛 − 2), which implies 𝑆(𝛤𝐺) being the matrix of size (2𝑛 − 2) × (2𝑛 − 2) as 

follows, 
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𝑎
⋮

𝑎2

𝑏
⋮

𝑎
𝑛

2
−1𝑏

𝑎
𝑛
2𝑏
⋮

𝑎𝑛−1𝑏

    𝑎               ⋯               𝑎2                            𝑏               ⋯           𝑎
𝑛
2
−1𝑏                       𝑎

𝑛
2𝑏             ⋯          𝑎𝑛−1𝑏

[
 
 
 
 
 
 
 
 
 
 0 ⋯ 0 √𝑛2 + 4(𝑛 − 2)2 ⋯ √𝑛2 + 4(𝑛 − 2)2 √𝑛2 + 4(𝑛 − 1)2 ⋯ √𝑛2 + 4(𝑛 − 1)2

⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 ⋯ 0 √𝑛2 + 4(𝑛 − 2)2 ⋯ √𝑛2 + 4(𝑛 − 2)2 √𝑛2 + 4(𝑛 − 1)2 ⋯ √𝑛2 + 4(𝑛 − 1)2

√𝑛2 + 4(𝑛 − 2)2 ⋯ √𝑛2 + 4(𝑛 − 2)2 0 ⋯ 2√2(𝑛 − 2) 0 ⋯ 2√2(𝑛 − 2)

⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

√𝑛2 + 4(𝑛 − 2)2 ⋯ √𝑛2 + 4(𝑛 − 2)2 2√2(𝑛 − 2) ⋯ 0 2√2(𝑛 − 2) ⋯ 0

√𝑛2 + 4(𝑛 − 2)2 ⋯ √𝑛2 + 4(𝑛 − 2)2 0 ⋯ 2√2(𝑛 − 2) 0 ⋯ 2√2(𝑛 − 2)

⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

√𝑛2 + 4(𝑛 − 2)2 ⋯ √𝑛2 + 4(𝑛 − 2)2 2√2(𝑛 − 2) ⋯ 0 2√2(𝑛 − 2) ⋯ 0 ]
 
 
 
 
 
 
 
 
 
 

. 

 
The Sombor matrix of 𝛤𝐺 can be obtained as the block matrix: 

𝑆(𝛤𝐺) =

[
 
 
 
 0𝑛−2 √𝑛2 + 4(𝑛 − 2)2𝐽(𝑛−2)×

𝑛

2

√𝑛2 + 4(𝑛 − 2)2𝐽(𝑛−2)×
𝑛

2

√𝑛2 + 4(𝑛 − 2)2𝐽𝑛

2
×(𝑛−2) 2√2(𝑛 − 2)(𝐽 − 𝐼)𝑛

2

2√2(𝑛 − 2)(𝐽 − 𝐼)𝑛

2

√𝑛2 + 4(𝑛 − 2)2𝐽𝑛

2
×(𝑛−2) 2√2(𝑛 − 2)(𝐽 − 𝐼)𝑛

2

2√2(𝑛 − 2)(𝐽 − 𝐼)𝑛

2 ]
 
 
 
 

, 

and the characteristic polynomial of 𝑆(𝛤𝐺) as follows 

                  𝑃𝑆(𝛤𝐺)(𝜆) =
|
|

λ𝐼𝑛−2 −2√𝑛2 + 4(𝑛 − 2)2𝐽(𝑛−2)×
𝑛

2

−√𝑛2 + 4(𝑛 − 2)2𝐽(𝑛−2)×
𝑛

2

−√𝑛2 + 4(𝑛 − 2)2𝐽𝑛

2
×(𝑛−2) (𝜆 + 2√2(𝑛 − 2))𝐼𝑛

2

− 2√2(𝑛 − 2)𝐽𝑛

2

−2√2(𝑛 − 2)(𝐽 − 𝐼)𝑛

2

−√𝑛2 + 4(𝑛 − 2)2𝐽𝑛

2
×(𝑛−2) −2√2(𝑛 − 2)(𝐽 − 𝐼)𝑛

2

(𝜆 + 2√2(𝑛 − 2))𝐼𝑛

2

− 2√2(𝑛 − 2)𝐽𝑛

2

|
|
.              (6) 

