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Abstract Two new subclasses of analytic functions are proposed by applying g-differential
operator which is denoted as M f(z). Throughout this study, we acquired the initial coefficients a,
and a3 and the upper bound for the functional |a; — pa3| of the functions £ in the classes X7 (¢)
and Y7 ().
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Introduction

The class for all analytic functions f(z) within the open unit disk U = {z:z € C, |z| < 1} and normalized
by the conditions f(0) =0 and f'(0) =1 is represented as A. According to Atassi [2], if f(2z) has a
derivative at each point of R and if f(z) is single valued, then a function f(z) is known to be analytic
within region R of the complex plane. Moreover, a function f(z) is known to be analytic at a point z with
the condition of z is an interior point of some region where f(z) is analytic. Meanwhile, Kai [9] stated that
for each f € 4, f has a Taylor series expansion written in the form
f(2) =z+ a2z +azz> + - =z + X7, 457, a; €CzeU. (1.1)
The definition of subordination according to Jeyaraman & Suresh [6] is as if f and g are in A, the function
f is said to be subordinate to g or (equivalently) g is said to be superordinate to f,
f<g inU or

f2) <9 (el

if a Schwarz function, w(z), analytic in U with |w(z)| < 1 and «(0) = 0forall z € U is exist. For example,

f@ = g(o@) (zel).

In particular, several researchers have done the research about the coefficients, |a,| and |as|, and the
upper bound for |a; — pua2| which is known as Fekete-Szeg6 functional of function f. For example,
Alsoboh and Darus [1], Aouf and Orhan [3], Janteng et al. [4], Janteng and Halim [5] and Pinhong et al.
[11].

Therefore, this study is going to introduce new subclasses of analytic functions and further determine
the upper bound for the Fekete-Szegd functional of functions f for particular subclasses of analytic
univalent functions which is defined by subordination and g-differential operator. Jackson [7] was the
earliest researcher developed the g-integral and g-derivative more systematically.

However, Ramachandran ef al. [12] stated that the g-derivative operator for function f as
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flaz) — f(2)
qu(Z)Z W, Z¢0,0<q<1
f'(0), z=0

for functions f which are differentiable at z = 0.
Then, Koekoek and Koekoek [8] further defined D7 f as

Dif = Dg(Dy~*f)
forn = 1,2,3, .., where D? denotes the identity operator.

For the used of D, f(z), Seoudy and Aouf [13] introduced the subclasses Sg(a) and C,(a) of the class
A for 0 < a < 1 which are defined by

zDqf (2)
f@

S;(a)={fEA:Re >a,zE[U},

Dq (quf(z))
Cq(a) = {f EA: REW >a,z € [U}

Selvaraj et al. [14] noted that
f € Cq(a) & zDyf € Si(a) ,

Alsoboh and Darus [1] proposed g-differential operator of a function f in the form of (1.1) and denoted
by Mg f(z) as

M@ =), MU =2Def () =2+ ) [ilg?’
=
M7 f(z) = zD, (M}I"lf(z)) =z+ Z;‘;z[j]gajzj (1.2)

where [j], = %‘;’ which was defined by Jackson [7].

By using the g-differential operator in (1.2) and the principle of subordination, we propose two new
subclasses, X7 (¢) and Y7 (), of A.

Let P to be denoted as class of all functions ¢ that is analytic and univalent in U.
The definitions of classes X' (¢) and Y7*(¢) where ¢ € P are given respectively.

Definition 1.1 Afunction f € A is categorized in the class X7 (¢) if the following subordination
condition hold

D, (M};f(z)) <0(z), @eEPNENO<q<1lzel.

Definition 1.2 Afunction f € A is categorized in the class Y (¢) if the following subordination
condition hold

Dy Myf () [ 42Dq (DM3f (@)
Mg f(2) Dq(Mg f(2))
@€EP, NEN,0<qg<l0<d<landzel.

1-6) <¢(2),

Next, the lemma that is used to validate the main results in order to get the upper bound for the
Fekete-Szego functional for f € X7 (¢) and f € Y'(¢) is as below.

Lemma 1.1 ([10]) If p(2) = 1 + ¢1z + ¢, 2% + -+ is a function with positive real partin U and y
is a complex number, then

le, —yefl < 2max{1; 2y — 1]}
The result is sharp for the functions given by
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+ z2 1+z
p(2) =1z and p(z) = 17
Main Results
Theorem 2.1 Let p(z) =1+ B,z + B,z? + B3z3 ...with (B, # 0),and f is given by (1.1) be in the

class X7 (¢) and u is a complex number, then

B B 31%*1uB
|a3—ua§|S—1max{1; 2Bl uby

}

[3]g+1 B_l_ [Z]én”
Proof. If f € X7 (), then Schwarz function w(z) is exist with w(0) = 0 and |w(z)| < 1 in U such
that
D, (Mz;f(z)) = p(w(2)). 2.1)

The function p(z) is defined as

1+w(z)
p(2) = o= L+ pz+pyz® + o

(2.2)
We see that Re(p(z)) > 0 and p(0) = 1 with w(z) as Schwarz function. Let
9(z) = D, (Mz;f(z)) =1+dyz+dyz? + (2.3)

From equations (2.1), (2.2) and (2.3), we get that

g2 =9 (p(z) — 1)-

p(z) +1

By equation (2.2), we solve w(z) in terms of p(z), we get that
p(2) =1  piz+pz°+ -

(@) = p@)+1 2+4pz+pz2+-
where
(-1 _1 ¢ i
zé)ﬂ = ;(P1Z + (Pz - p?) z% + (P3 + pj - P1P2) z3 4 ) (2.4)

From equations ¢(z) and (2.4), we get that

_ 1 plz 2 pf 3
g@)=¢ S\Pizt (P25 )28 (Pt —pap2 |27 +
2
1 2 1 2
=1+Bl(5<p1z+<pz—p71>zz+--->>+BZ(E<plz+(p2—%>22+~~~>> + -

= 1+%Blp12+(%31 (pz_pz_l)'*‘%sz%)Zz + e (25)
From (2.3) and (2.5), we obtain

1 1 } 1
dy=3Bip;, and  dy =B (Pz - %1) + < Bypi.

From (1.2), a computation shows that

ME3f(2) = z + [2]}a,z* + [3]}asz® + - (2.6)
According to the definition of D, f stated by Ramachandran et al. [12], we obtain
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Dy (M3f(2)) = 1+ (q + DI2Ifazz + (¢* + q + D[31Fasz? + - (2.7)
According to the definition of [j], by Jackson [7], let j = 0,1,2 and 3, we obtain that
when j = 0,
1-¢q°
[0l =7=¢ =0
whenj =1,
1—qt
[y ==, =1
when j = 2,
_1-a _
[2l; =17 =1+4 (2.8)
when j = 3,
Bl.=C 2441 (2.9)
=147 q q .
Substitute (2.8) and (2.9) into (2.7), we obtain
Do (Mpf(2)) = 1+ [213* azz + [313+ azz? + -~ (2.10)
Then, compared (2.3) to (2.10), we obtain
dy = [2]3+1a2
and
d, = [3]2“‘13
or equivalently we have
d, = %31271 = [2]3“@2:
@ = Bip,
, =
2[2]g+1
and
1 3\ 1
d, = 531 (Pz - %) + ZBZP% = [3]7+a,,
@ = By _ ﬁ n B,p?
P\ T 2) TappT
Now,
a _Maz — By <p _P_12> 4 szf _#< Bipy >2
3 22\ 2) Capntt 2[2]241)
4y — pa2 = 2Pz _ Bipf  Bypf  uBipi
3 2 2[3]2+1 4[3]:1”1 4[3];“1 4[2]3n+2 ’
2 By pi | Bapi [3]7;“#311’12
as —pa; = i\ P2~ 5 - niz )
2[3]7 2 ' 2B, 2[2]2
By (1 B, [3]2“1131)
2 2
az — paz; = P2=Pi\5 55 T 5oz | )
3 z 2[3]3“( 2oP\2 2B, 2[2)Fm?
consider
_1(, By [381§"'uBy
Yy = 2 (1 B, + [2]‘21n+2 .
Therefore,
0 — uad = =2 (p, — ypd)
3 2 — Srain+l W2 T 1/t
. . 2[3]3+1
By applying Lemma 1.1, it shows that
10.11113/mjfas.v20n2.3228 438
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B, [3I*'uB, }

B1 [2] én+2

lag — pa?| < B ]ZH max{l

The proof of Theorem 2.1 is done.
Taking n = 0 into Theorem 2.1, we acquire the corollary below.