By applying the row operation 𝑅
𝑛−2+

𝑛

2
+𝑖

′ = 𝑅𝑛−2+
𝑛

2
+𝑖 − 𝑅𝑛−2+𝑖, following by 𝐶𝑛−2+𝑖

′ = 𝐶𝑛−2+𝑖 + 𝐶𝑛−2+
𝑛

2
+𝑖 on 

Equation (6) for 1 ≤ 𝑖 ≤
𝑛

2
, we obtain 

        𝑃𝑆(𝛤𝐺)(𝜆) = |
|

λ𝐼𝑛−2 −2√𝑛2 + 4(𝑛 − 2)2𝐽(𝑛−2)×
𝑛

2

−√𝑛2 + 4(𝑛 − 2)2𝐽(𝑛−2)×
𝑛

2

−√𝑛2 + 4(𝑛 − 2)2𝐽𝑛

2
×(𝑛−2) (𝜆 + 4√2(𝑛 − 2))𝐼𝑛

2

− 4√2(𝑛 − 2)𝐽𝑛

2

−2√2(𝑛 − 2)(𝐽 − 𝐼)𝑛

2

0𝑛

2
×(𝑛−2) 0𝑛

2

𝜆𝐼𝑛

2

|
|.                       (7) 

Consequently, Equation (7) can be written as  

                                                       𝑃𝑆(𝛤𝐺)(𝜆) = |

𝐴𝑛−2+
𝑛

2

𝐵
(𝑛−2+

𝑛

2
)×

𝑛

2

𝐶𝑛

2
×(𝑛−2+

𝑛

2
)

𝐷𝑛

2

|,                                              (8) 

Where 𝐴 = |
λ𝐼𝑛−2 −2√𝑛2 + 4(𝑛 − 2)2𝐽(𝑛−2)×

𝑛

2

−√𝑛2 + 4(𝑛 − 2)2𝐽𝑛

2
×(𝑛−2) (𝜆 + 4√2(𝑛 − 2))𝐼𝑛

2

− 4√2(𝑛 − 2)𝐽𝑛

2

|,  

 𝐵 = |
−√𝑛2 + 4(𝑛 − 2)2𝐽(𝑛−2)×

𝑛

2

−2√2(𝑛 − 2)(𝐽 − 𝐼)𝑛

2

|, 𝐶 = |0𝑛

2
×(𝑛−2+

𝑛

2
)
|, and 𝐷 = |𝜆𝐼𝑛

2

|. According to Theorem 2.3, since 𝐶 =

0, we then obtain Equation (8) as 𝑃𝑆(𝛤𝐺)(𝜆) = |𝐴||𝐷|. By applying Proposition 2.1 to |𝐴|, with 𝑤 = 0, 𝑥 =

4√2(𝑛 − 2), 𝑦 = 2√𝑛2 + 4(𝑛 − 2)2, 𝑧 = √𝑛2 + 4(𝑛 − 2)2, 𝑛1 = 𝑛 − 2, 𝑛2 =
𝑛

2
 and considering 𝐷 is a 

diagonal matrix, we then get 

𝑃𝑆(𝛤𝐺)(𝜆) = (𝜆)
3(𝑛−2)

2 (𝜆 + 4√2(𝑛 − 2))
𝑛

2
−1 (𝜆2 − 2√2(𝑛 − 2)2𝜆 − 𝑛(𝑛 − 2)(𝑛2 + 4(𝑛 − 2)2)). 

     □ 
 
The following Theorems 3.3 and 3.4 give the spectrum, Sombor spectral radius, and Sombor energy of 

𝛤𝐺 for 𝐺 = 𝐺1 ∪ 𝐺2. Then at the end of this paper, the relation between them is obtained. 
 
Theorem 3.3. Let 𝛤𝐺 be the non-commuting graph for 𝐺, where 𝐺 = 𝐺1 ∪ 𝐺2, then the Sombor spectral 

radius for 𝛤𝐺 is 

1. 𝜌𝑆(𝛤𝐺) = √2(𝑛 − 1)2 + √2(𝑛 − 1)4 + 𝑛(𝑛 − 1)(𝑛2 + 4(𝑛 − 1)2), for odd 𝑛, and 
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2. 𝜌𝑆(𝛤𝐺) = √2(𝑛 − 2)2 + √2(𝑛 − 2)4 + 𝑛(𝑛 − 2)(𝑛2 + 4(𝑛 − 2)2), for even 𝑛. 

 
Proof. 