Corollary 2.1 ([4]) Let 9(2) = 1+ Byz + B,z + B3z® ...with (B; # 0), and f is given by
(1.1) be in the class X () and u is a complex number, then

Theorem 2.2 Let ¢(z) =1+ Byz + B,z% + B3z% ... with (B; # 0), and f is given by (1.1) be in
the class Y]'(¢) and u is a complex number, then
B / B
lag — pa?| < E max< 1; [— =
2 (-9 (BIH 3], - 1) + 8ql31+2) \ (1 - olr(121, - 1) + o

B, [3]quBy

B, [212

By
lag — pa| < —max{l;
(314

Now, we show the results for class Y7 (¢).

i

\ s
— O)[2127(12]q — 1) + 8217 — (1 = &) (BI7)([3], — 1) + 843 "+2)) -
1
Proof. If f € Y7'(¢), then Schwarz function w(z) is exist with w(0) = 0 and |w(z)| < 1 in U such
that
A==y +9 (1 @) )T p(0(2). (2.11)
We see that Re(p(2)) > 0 and p(0) = 1 with w(z) as Schwarz function. Let
(2)=01- 5)w+5 1+M =14+dz+d,z%+ - (2.12)
g2) = M} (@) D (M £ @) e '
From equations (2.2), (2.11) and (2.12), we get
) = p(z) -1
g v +1)
By equation (2.2), we solve w(z) in terms of p(z), we get
p(z) —1 D1z + ppz° +
p(2)+1 2+ pz+pz>+
Where
— 2 3
=22+ (o~ E) 22+ (ps + - pap2) 22 + ), (2.13)

From equations ¢(z) and (2.13), we get

) = p(z) -1
TP\ v +1
1 2 3
=9 E<P1Z+<P2_p71>22+(P3+%_P1P2>Z3+"'))
1 p\ , 1 ri ’
=1+5B; E<p12+(p2—7>z +> + B, E<p12+<p2—7>z +- > + -
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1 2
=1+531p12+(%31 (pz_%)‘l'%szlz)Zz'i‘"'. (214)
From (2.2) and (2.14), we obtain
1
d; = EBlplr
and
1 p2 1
d; = B1 P2 — +- sz1

zDgMg f (z)
Mg f(2)

Case 1 for the equation (1 — §) , we substitute (2.6) and (2.10) into the equation and obtain

1-9)

zDy(Mzf(2)) _ 5 z(1+ [2]3+ ayz + [3]7F azz? + )
Mzf(z) =@- )< z + [2]fazz? + [3]Fa3z® + - >

=(1-8(1+ [21"([2]; — 1)azz + ([312([3]; — 1)as — [212"([2], — 1)a?)z? + -+) (2.15)

qzDy (DqMI{f (z))

Case 2 for the equation § <1 + D0 7 @)

s <1 N qzD, (DqMZ;f(z))>

>, by Alsoboh and Darus [1],

Dq(Mg f(2))

= 8[1 + qa,[2]2+2z + q(as[3]™*2 — a2[2]27*3) 22 + -] (2.16)

Therefore, a computation of (2.15) and (2.16) shows that

_pyPatiis@) [ b (P )
(1-9) Wi +6<1+ CO)

=(1- 5)(1 + [2]”([2]q - 1)(122 + ( ([3 - 1)a3 ]‘Zln([z]q _ 1)a%)zz + )
+6(1 + qaz[2]n+2z + q(a3[3 ]7+2 — g2[2]27+3) 22 + ... )

= 1+ (@ = 112y - 1]a2)) + Sq@,[2157) 2 + (1 = H(BIH (31, — 1)as -
(1 - &)[212"(12]q — 1)a3 + 8q(as[31™2 — a3[2127+%) ) 22 + -+ (2.17)
Then, compared (2.14) to (2.17), we get