1.  The result according to Theorem 3.2 (1) for odd 𝑛 is the four eigenvalues obtained from 𝑃𝑆(𝛤𝐺)(𝜆). 

They are 𝜆1 = 0 of multiplicity 𝑛 − 2 and 𝜆2 = −2√2(𝑛 − 1) of multiplicity 𝑛 − 1. The other two 

eigenvalues are 𝜆3,4 = √2(𝑛 − 1)2 ± √2(𝑛 − 1)4 + 𝑛(𝑛 − 1)(𝑛2 + 4(𝑛 − 1)2) as the roots of the quadratic 

formula. Hence, the Sombor spectrum for 𝛤𝐺 is as follows 

𝑆𝑝𝑒𝑐(𝛤𝐺) = {(√2(𝑛 − 1)2 + √2(𝑛 − 1)4 + 𝑛(𝑛 − 1)(𝑛2 + 4(𝑛 − 1)2))
1
, 0𝑛−2, (√2(𝑛 − 1)2 −

√2(𝑛 − 1)4 + 𝑛(𝑛 − 1)(𝑛2 + 4(𝑛 − 1)2))
1
, (−2√2(𝑛 − 1))

𝑛−1
}. 

Now for 𝑖 = 1,2,3,4, as mentioned in Equation (2), the maximum of |𝜆𝑖| is the Sombor spectral radius of 

𝛤𝐺, 

𝜌𝑆(𝛤𝐺) = √2(𝑛 − 1)2 + √2(𝑛 − 1)4 + 𝑛(𝑛 − 1)(𝑛2 + 4(𝑛 − 1)2). 
2.  The eigenvalues of 𝛤𝐺 for even 𝑛 are given by the roots of 𝑃𝑆(𝛤𝐺)(𝜆) = 0, which is obtained from 

Theorem 3.2 (2). The first eigenvalue is 𝜆1 = 0 of multiplicity 
3(𝑛−2)

2
, the second is 𝜆2 = −4√2(𝑛 − 2) of 

multiplicity 
𝑛

2
− 1, and the other two eigenvalues are 𝜆3,4 = √2(𝑛 − 2)2 ±

√2(𝑛 − 2)4 + 𝑛(𝑛 − 2)(𝑛2 + 4(𝑛 − 2)2). So that the spectrum of 𝛤𝐺 is 

𝑆𝑝𝑒𝑐(𝛤𝐺) = {(√2(𝑛 − 2)2 + √2(𝑛 − 2)4 + 𝑛(𝑛 − 2)(𝑛2 + 4(𝑛 − 2)2))
1
, 0

3(𝑛−2)

2 , (√2(𝑛 − 2)2 −

√2(𝑛 − 2)4 + 𝑛(𝑛 − 2)(𝑛2 + 4(𝑛 − 2)2))
1
, (−2√2(𝑛 − 2))

𝑛

2
−1

}. 

Taking the maximum absolute eigenvalues as stated in Equation (2), then we get the Sombor spectral 
radius of 𝛤𝐺, 

𝜌𝑆(𝛤𝐺) = √2(𝑛 − 2)2 + √2(𝑛 − 2)4 + 𝑛(𝑛 − 2)(𝑛2 + 4(𝑛 − 2)2). 
   □ 

 
Theorem 3.4. Let 𝛤𝐺 be the non-commuting graph for 𝐺, where 𝐺 = 𝐺1 ∪ 𝐺2, then the Sombor energy for 

𝛤𝐺 is 

1. 𝐸𝑆(𝛤𝐺) = 2√2(𝑛 − 1)2 + 2√2(𝑛 − 1)4 + 𝑛(𝑛 − 1)(𝑛2 + 4(𝑛 − 1)2), for odd 𝑛, and 

2. 𝐸𝑆(𝛤𝐺) = 2√2(𝑛 − 2)2 + 2√2(𝑛 − 2)4 + 𝑛(𝑛 − 2)(𝑛2 + 4(𝑛 − 2)2), for even 𝑛. 

Proof. 
1.  By Equation (1), calculating the eigenvalues from 𝑆𝑝𝑒𝑐(𝛤𝐺) in the proving part of Theorem 3.3 (1), 

then the Sombor energy for 𝛤𝐺 is given by 

𝐸𝑆(𝛤𝐺) = (𝑛 − 2)|0| + (𝑛 − 1)|−2√2(𝑛 − 1)| + |√2(𝑛 − 1)2 ± √2(𝑛 − 1)4 + 𝑛(𝑛 − 1)(𝑛2 + 4(𝑛 − 1)2)| 

              = 2√2(𝑛 − 1)2 + 2√2(𝑛 − 1)4 + 𝑛(𝑛 − 1)(𝑛2 + 4(𝑛 − 1)2). 
 
2.  Using 𝑆𝑝𝑒𝑐(𝛤𝐺) given in Theorem 3.3 (2) for even 𝑛, we get the Sombor energy for 𝛤𝐺 as follows 

𝐸𝑆(𝛤𝐺) = (
3(𝑛 − 2)

2
) |0| + (

𝑛

2
− 1) |−4√2(𝑛 − 2)| + |√2(𝑛 − 2)2 ± √2(𝑛 − 2)4 + 𝑛(𝑛 − 2)(𝑛2 + 4(𝑛 − 2)2)| 

        = 2√2(𝑛 − 2)2 + 2√2(𝑛 − 2)4 + 𝑛(𝑛 − 2)(𝑛2 + 4(𝑛 − 2)2).   

□ 

 

Discussion 
 

In comparing the results of Theorem 3.3 and 3.4, we get the statement as follows. 
 
Corollary 4.1. Let 𝛤𝐺 be the non-commuting graph on 𝐺 = 𝐺1 ∪ 𝐺2, then 𝐸𝑆(𝛤𝐺) = 2 ∙ 𝜌𝑆(𝛤𝐺). 
 
As a result of Theorem 3.4, we obtain the classification of Sombor energy of 𝛤𝐺 for 𝐷2𝑛. 
 
Corollary 4.2. Let 𝐺 = 𝐺1 ∪ 𝐺2 ⊂ 𝐷2𝑛, 𝛤𝐺 is hyperenergetic corresponding to Sombor matrix. 
 
Moreover, according to the results presented in this paper, the energies in Theorem 3.4 deduce the 
following corollaries. 
 
Corollary 4.3. Let 𝛤𝐺 be the non-commuting graph on 𝐺 = 𝐺1 ∪ 𝐺2, then Sombor energy for 𝛤𝐺 is never 
an odd integer. 
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The statement in Corollary 4.3 complies with well-known facts from (8) and (9) that the graph energy is 
neither an odd integer nor the square root of an odd integer. Moreover, as a comparison of the results 
from Theorem 2.4 and 3.4, we immediately have the following result.  
 
Corollary 4.3. Let 𝛤𝐺 be the non-commuting graph on 𝐺 = 𝐺1 ∪ 𝐺2, then 𝐸𝑆(𝛤𝐺) > 𝐸𝐴(𝛤𝐺). 
 

 
 

Figure 1. Correlation of 𝐸𝑆(𝛤𝐺) with 𝐸𝐴(𝛤𝐺) for odd 𝑛 
 

 
 

Figure 2. Correlation of 𝐸𝑆(𝛤𝐺) with 𝐸𝐴(𝛤𝐺) for even 𝑛 
 
 
In Figures 1 and 2, the Sombor energy of 𝛤𝐺 for 𝐷2𝑛, where 𝑛 ≥ 3 is always greater than the adjacency 

energy. Moreover, it can be seen that 𝐸𝑆(𝛤𝐺) has a significant correlation with 𝐸𝐴(𝛤𝐺), with a correlation 

coefficient of 0.9471 for odd 𝑛, and 0.9478 for even 𝑛. It is also clear that the Sombor energy of the non-

commuting graph of dihedral group 𝐷2𝑛 is minimum when 𝑛 = 3 for odd 𝑛, or 𝑛 = 4 for even 𝑛. 
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Conclusion 
 

In this work, we provide the spectrum and spectral radius of 𝛤𝐺. We then presented the Sombor energy 

of 𝛤𝐺 either for 𝐺 = 𝐺1, the set of rotation elements of 𝐷2𝑛 removing members of 𝑍(𝐷2𝑛) or 𝐺 = 𝐺2, the 

set of reflection elements of 𝐷2𝑛 or 𝐺 = 𝐺1 ∪ 𝐺2, the union of 𝐺1 and 𝐺2. We have shown that the Sombor 

energy of 𝛤𝐺 is the multiple of two spectral radius of 𝛤𝐺 and is always greater than its adjacency energy. 

Moreover, it is also observed that the correlation between 𝐸𝑆(𝛤𝐺) and 𝐸𝐴(𝛤𝐺) is almost linear. 
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