=(1-98)[2] ([[2 —1]a,) + dqay[2]7+2,
d1 = a, (1 - O21"([2], - 1) + 5q[213"2)

and

dy = 1 - &)(BIMH(3]g — Daz — (1 - )[2]2([2], — 1)a3 + 6q(a3 3]™*2 — a3[215+%),
dy = a5 (1 = O)(BIP([3], — 1) + 6q[31™*2) — a3 ((1 - O)[213*([2], — 1) + 5q[2]2"+?)

or equivalently we have

d; = —B1p1 =a ((1 —8)[2 ([2 —1)+68q[ ]n+2)
Bip;

2(( - 8)[217([2], — 1) + 8q213+?)

a, =

and
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1 P2\ 1
d; = 531 (Pz _71> +ZBZP12
= a5 (1 - O)(BIP(B]g — 1) + 6q[31™*?) — a3 ((1 - ®)[21Z*([2], — 1) + 6q[213™*3),
a; (1= &) (3131, - 1) + 6q[3]"+2)
2
Bip;
— (( _ 5) Zn( _ 1) + 5(] 2n+3)
<2 ((1 - ®[2]"([2], - 1) + (5q[2] “+2))>
1 p3\ 1
+§B1 <P2 21>+4sz1

1 B#p?((1 - & [212"([2], — 1) + 8q[2]12"+3)
a
" {a-EIna), - 1) + sql312) 4 (- 8)2m(12], 1) + sql21y*2)

1 P2\ 1
+5B (Pz —71> +432P12>-

Now,
1 Bp#((1 - &)[212([2], — 1) + 6q[2]2"*3)
(1 - &)(BIHB], — 1) + 5q[3]™+2 +(( -2, - 1) + 6412 n+2)2

2
1 pf) 1 2 Bip,
=B - -B - )
+ o b (Pz 2 + P 2P1> < ((1 — o ( 1) T 5q[2 ]n+2)>

2
—ya? = 1 Bip; 1
G2 = (1 - 5)([3 n)( 1) + 5Q[3 n+2 << ((1 — 5)[ ] ( _ 1) + 5q n+2)> ((

- ®)[2137 (121, - 1) + 6q[213™3 — (1 - (3131, — 1) + 8q 3]n+2))
T (Blzpz - BlTplz> " %sz%)

1 (3)
T a-BIHM@I, - 1) +sqp12 | P2\2

2
2 By -8 2n —1) + 8q[ 2n+3
+pi << ((1 — o2 ([2 B 1) N 5q[2]3+2)> (( )[2 ( ) ql2

~ (- (EI), ~ 1)+ bl 1"“))“35?)'

2 _
az —uaz; =

2
az — paj
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. (

—na? = I
az — pa; ((1 —6)( 3]n)( _ 1) +6q[3 n+2) KPZ
_ Pf _ By ((1 (2 Zn( _ 1) +8q[2 2n+3
2(@ - &)[21([2], - 1) + 8q[2 "+2)
B 1
(=SBl ~ 1) + 8al312)) | = (55 -3) | |
consider
y = _/ By ((1 _ 5) Zn( _ 1) + 5(] 2n+3
\ 2((1 - ®)(21([2], - 1) + ql21*2)’
B 1
- (A= D@L, - 1)+ s01319)) | - (72 - 3).
Therefore,
az —uaj = i (p2 = vpD)
U 2 (a- 9Bl - 1) +aqle)
By applying Lemma 1.1, it shows that
las — paj|
By max< 1; [— By > ((1
2( - 8)(IB1) (3], — 1) + 8q[3]m+2) (- ®)21n(12], - 1) + 6ql21*?)
B
— &)[213([2], — 1) + 8q[213" — (1 - §)(BI(A3], — 1) + 8q3 n+z)) -5
The proof of Theorem 2.2 is done.
Taking § = 1 into Theorem 2.2, we acquire the corollary below.
Corollary 2.2 ([11) Let @(2) = 1+ B,z + B,z? + B3z3 ... with (B; # 0), and f is given by (1.1) be

in the class YJ'(¢) and u is a complex number, then

B, 1 [3]’3”>
Bl+Bl<[2]q HaznTag

}

B,
lag — pa?| < < 5apBe max{l;

Conclusions

In conclusion, we acquired the initial coefficients a, and a; and the upper bound for the functional
laz — paj| of the functions f in the class X7} (¢) and class Y/'(¢).
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